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Abstract. The state trajectory from starting to the stationary state is simulated and in stationary state 
analytically calculated. Natural state variables for this circuit are inductor current and capacitor 
voltage. It was shown that the normalized trajectories in stationary state form one closed loop, so 
called attractor, composed of four different circular segments. After verifying simulation model, the 
influence of the quality factor of the resonant circuit on the duration of starting process is examined. 
By introducing small perturbations in the stationary state, the inherent stability of power circuit is 
demonstrated. The analysis results can be used for control circuit design. 
 
Keywords: analysis, power electronics, resonant DC/DC converter, simulation, stability 
 
 
 

1. INTRODUCTION 

Series resonant DC/DC converters link two DC systems. 
The DC output from a resonant converter is obtained by 
inserting a bridge rectifier. Due to the action of the bridge 
rectifier an analytic analysis of power circuit properties is 
rather complicated and does not provide appropriate insight 
into the dynamic behaviour of power circuit. 
Awareness of dynamic behaviour is essential for 
understanding operation and properties of the converter and 
right choice of components for the oscillating circuit. The 
system dynamics can be analyzed on the basis of a graphic 
representation of system response in dependence of time. 
This is the most frequent method used in the analysis of 
circuit response [1]. 
The second method of analysis is based on graphic 
representation of system response in state-space models 
where state variables are coordinate axes. The system 
response from the initial point in space moves along state 
trajectory. Time is an implicit variable along state 
trajectory. In case of the second-order systems, the state-
space deforms into a plane, which makes it easy to 
represent trajectories graphically [2]. 
In all its topological states a resonant DC/DC converter is 
basically a second-order system and can be used as a good 
example for analysis of dynamic behavior based on state-
plane representations. The paper analyzes influence if 
circuit elements changes: inductance L, resistance R, load 
V2 and initial conditions for response dynamics, and time 
needed to reach periodic steady state in which trajectory 
would be a closed curve which is called attractor. 
 

2. EQUIVALENT CIRCUIT  DIAGRAM AND 
ANALYTICAL  CALCULATION OF STEADY 

STATE 

The circuit diagram in Fig. 1 represents a power circuit of a 
series resonant DC/DC converter. The input DC source and 

the switching circuit that modulates the voltage of the DC 
input source are not shown in the picture. 
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Fig. 1. Circuit diagram of a series resonant DC/DC 
converter 

 
The source vin supplies the square-wave voltage of fixed 
amplitude V1 and frequency fs = 1/T, which is controllable 
as shown in Fig. 2. 
After the source voltage is applied to the converter, a nearly 
sinusoidal current iL flows through the inductor L. The 
current is rectified by the diode bridge rectifier and passed 
to the load. The voltage on the capacitor C is changed due 
to the current iL.  
The current amplitude of the resonant circuit i.e. the 
average current of the load depends on the difference of 
source frequency fs and resonant frequency fo. By 
controlling the frequency of the square wave voltage fs we 
control the average current delivered to the load. The load is 
represented by a DC voltage source of value V2. 
It is important to point out that the circuit goes through four 
configurations, which depend on source voltage polarity 
and source current polarity. When the source voltage is 
positive, and current flows from the source (iL > 0) the load 
voltage is subtracted from the source voltage. When the 
current iL flows into the source (iL < 0), the load voltage is 
added to the source voltage. The same is true for the 
negative source voltage. Accordingly, the voltage applied to 
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the resonant RLC-circuit changes its value four times during 
each cycle and equals to ±V1±V2, as shown in Fig. 2.  
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Fig. 2. Voltage waveforms vin and V and current waveform 
iL 
 

An analytical state analysis of the resonant DC/DC 
converter requires a mathematical model of the circuit 
diagram. 

iL

L C

+ -vC

R

V

 
 

Fig. 3. Series RLC-circuit 
 
For the series RLC-circuit shown in Fig. 3, it applies: 
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Second-order differential equation gives analytical solutions 
of the system: 
 

( ) ( )

( )tei

te
L
Ri

L
vV

ti

o
t

L
R

L

o
t

L
R

o
L

o

C
L

ω

ω
ωω

cos

sin
2

2
0

2
0

0

−

−

+

+⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

 (2) 

( ) ( ) ( )

( ) ( )tevV

teL
L
Ri

L
RvVVtv

o
t

L
R

C

o
t

L
R

o
o

L
o

CC

ω

ωω
ωω

cos

sin
22

2
0

2
2

00

−

−

−−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−−=

 (3) 
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LCoω  is the circuit resonant frequency. 

 
When R = 0, the calculation is simplified and the following 
solutions are obtained: 
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where 
LCo
1

=ω  is the circuit resonant frequency. 

 
Analytical expressions are valid for each topological state, 
therefore, the end of each cycle is the start of the next cycle. 
Thus initial conditions vC0 and iL0 are determined per each 
cycle. 
 

3. STATE VARIABLES TRAJECTORY ON THE 
STATE PLANE 

Representation on the state plane provides a better insight in 
dynamic behaviour of the second-order circuits, thus for 
further analysis of the circuit behaviour, the circuit 
responses are represented by the state variables trajectories 
on the state plane. 
The coordinates in a representation of state variables 
trajectories on the state plane are the state variables – 
inductor current and capacitor voltage. The sinusoidal 
inductor current waveforms  iL and capacitor voltage vC for 
the resonant converter become piecewise elliptical 
trajectories on the state plane. If instead of state variables 
the scaled quantities LiLx =  and CvCy =  are used as 
state variables, the elliptical trajectories become piecewise 
circular arcs. 
This can be easily mathematically verified, e.g. for an LC-
circuit we have: 
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A simple mathematical analysis where 
LCo
1

=ω , shows 

that: 
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The radiuses of circular arcs are determined by the voltage 
applied to the RLC-circuit and values of iL0 and vC0 at the 
beginning of each cycle.  
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The circular arcs are centered at points the coordinates of 
which are determined by the mean values of the sinusoids iL 
i vC during the intervals corresponding to these arcs. 
Accordingly, the center of each arc has an x coordinate of 0 
and its y coordinate takes one of the four values 
√C(±V1±V2). 
Trajectory in Fig. 4 represents the behaviour of the series 
resonant DC/DC converter in Fig. 1, during the first cycles 
of operation. The circuit response is simulated with values 
in Tab. 1: 
 
Tab. 1. Given circuit elements values 
 

L, 
mH 

C,  
µF 

R, 
Ω 

T, 
 ms 

iL0, 
A 

vC, 
V 

V1, 
V 

V2, 
V 

25 127 0 10 0 0 12 4 
 
 

 
 

Fig. 4. State variables trajectory on the state plane – the first 
5 cycles 

 
Since the voltage vC increases when the current iL is 
positive, the arcs are traversed counter clockwise with 
angular velocity ωo = 2πfo. This trajectory is not a closed 
loop, because the state at the end of the cycle does not equal 
the state at the beginning of the cycle, i.e. the analyzed 
circuit does not obtain periodic steady state at given time. 
After transition state, the duration of which depends on the 
circuit elements, the system turns into periodic steady state. 
 

 
 

Fig. 5. Attractor of series resonant DC/DC converter 
 
In the nominal periodic steady state, the trajectory is a 
closed loop, because the state at the end of the cycle equals 
the state at the beginning. Such a closed trajectory is called 
attractor and it is shown in Fig. 5. With the given circuit 
elements, the periodic steady state is obtained during 40 
cycles. 
 

4. INFLUENCE OF INDUCTANCE, RESISTANCE 
AND  LOAD CHANGES ON CIRCUIT FEATURES 

The features of DC/DC resonant converter when the 
resonant frequency fo is lower than the source frequency fs 
are analyzed. 
 
Change of inductance L  
In the system with no losses (R = 0), the resonant frequency 
of the resonant circuit is decreased, i.e. it is ‘distanced’ 
from the source frequency due to the increase of the 
inductance L. Thus the circuit impedance increases while 
the inductor current and capacitor voltage decrease.  
Tab. 2 and Fig. 6 show the influence of inductance change 
on the circuit response for the following elements: 
C = 127 µF, R = 0 Ω, T = 10 ms, V1 = 12 V, V2 = 4 V. 
Column ‘No. of cycles’ represents number of cycles 
required for the system to turn into periodic steady state. 
 
Tab. 2. Influence of inductance change 
 

L, 
mH 

ωo, 
rad/s 

Imax, 
A 

VC max, 
V 

No. of 
cycles 

25 561,21 4,55 55,95 41 
30 512,32 2,33 27,85 21 

 
 

 
 

Fig. 6. Influence of inductance change L on the circuit 
behaviour 

 
 
Change of resistance R 
In the system where R ≠ 0, the resistance increase causes 
the decrease of the resonant frequency fo, faster suppression 
of resonance as well as the decrease of the inductor current 
and the capacitor voltage. 

L = 25 mH
L = 30 mH
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Tab. 3 shows the influence of the resistance change on the 
circuit response for the following elements: L = 30 mH,  
C = 127 µF, T = 10 ms, V1 = 12 V, V2 = 4 V. 
 
 
Tab. 3. Influence of the resistance change 
 

R, 
Ω 

ωo, 
rad/s 

Imax, 
A 

VC max, 
V 

No. of 
cycles 

3 558,00 2,48 32,78 7 
10 524,37 0,94 12,96 3 

 
 
Fig. 7 shows the influence of the resistance change R on the 
circuit behavior during the first 3 cycles, and Fig. 8 shows 
the circuit behavior in the periodic steady state for different 
resistances. 
 

 
 

Fig. 7. Circuit behavior during the first three cyles after 
connection to the supplies for different resistances R 

 

 
 

Fig. 8. Influence of the resistance change R on the circuit 
behavior 

 
Change of load V2  
The load in the circuit has the same role as a dumping 
element. The load with a higher mean power has a stronger 
suppression effect in the circuit. Consequently, even the 
circuit without resistance achieves the periodic steady state. 
The circuit without both the load and the resistance would 
never achieve the steady state. 

The Tab. 4 shows the influence of the load change on the 
circuit response for the following elements: L = 25 mH,  
C = 127 µF, R = 0 Ω, T = 10 ms, V1 = 12 V. 
 
Tab. 4. Influence of the load change 
 

V2, 
V 

ωo, 
rad/s 

Imax, 
A 

VC max, 
V 

No. of 
cycles 

7 561,21 3,69 46,78 21 
10 561,21 5,22 29,09 11 

 
Fig. 9 shows the influence of the load change V2 on the 
circuit behaviour during the first three cycles after the series 
resonant DC/DC converter is connected to the supplies, and 
Fig. 10 shows one cycle in the periodic steady state for 
different loads V2. 
 

 
 

Fig. 9. Circuit behaviour during the first 3 cycles after 
connection to the supplies for different loads V2 

 

 
 

Fig. 10. Influence of load change V2 on the circuit 
behaviour 

 

5. INFLUENCE OF INITIAL CONDITIONS  
AND THE DISTURBANCES IN THE CIRCUIT  

ON THE CIRCUIT BEHAVIOR 

Influence of initial conditions 

R = 0
R = 3 Ω 
R = 10 Ω 

R = 0 
R = 3 Ω 
R = 10 Ω 

V2 = 4 V
V2 = 7 V
V2 = 10 V

V2 = 4 V
V2 = 7 V
V2 = 10 V
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The analysis of the behaviour of the DC/DC resonant 
converter can be divided into an initial cycle when the 
system goes from the initial state to the periodic steady state 
and the cycle of operation known as the periodic steady 
state. During the initial cycle, right after the converter is 
connected to the supply source, the inductor current and the 
capacitor voltage depend on the source voltage and the 
energy in the circuit at the moment of connection, i.e. at the 
beginning of observation. 
If the beginning of each cycle of the source voltage is 
considered to be the beginning of observation, the initial 
state is actually the state at the end of the previous cycle. If 
the state at the end of the cycle is different from the state at 
the beginning of the cycle, the system is not in the periodic 
steady state. It can be said that the system is in the transient 
state. 
For the circuit with given elements, if initial conditions are 
zero, it takes approximately 40 cycles of the voltage source 
to obtain the periodic steady state. During the transient 
state, the maximum capacitor voltage and the maximum 
inductor current exceed the voltages and currents in the 
periodic steady state. 
This is best seen in Fig. 11. and Fig. 12. For clarity; only 
the first ten cycles on the state plane are represented in Fig. 
11, and in Fig. 12 the current values are scaled by 10.  
 

 
 

Fig. 11. State variables trajectory on the state plane – the 
first 10 cycles 

 

 
 

Fig. 12. Time intervals of inductor current iL and capacitor 
voltage vC – the first 30 cycles 

 
If the initial conditions are approximately equal to the 
conditions at the beginning of the cycle in the periodic 
steady state, the circuit changes instantaneously into the 
periodic steady state, as it is shown in Fig. 13. 
 

 
 

Fig. 13. Circuit response given the initial conditions equal 
those obtained at the beginning of the cycle in the periodic 

steady state:  iL0  = – 4,49, vC0  = – 18,77 – the first 10 
cycles 

 
If the given initial conditions deviate from the final 
conditions less at the beginning, the transient state is 
shorter. The simulations of different initial conditions prove 
this. 
 
Disturbances in the periodic steady state 
If there are any disturbances in the circuit in the periodic 
steady state, e.g. due to the capacitor voltage perturbation, 
the system resonates and after a certain time it goes back to 
the periodic steady state. 
The time to reassume the periodic steady state depends on 
intensity of disturbances and suppressions in the circuit. 
Fig. 14 shows the change of the trajectory, which happens 
when a certain energy is given or taken from the steady 
state capacitor voltage. If the energy of the capacitor is 
increased by 30% at the beginning of the cycle, the system 
goes from point A to point B. If the energy of the capacitor 
is decreased by 30%, the system goes from A to C. Fig. 14 
shows that the mean trajectory is an attractor in the periodic 
steady state. The external trajectory represents the first 
cycle after the energy is increased, and the internal 
trajectory represents the first cycle after the energy is 
decreased. 
 

 

 vC 
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Fig. 14. State trajectories of the series resonant DC/DC 
converter during the first cycle after the capacitor voltage 

perturbation 

6. CONCLUSION 

Dynamic behavior of a series resonant DC/DC converter is 
simulated by the programme package MATLAB and the 
state variables trajectories on the state plane are analyzed. 
It is shown that after a transient state whose duration 
depends on the circuit elements, the system goes to the 
periodic steady state. In the nominal periodic steady state 
the trajectory is a closed loop, because the state at the end 
of the cycle equals the state at the beginning of the cycle. 
Such a closed trajectory is an attractor that consists of four 
circular arcs, if the state variables are scaled. 
Changes of circuit elements: values of inductance L, 
resistance R, and load V2 are analyzed. It is shown that the 
increase of these elements induces the decrease of the 
inductor current and the capacitor voltage, faster 
suppression of resonance and coming up to the periodic 
steady state, e.g. for the L = 30 mH, C = 127 µF, R = 3 Ω,  
T = 10 ms, V1 = 12 V, V2 = 4 V it is required 7 cycles for the 
system to turn into periodic steady state. 
The dynamics response is influenced by initial conditions. 
If the given initial conditions deviate from the final 
conditions less at the beginning, i.e. at the end of the cycle 
in the periodic steady state, the transition state is shorter. 
The disturbance appearing in the periodic steady state 
switches temporarily off the system from the periodic 
steady state, and the recovery time depends on the strength 
of disturbances.  
The system of a resonant DC/DC converter is inherently 
stable (as a DC motor). Upon switching on it assumes the 
steady state. If there are any disturbances in the circuit in 
the periodic steady state, the system resonates and after a 
few cycles it goes back to the periodic steady state. 
It can be concluded that the representation of the state by 
means of trajectories provides right answers to many 
questions and enables analysis of the converter operation at 
different conditions and right choice of the components for 
the converter. 
Next step is to introduce the non-linearity of inductance and 
explore the chaotic behavior and to compute transfer 
functions. 
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