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Abstract 

 

This paper deals with modeling volatility of returns of Pliva stocks on Zagreb Stock Exchange 
for Value at Risk forecasting. Volatility reaction and volatility persistence are measured using 
asymmetric GARCH process. Croatian capital market characteristic is absence of intensive 
reaction on "good" information. But it is confirmed that Pliva stocks volatility on Croatian 
capital market are under dominant influence of "bad" information. If the data are heavy 
tailed, the VaR calculated using Normal assumption differs significantly from Student's t-
distribution. The fact that kurtosis and degrees of freedom from Student's distribution are 
closely related is used in estimation procedure of GARCH model. The complete procedure of 
Value at Risk forecasting for Croatia is established with assumption that returns follows 
extreme value distribution, precisely Student's t-distribution with non-integer degrees of 
freedom. The optimization problem is solved by FinMetrics module of S-Plus package. 
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1. Introduction 
 

Value at Risk (VaR) has become the most common measure that financial analysts 
use to quantify market risk. Even so VaR is proposed, by Basel Committee on Banking 
Supervision in 1996, as the basis for calculation of capital requirements, within establishing 
banks internal risk models. VaR is defined as the maximum potential loss of financial 
instrument with a given probability (usually 1% or 5%) over a certain time period. 

There are many methodologies for calculating VaR, but for simplicity they can be 
classified into parametric and nonparametric models. In category of parametric models the 
most are used GARCH(p,q) models and within nonparametric Monte Carlo simulation is most 
popular.  

However, it isn’t easy to estimate VaR when stochastic process which generates 
distribution of returns is not known. Unfortunately the assumption that the returns are 
independently and identically normally distributed is not satisfied. Furthermore, empirical 
research about financial markets reveals following facts: 

 financial return distributions are leptokurtic, i.e. they have heavy tails and a 
higher peak than a normal distribution, 

 equity returns are typically negatively skewed and 
 squared return series shows significant autocorrelation, i.e. volatilities tends to 

cluster. 
 

According to first two facts it is important to examine which probability density 
function capture heavy tails and asymmetry the best. According to the third fact it is important 
to correctly specify conditional mean and conditional variance equations from GARCH 
family models. So, it is well-known that returns from financial instruments such as exchange 
rates, equity prices and interest rates measured over short time intervals, i.e. daily or weekly, 
are characterized by high kurtosis. It is important to note that kurtosis is both a measure of 
peakdness and fat tails of the distribution.  
 
2. Real assumption of extreme value distribution 
 

If the distribution of returns heavy tailed, the VaR calculated using normal 
assumption differs significantly from Student's t-distribution. As it is known Student's 
distribution belongs to family of extreme value distributions. In case of volatility modeling 
and VaR estimating of Pliva stock returns on Zagreb Stock Exchange it is found that kurtosis 
and degrees of freedom from Student's t-distribution are closely related. 

To identify outliers and another extreme values Box and Whisker plot has been used. 
Statistical significance of existing heavy tailed distribution has been shown by Q-Q plot and 
tested using Jarque-Bera test. 

In practice, the kurtosis is often larger than six, leading to estimate of non-integer 
degrees of freedom between four and five. Thus, degrees of freedom can easily be estimated 
using the method of moments. 

Generally, there are three parameters that define a probability density function (pdf): 
 location parameter, 
 scale parameter and 
 shape parameter. 

 
The most common measure of location parameter is the mean. The scale parameter 

measure variability of pdf, and the most commonly used is variance or standard deviation. 



The shape parameter (skewness and/or kurtosis) determines how the variation is distributed 
about the location parameter. 
 
3. Non-integer degrees of freedom estimation 
 

The density of a non-central Student t-distribution has the following form: 
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where μ  is location parameter, β  is scale parameter and df is a shape parameter, or degrees 
of freedom and ( )⋅Γ  is gamma function. Standard t-distribution assumes 0=μ , 1=β , with 
integer df. However, there are no mathematical reasons why the degrees of freedom should be 
an integer. Even so, the degrees of freedom can be estimated using method of moments, 
which means that kurtosis and degrees of freedom are closely related: 
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So, when empirical distribution is leptokurtic, then Student's t-distribution with parameter 
30df4 ≤<  should be used to allow heavy tails of high kurtosis distribution. 
 
First two central moments are given as: 
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with excess kurtosis (greater then 3): 
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Hence, we may apply method of moments to get consistent estimators: 
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where variance from sample 2σ̂  is biased estimator of scale parameter β . 
 



4. Heavy tails diagnostics 
 
There are various analytical and graphical methods to detect heavy tails from 

observed distribution. The most common used are Jarque-Bera and Kolmogorov-Smirnov 
test, while Box-plot and Q-Q plot graphically determines fat tails. From Figure 1. it is obvious 
that outliers and extreme values causes fat tails, which are most interesting for risk managers. 

Figure 1.  
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Source: According to data on www.zse.hr 

 
On figure 2. different distributions are formed using same data base from sample. 

However, Kernel density estimate is concerned, as nonparametric density smoothing, rather 
then classical histogram, to objectively investigate the shape of observed distribution. 

Therefore, data are approximated using Normal distribution, as the assumption of 
most financial analysts. Even so, an empirical finding shows that assumption of Normal 
distribution is not appropriate and nonrealistic. From the same reason on figure 2. data are 
approximated using Student's t-distribution with 5 degrees of freedom, and in this case it can 
be seen that Student's distribution has heavier tails in comparison to Normal distribution. It 
means that higher probabilities are assigned to extreme values of the distribution, and 
empirical evidence for heavy tails can be found in high kurtosis. 
 
Figure 2. Density estimation with Normal and Student's t-distribution 

0
10

20
30

D
en

si
ty

-.15 -.1 -.05 1.388e-17 .05 .1
Pliva's stock returns

Kernel density estimate
Normal density
t density, df = 5

 
Source: According to data on www.zse.hr 



In table 1. basic statistics are presented including normality test. Each of shape 
measures, i.e. skewness and kurtosis are tested separately, indicating that skewness isn't 
statistically significant whereas excess kurtosis of 4.7 is significantly greater than 3. In 
general, joint test shows that null hypothesis of normality distribution assumption can't be 
accepted. This joint test is presented as Jarque-Bera test in table 1. 
 
Table 1. Normality test 
 

Mean      .0005299 Skewness  -.0222934 
Std. Dev. .0178412 Kurtosis  7.7096480  
  

Skewness/Kurtosis tests for Normality 
                                                 ------- joint ------ 
    Variable |  Pr(Skewness)   Pr(Kurtosis)      chi2(2)    Prob>chi2 
-------------+------------------------------------------------------- 
    plivaret |      0.781         0.000          103.70       0.0000 
 
Source: Tested according to data on www.zse.hr 
 
5. Asymmetric GARCH model of Pliva stock returns on Zagreb Stock Exchange 
 

Before we continue to define the model to capture volatility of Pliva returns, 
presented in figure 3., it is necessary to investigate if there is asymmetry in volatility 
clustering, i.e. if there is leverage effect. The tendency for volatility to decline when returns 
rise and to rise when returns fall is called the leverage effect, i.e. "bad" news seems to have a 
more effect on volatility than does "good" news. 

A simple test to investigate the leverage effect is to calculate first-order 
autocorrelation coefficient between lagged returns and contemporary squared returns: 
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Figure 3. Pliva's closing prices and Pliva's stock returns from 2 January 2003 to 4 September 

2006, daily observed on Zagreb Stock Exchange. 
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Source: According to data on www.zse.hr 

 
The results of asymmetric volatility testing are given in table 2. 



Table 2. Testing for leverage effects 
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Source: Tested according to data on ZSE 

 
It can be concluded that there is asymmetric volatility clustering of Pliva returns at 

p-value less than 1%, because the above autocorrelation coefficient is negative and 
significantly different from zero. 
 
Figure 4. Autocorrelation and partial autocorrelation functions of squared Pliva returns 
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Source: According to data on www.zse.hr 

 
From figure 4. it is obvious that there is significant autocorrelation in squared return 

series of Pliva stocks for almost each time lag. It means that return series contain ARCH 
effects. These ARCH effects are also tested using Lagrange multiplier test, which results are 
given in table 3. 
 
Table 3. Lagrange multiplier (LM) test 
ARCH Test:   

F-statistic 4.400118    Probability 0.004399

Obs*R-squared 13.06909    Probability 0.004490

Dependent Variable: RESID^2  

Included observations: 916 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.000188 2.17E-05 8.673513 0.0000

RESID^2(-1) 0.097833 0.033114 2.954462 0.0032

RESID^2(-2) 0.054730 0.033227 1.647132 0.0999

RESID^2(-3) 0.014804 0.033271 0.444954 0.6565

Source: Tested according to data on www.zse.hr 



From table 3. it can be seen that variance is heteroscedastic because the square 
unexpected returns follow AR(1) process, i.e. the lagged squared returns parameter is 
statistically significant at empirical p-value 0.32%, or even more LM test value, for large 
samples, is significant at 0.449%. It means that variance is time-varying. 
 
Table 4. White heteroskedasticity test 

F-statistic 62.26114    Probability 0.000000

Obs*R-squared 109.9794    Probability 0.000000

Dependent Variable: RESID^2  

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.000178 1.79E-05 9.967315 0.0000

CROBEXRET -0.004771 0.001636 -2.916349 0.0036

CROBEXRET^2 0.472505 0.044129 10.70728 0.0000

Source: Tested according to data on www.zse.hr 
 

Results from table 4. confirms that variance of estimated residuals is 
heteroskedastic, at empirical significance less then 1%, according  to White's regression. 
 

The expected value of return series is calculated from the simple linear regression 
model, usually taking constant as regressor. If there is significant autocorrelation in returns, 
best fitted ARMA models are usually used, following Box-Jenkins procedure. In this research 
it has been found most appropriate to enter market return series of Crobex index as regressor. 
It has been shown that ARCH(p) process with infinite number of parameters is equivalent to 
generalized ARCH process, GARCH(p,q) process, which is very well approximated by 
simple GARCH(1,1). As the time lag increases in an ARCH(p) model it becomes more 
difficult to estimate parameters. Besides it is recommended to use parsimonious model as 
GARCH(1,1) that is much easier to identify and estimate. 

But if there is asymmetric volatility clustering Ding, Granger and Engle (1993) 
proposed Asymmetric Power ARCH (APARCH) model: 
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The APARCH model is the most promising one, because this model nests at least 
seven ARCH type models, according to the estimated parameters. In model (7) parameter δ  
plays the role of a Box-Cox transformation of the time-varying conditional standard deviation 

tσ , while iγ  reflects leverage effect, i.e. asymmetric information influence. 
 
In financial theory it is confirmed that parameterβ , in the mean conditional 

equation, determines volatility of stock, i.e. stock risk. If 1>β , the stock is highly risked. If 
10 << β , the stock is lowly risked, while free-risk stock assumes that 0=β . 
Among the whole family of APARCH models, the most appropriate in this case is 

GJR - GARCH(1,1) model, proposed by Glosten, Jagannathan and Runkle (1993). This model 
is special case of APARCH(1,1) model when parameter 2=δ . 



Estimated model, assuming Normal distribution, using Maximum Likelihood (ML) 
method is given in table 5. 
Table 5. Conditional mean and conditional variance equations 
Method: ML - ARCH (Marquardt) - Normal distribution 

Sample: 1/02/2003 9/04/2006  

Convergence achieved after 22 iterations 

GARCH = C(2) + C(3)*(ABS(RESID(-1)) - C(4)*RESID(-1)) + C(5)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

CROBEXRET 0.948885 0.022167 42.80645 0.0000

 Variance Equation   

C(2) 3.92E-06 8.08E-07 4.853776 0.0000

C(3) 0.025012 0.009820 2.547087 0.0109

C(4) 0.606337 0.264914 2.288807 0.0221

C(5) 0.949479 0.008156 116.4150 0.0000

Adjusted R-squared 0.288067    S.D. dependent var 0.017841

S.E. of regression 0.015054    Akaike info criterion -5.628536

Sum squared resid 0.207126    Schwarz criterion -5.602294

Log likelihood 2591.312    Durbin-Watson stat 2.019460

Source: Estimated according to data on www.zse.hr 
 

The same model is estimated in table 6. by maximizing likelihood function, 
assuming Student's distribution of Pliva's stock returns with 5.3 degrees of freedom, whereas 
degrees of freedom are estimated according to equation (2). 
 
Table 6. Conditional mean and conditional variance equations 
Method: ML - ARCH (Marquardt) - Student's t distribution 

Convergence achieved after 23 iterations 

t-distribution degree of freedom parameter fixed at 5.3 

GARCH = C(2) + C(3)*(ABS(RESID(-1)) - C(4)*RESID(-1)) + C(5)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

CROBEXRET 1.052386 0.035928 29.29130 0.0000

 Variance Equation   

C(2) 9.93E-06 3.94E-06 2.520250 0.0117

C(3) 0.053097 0.019865 2.672932 0.0075

C(4) 0.463518 0.191284 2.423194 0.0154

C(5) 0.890947 0.030276 29.42759 0.0000

S.E. of regression 0.015117     Akaike info criterion -5.719580

Sum squared resid 0.208871     Schwarz criterion -5.693338

Log likelihood 2633.147     Durbin-Watson stat 2.022856

Source: Estimated according to data on www.zse.hr 



Comparing these two models it can be seen that in table 5., assuming Normal 
distribution, parameter beta in conditional mean equation is less than one. From the modern 
financial market models aspect it can be interpreted that investments in Pliva stocks are low 
risky. However, as it can be seen it table 6., assuming Student's distribution with estimated 
non-integer degrees of freedom, parameter beta is higher than one, which means that Pliva's 
stock investments are highly risky. This change in parameter value can be explained by 
distribution shape with heavy tails. 

Even so, information criteria are more representative in Student's distribution model, 
as well as maximal value of likelihood function. Also sum of parameters 11 βα +  (in table 6. 
( ) ( )53 cc + ), according to equations (7), indicates that there is persistence volatility, i.e. 

conditional variance decays slowly, not far from long-memory model.  In addition "bad" news 
have higher impact in increasing volatility then the "good" news, represented by leverage 
parameter 463501 .=γ , i.e. coefficient ( )4c  in table 6. 
 
Figure 5. Static and dynamic forecasting 
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Source: According to estimated APARCH(1,1) model in table 6. 

 
Figure 5. shows static forecast of conditional standard deviation and dynamic 

forecast of unconditional long run variance, using Student's distribution model in table 6. 
Diagnostic checking for estimated model in table 6. including investigation of standardized 
residuals, with satisfied covariance-stationary condition, are as follows: 
 
Table 7. Diagnostic tests for estimated standardized residuals 
                                Stat.     p-value      
 Jarque-Bera Test   R    Chi^2  392.7961  0            
 Shapiro-Wilk Test  R    W      0.9578688 1.346745e-15 
 Ljung-Box Test     R    Q(10)  11.5202   0.3184496    
 Ljung-Box Test     R    Q(15)  17.28357  0.3021972    
 Ljung-Box Test     R    Q(20)  19.07808  0.5167562    
 Ljung-Box Test     R^2  Q(10)  11.27558  0.3364544    
 Ljung-Box Test     R^2  Q(15)  14.22036  0.5088865    
 Ljung-Box Test     R^2  Q(20)  15.21380  0.7640459    
 LM Arch Test       R    TR^2   13.60740  0.3264783 

Source: Tested according to estimated APARCH(1,1) model 
 
6. Value at Risk forecasting for long trading position 
 

As introduced in first section Value at Risk, based on the Normal distribution, can be 
calculated as: 

( ) ttt ˆzˆVaR σμα ⋅+= ,      (8) 



where expected mean and expected standard deviation, at time t, are predicted from estimated 
GJR-GARCH(1,1) model. VaR expressed in equation (8) can be interpreted as expected 
minimal percentage loss within probability of α , when z  is left percentile from Normal 
distribution.  

( ) [ ]tttt zpVaR σμα ˆˆ ⋅+= .      (8a) 

Equation (8a) defines minimal loss in relevant currency according to tp  i.e. current 
stock price. This is the case when investor holds "long" position, i.e. if he has bought an asset, 
in which case he incurs the risk of a loss of value of the asset. When investor holds "short" 
position (he has sold an asset, in which case he incurs a positive opportunity cost if the asset 
value increases), variable z  presents the right percentile from Normal distribution. 

Assuming Student's t-distribution VaR can be calculated as follows: 
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where expected standard deviation is corrected to get unbiased estimator of standard Student's 
scale parameter, according to equations (4) and (5). 
So, if today is 4 September 2006 (the last day of observed period), and if investor has bought 
Pliva stocks at price of 820,00 kunas, it can be predicted, for example for two days ahead, that 
his loss wouldn't exceed 20,67 kunas per stock with probability of 95%. Moreover, investor 
can be sure that his loss wouldn't exceed 43,32 kunas per stock with confidence level of 99%: 

( ) ( ) ( )[ ]
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7. Conclusion remarks 
 

For any investor on stock market is very important to predict possible loss, 
depending on if he has bought or sold stocks. By forecasting Value at Risk investor can 
protect himself "a priori" from estimated market risk, using financial derivatives, i.e. options, 
forwards, futures and other instruments. In that sense we find financial econometrics as the 
most useful tool for modeling conditional mean and conditional variance of nonstationary 
financial time series. The assumption of heavy tailed distribution, such as Student's t-
distribution with non-integer degrees of freedom is used in asymmetric GARCH(p,q) model. 
It becomes more adequate with much precisely forecast which is shown on the example of 
Pliva stocks for the first time on Croatian Capital Market. 
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