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Coproduct for symmetric ordering
S. Meljanac, Z. Škoda, preliminary version

Abstract. Given a finite-dimensional Lie algebra, and a representation
by derivations on the completed symmetric algebra of its dual, a number
of interesting twisted constructions appear: certain twisted Weyl algebras,
deformed Leibniz rules, quantized “star” product. We first illuminate a num-
ber of interrelations between these constructions and then proceed to study a
special case in certain precise sense corresponding to the symmetric or Weyl
ordering. This case has been known earlier to be related to computations
with Hausdorff series, for example the expression for the star product is in
such terms. For the deformed Leibniz rule, hence a coproduct, we present
here a new nonsymmetric expression, which is then expanded into a sum of
expressions labelled by a class of planar trees, and for a given tree evalu-
ated by Feynman-like rules. These expressions are filtered by a bidegree and
we show recursion formulas for the sums of expressions of a given bidegree,
and compare the recursions to recursions for Hausdorff series, including the
comparison of initial conditions. This way we show a direct corespondence
between the Hausdorff series and the expression for twisted coproduct.

1. Fix a n-dimensional Lie algebra g over a field k. The main message in
our first several pages consists of the correspondences between several kinds
of data:

• k-linear maps φ : g → Homk(g, Ŝ(g∗))

• k-linear maps φ̃ : g → Derk(Ŝ(g∗), Ŝ(g∗))

• Matrices (φα
β)α,β=1,...,n of elements φα

β ∈ Ŝ(g∗) satisfing the system of
formal differential equations (4).

• Hopf actions of U(g) on Ŝ(g∗).

• Algebra homomorphisms U(g) → Ân,k (the codomain is the n-th Weyl
algebra completed with respect to the powers of ∂i-s) which is of the
form x̂µ 7→

∑n
α=1 xαφ

α
µ on a basis x̂1, . . . , x̂n of g, with φα

β ∈ Ŝ(g∗)

• Coalgebra isomorphisms ξ : S(g) → U(g) which are identity on g⊕k =
U1(g) ⊂ U(g).
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These correspondences are pretty easy to observe and the list can be mean-
ingfully extended. On the other hand, the many special cases of such data
studied in (mainly recent physics) literature, are treated with confusion about
the definitions, nature and correspondences between these data and related
constructions. The list can be meaningfully extended. For example, there
are popular “ordering prescriptions” which are various concrete ways deter-
mining the coalgebra isomorphism ξ above (as the isomorphism is trivial on
generators in g one needs to know what to do with higher polynomials, hence
“ordering prescriptions”). Another set of data, more loosely defined: if one
extends ξ to the completion (power series) then ξ can be evaluated on some
interesting dense set, and exponentials exp(ikx) are a good candidate and
ξ(exp(ikx)) is of the form ξ(exp(iK(k)x)) where K : kn → kn is a bijection
which is determined by φ and determines φ (however we do not know gen-
eral rule which bijections K are admisible, though we do have classification
results for some very special g). For the correspondences to be bijections
we need the assumption that the maps φ etc. are close to the “unit” case:
for example in the case of φα

β the unit case is δα
β and the near by is in the

sense of topology for the ring of formal power series in ∂. Nonformal case of
the correspondences is interesting as well, but more difficult and we have no
closed sufficiently general results of that form.

2. Morphism φ and the equation it satisfies.
Suppose we are given a Lie algebra g and a finite-dimensional vector space

V over a field k. By Ŝ(V ) or Ŝ(V ) we will denote the completed symmetric
algebra on V , which may be viewed as a formal power series in m = dimV
variables. Later we will set V = g

∗, but for the moment we consider the full

generality. Suppose we are also given a linear map φ : g → Homk(V, Ŝ(V )).
We want to extend this map to a k-linear map into continuous derivations

also denoted φ̃ : g → Derk(Ŝ(V ), Ŝ(V )). By the commutativity of Ŝ(V ), it
must hold that

φ̃(x̂)(v1 · · · vn) =
n∑

i=1

v1 · · · vi−1vi+1 · · · vnφ(x̂)(vi). (1)

This formula is linear in all arguments and symmetric under their permuta-
tions, hence by linearity in all arguments it defines a unique extension of φ(x̂)

to a well-defined map φ̃(x) ∈ Homk(S(V ), Ŝ(V )). It is straigthforward to
check that φ̃(x̂) defined via (1) is indeed a derivation. By abuse of notation,
we will henceforth denote the extension φ̃ also by φ.
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Let ∂1, . . . , ∂m is a vector space basis of V . Then, in terms of (alge-
braically defined) partial derivatives ∂

∂(∂i)
, the condition (1) generalizes to

the usual chain rule on Ŝ(V )

φ(x̂)(f) =
m∑

i=1

∂

∂(∂i)
(f)φ(x̂)(∂i) (2)

Finally, we continuously extend φ to a k-linear map φ : g → Derk(Ŝ(V ), Ŝ(V )).
The enveloping algebra U(g) is a Hopf algebra with elements of g →֒ U(g)

being primitive. If the linear map φ : g → Derk(Ŝ(V )) is a homomorphism
of Lie algebras, i.e.

φ(x̂)φ(ŷ) − φ(ŷ)φ(x̂) − φ([x̂, ŷ]) = 0, x̂, ŷ ∈ g, (3)

then φ extends multiplicatively to a unique Hopf action of U(g), i.e. to a

homomorphism φ : U(g) → Endk(Ŝ(V )) satisfying φ(u)(fg) = mU(g)(φ ⊗
φ)∆(u)(f ⊗ g) =

∑
φ(u(1))(f)φ(u(2))(g), for all f, g ∈ Ŝ(V ) and u ∈ U(g),

where mU(g) is the multiplication map on U(g). From now on, let g be
finite-dimensional as well and let x̂1, . . . , x̂n be a k-basis of g. Denote

φα
β = φα

β(∂1, . . . , ∂m) := φ(−x̂β)(∂α) ∈ Ŝ(V ).

The formal power series φα
β = φα

β(∂1, . . . , ∂m) has algebraically defined partial
derivatives

∂

∂(∂i)
φα

β ∈ Ŝ(V ).

Then φ(x̂i)φ(x̂j)(∂
k) = φ(x̂i)(−φk

j ) = − ∂
∂(∂l)

(φk
j )φ(x̂i)(∂

l) = − ∂
∂(∂l)

(φk
j )φ

l
i.

Thus the condition (3) reads for x̂ = x̂i and x̂ = x̂j

φl
j

∂

∂(∂l)
(φk

i ) − φl
i

∂

∂(∂l)
(φk

j ) = Cs
ijφ

k
s (4)

Consider the usual Weyl algebra An,k with generators x1, . . . , xn, ∂
1, . . . , ∂n,

and its completion Ân,k along the filtration by the degree of differential oper-

ator. Then the correspondence x̂i 7→ x̂φ
i :=

∑m
j=1 xjφ

j
i extends to an algebra

homomorphism ()φ : U(g) → Ân,k iff (4) holds.
Many solutions for φ satisfying (4) and hence homomorphisms φ, injec-

tive or not, for particular k and particular k-Lie algebras, with m equal n
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or not, exist. For example, in the article of Berceanu [2], such realizations
with φ faithful have been found for g semisimple over k = C. In that case,
dimV < dim g and dimV may be calculated in terms of the combinatorics
of root systems.

3. A universal formula for a ”symmetric” solution to (4) has been
found ([3]), for any ring k ⊃ Q, g finite rank free module over k and V = g

∗

(in particular, m = n), where φ is a monomorphism.

4. Hopf algebras. All bialgebras in the article will be associative,
coassociative, with unit map η and counit ǫ, without gradings. Hopf algebras
will be bialgebras with an antipode and the standard Sweedler notation for
th coproduct ∆(h) =

∑
h(1) ⊗ h(2) is few times used, with or without the

summation sign. Recall that the elements h ∈ H such that ∆(h) = 1 ⊗ h +
h⊗ 1 are called primitive.

5. Smash product algebras. Given any Hopf algebra H and a, say
left, Hopf action of H on algebra S, h⊗s 7→ h⊲s, one forms a crossed product
algebra (in Hopf literature ”smash product”) S♯H . As a vector space, it is
simply the tensor product vector space S ⊗H and the associative product is
given by

(s⊗ h)(s′ ⊗ h′) =
∑

s(h(1) ⊲ s
′) ⊗ h(2)h

′.

The canonical embeddings S →֒ S♯H and H →֒ S♯H will be considered
identifications, and one usually omits the tensor sign because s ⊗ h = sh
with respect to these embeddings and the product in S♯H . Then h ⊲ s =∑
h(1)sSH(h(2)) where SH : H → H is the antipode. Furthermore, the rule

(s♯h) ⊲ s′ := s(h ⊲ s′) (5)

defines an action of S♯H on S.
Analogously, for any right action of H on S one defines the crossed prod-

uct denoted by H♯S, whose underlying vector space is H⊗S. If the antipode
SH : H → Hop is bijective, there is a bijective correspondence between the
left and right actions (namely, composing with SH) and the crossed products
for the two corresponding (left and right) actions are canonically isomorphic
and we often identify them throughout the article.

6. (g,φ)-deformed Weyl algebras. Regarding that for any g, V and

φ such that (4) holds, the action of U(g) on Ŝ(V ) is a Hopf action, we may
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define the smash product algebra

Ag,φ := Ŝ(V )♯ U(g) = Ŝ(V )♯φU(g),

where the action u ⊲ v := φ(u)(v) is uniquely determined by the values
φ(−x̂i)(∂

j) = φi
j as explained above. The rule (5) specializes to a (dual)

”natural” action of Ag,φ on Ŝ(V ). In particular, if g = a is an abelian Lie
algebra, V = g

∗ and φ is given simply by the bilinear pairing φ(x̂i)(∂
j) = δj

i ,

then Ag,φ is isomorphic to the usual (semi)completed Weyl algebra Ân,k and

the action is the usual action of S(a) on Ŝ(a∗).

7. From now on we suppose

(i) φ : g → Der(Ŝ(g∗)) is a homomorphism of Lie algebras
(ii) the matrix φ (not bold) with entries φi

j := φ(−x̂i)(∂
j) has the unit

matrix as its constant term, i.e. φi
j = δi

j +O(∂).

8. Under the assumptions from 7, φ is invertible as a matrix over the

formal power series ring k[[∂1, . . . , ∂n]] and the homomorphism U(g)♯Ŝ(g∗) ∼=
S(g)♯Ŝ(g∗) given on generators by

x̂α 7→ xβφ
β
α, ∂µ 7→ ∂µ

is an isomorphism. Hence the (one-sidedly) completed deformed and un-
deformed Weyl algebras are isomorphic via a nontrivial map and we often
identify them when doing calculations.

9. This isomorphism enables us to consider the homomorphism

()φ : U(g) →֒ U(g)♯Ŝ(g∗) ∼= S(g)♯Ŝ(g∗) = Ân,k

which agrees with the unique homomorphism U(g) → Ân,k extending the
rule

x̂α 7→ x̂φ
α := xβφ

β
α ∈ Ân,k

Furthermore, we may identify S(g)♯Ŝ(g∗) ∼= Homk(S(g), S(g)). Here φβ
α =

φβ
α(∂1, . . . , ∂n) is understood as an element of the completed Weyl algebra

Ân,k
∼= S(g)♯Ŝ(g∗) acting in the usual way (as differential operator, this one

with constant coefficients) on the polynomial algebra. Therefore we obtained
an action, depending on φ, of U(g) on S(g).
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10. Lemma. Let χ ∈ k[[∂1, . . . , ∂n]], then xσχ is a coderivation of the
polynomial algebra P = k[x1, . . . , xn]. In other words,

(xσχ⊗ id + id ⊗ xσχ)(∆P (f)) = ∆P (xσχ(f)), ∀f ∈ P. (6)

Proof. By linearity it is enough to prove it for f which are monomial. We
prove this by induction on the sum of the polynomial degree of f and the
order of differential operator Ξ. The identity is clearly true if either the
degree of f or order of ξ is 0. Regarding that f is monomial it is of the form
xγg where g is some monomial of a lower order. We identify id with 1 in
Weyl algebra and xµ with multiplication with xµ. For step of induction we
want to prove that

(xσξ ⊗ 1 + 1 ⊗ xσξ)∆(xγg) = ∆(xσξ(xγg))

provided this is true for ξ of lower order or xγg replaced by g what is of lower
degree. Using the fact that ∆ is a homomorphism of algebras and that xγ is
primitive, we rewrite this equality using commutators:

(xσ[ξ, xγ] ⊗ 1 + 1 ⊗ xσ[ξ, xγ])∆(g)+
+ (xγ ⊗ 1 + 1 ⊗ xγ)(xσξ ⊗ 1 + 1 ⊗ xσξ)∆(g)

= ∆(xσ[ξ, xγ](g)) + (xγ ⊗ 1 + 1 ⊗ xγ)∆(xσξ(g))

and recall that [ξ, xγ ] is of lower order. This equality holds because it is a
sum of two equations which hold by the assumption of the induction. Q.E.D.

Corollary. The action from 9 restricted on g is an action by coderiva-
tions with respect to the standard coalgebra structure on S(g):

(xβφ
β
α ⊗ id + id ⊗ xβφ

β
α)(∆S(g)(f)) = ∆S(g)(xβφ

β
α(f)), ∀f ∈ S(g). (7)

11. For us it is important to consider the special case of the action of
U(g) on S(g) from 9, when f is 1 (action on “vacuum”).

Proposition. The rule ξ−1 : û 7→ û(1) for u ∈ U(g) is an isomorphism
of coalgebras, which restricts to the identity on k ⊕ g.

Of course, the inverse of ξ−1 will be some isomorphism of coalgebras
ξ : S(g) → U(g). Conversely, every isomorphism of coalgebras ξ : S(g) →
U(g) which is identity on k ⊕ g, defines a map DT : g → Coder(S(g))
into coderivations by DT

x (f) = DT (x)(f) = ξ−1
(
ξ(x) ·U(g) ξ(f)

)
. The dual

map Dx : Ŝ(g∗) → Ŝ(g∗) is a continuous derivation, and one has DT
x (f) =

6



−
∑

α xαDx(∂
α)(f) where the action on the left is the usual action as dif-

ferential operator. Here
∑

α xα ⊗ ∂α ∈ g ⊗ g
∗ is the “canonical element”

(the image of idg under the isomorphism Homk(g, g) → g ⊗ g
∗). Thus one

defines a Lie homomorphism φ : g → Der(Ŝ(g∗), Ŝ(g∗)) by x 7→ Dx such that
φi

j = Dxj
(∂i) and φi

j = δi
j +O(∂).

12. If some linear isomorphism S(g) → U(g) preserves the degree fil-
tration, then it clearly extends by continuity to a linear map among the

corresponding completions Ŝ(g) → Û(g). If the isomorphism is a coalgebra
map, then the extension respects the completed coproducts ∆ : Ĥ → Ĥ⊗̂Ĥ
(H = S(g) or U(g)). Thus, it makes sense to consider the behaviour of ex-
ponential series (as a formal series) under coalgebra isomorphism ξ as above.
It is also useful to extend the field by

√
−1 if it is not present and consider

formal series of the type exp(ikαxα). If the field is C then such series are
specially important because of Fourier integral methods. However, Fourier
integral is defined only for some formal series, so the formulas, though useful
for other spaces of functions (one can extend our coproducts etc. to var-
ious functional spaces, but we will avoid this here) the formulas involving
Fourier integrals in this paper will be understood just in the following sense:
every abstract series involved is a linear combination of series of the form
exp(iaαxα). Such sums are dense in the space of formal power series, so if
some identity is proved for finite sums of exponentials (which we heuristically
write as integrals, with some kernels). The imaginary unit is just for easiness
of applications in physics, one can correct the

√
−1 factors and prove the

formulas just for the sums of functions of the form exp(iaαxα) but we will
not spend time on these nicetess.

13. Coalgebra isomorphisms ξ : S(g) → U(g) which are identity on k⊕g,
and which are extended to the completions have the property

ξ(exp(ikαxα)) = exp(iK(~k)βx̂β) (8)

for some bijection K : kn → kn. (Proof: All group like elements both in
Ŝ(g) and in Û(g) are of such exponential form. ξ is a bijection and preserves
the group like elements because it is a coalgebra map.) For example, if K
is the identity map, this is the case of symmetric ordering: ξ is the coexpo-
nential map (when considered defined on S(g) only). Furthermore, one can
get a very large class of other solutions which satisfy 8 using certain inner
automorphisms of Weyl algebra.
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Namely, let S = exp(xαRα + B) where Rα = Rα(∂), B = B(∂) are some
formal series in variables ∂1, . . . , ∂n ∈ Ân,k. Then define the formal power
series

yα := SxαS
−1, ∂α

y := S∂αS−1.

They again satify canonical commutation relations: ∂α
y , yβ] = δα

β (this does
not depend on the special form of S) and yα = xρψ

ρ
α for some formal power

series in ∂-s ψρ
α = ψρ

α(∂) (this follows by the special form of S). Moreover,
∂α

y = d(∂) is also a power series in ∂-s only.
Now xαφ

α
β = yρψ

ρ
τφ

τ
β. This way φα

β is in the new basis replaced by
ψρ

τ (∂)φ
τ
β(∂) what should be expressed in terms of ∂y-s (what is done com-

puting the inverse transformation S−1). This way we get some Ξα
β = Ξα

β(∂y)
in place of φα

β . This procedure can be accomplished in some special cases
(for κ-Minkowski space see [7, 8]), but also some general statements may be
proved for Ξα

β ontained by this procedure, where the starting φα
β corresponds

to the symmetric ordering.

14. Given a Hopf algebra H acting by a right Hopf action on an algebra
S and a homomorphism of unital algebras ǫS : S → k, one defines a k-linear
map (H♯S) ⊗H → H as the following composition:

(H♯S) ⊗H →֒ (H♯S) ⊗ (H♯S)
mH♯S−→ H♯S H♯ǫS

−→ H ⊗ k ∼= H.

This map is a leftaction of the smash product algebra H♯S on H . Algebra
embedding S →֒ H♯S, s 7→ 1 ⊗ s, gives rise to the restriction of the above
action to a left action S ⊗ H → H . If the antipode SH : H → Hop is an
isomorphism, the corresponding representation ρ : S → Endk(H) is faithful.

15. In the case when S = Ŝ(g∗), H = U(g) and the Hopf action is

induced by φ : U(g) → Der(Ŝ(g∗), Ŝ(g∗)), the action ρφ : S → Endk(H)
from 14 may be alternatively described in terms of values on the standard
generators ∂̂µ = ρφ(∂

µ) ∈ Endk(U(g)), µ = 1, . . . , n. We describe the action

of ∂̂µ on U(g) inductively on the order of monomials in U(g). First of all,
∂̂µ(1) = 0 and ∂̂µ(x̂ν) = δµ

ν . Then suppose ∂̂µ is defined on monomials of
order up to n. Then any monomial of order n + 1 is of the form x̂ν f̂ where
∂̂(f̂) ia already defined. We set

∂̂µ(x̂ν f̂) := [∂̂µ, x̂ν ](f̂) + x̂ν ∂̂
µ(f̂) := φµ

ν(f̂) + x̂ν ∂̂
µ(f̂),

where φµ
ν = φµ

ν (∂̂) (we can substitute ∂̂ because S(g∗) is a free commutative
algebra and ∂̂µ mutually commute as it may be shown a posteriori). ∂̂ is
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well defined on S(g∗) (hence by continuity on Ŝ(g∗)), namely it is obviously
well defined linear operator from the free algebra on abstract variables x̂α to
U(g), and if one takes the generators of the defining ideal of the enveloping
algebra iν1ν2

= x̂ν1
x̂ν2

− x̂ν2
x̂ν1

− Cα
ν1ν2

x̂α then, applying our inductive rules

for every of the three monomials on RHS, then for every f̂ ∈ U(g),

∂̂γ(iν1ν2
f̂) = φγ

ν1
(x̂ν2

f̂) + x̂ν1
∂̂γ x̂ν2

(f̂) − φγ
ν2

(x̂ν1
f̂)−

−x̂ν2
∂̂γ x̂ν1

(f̂) − Cα
ν1ν2

φγ
α(f̂) − Cα

ν1ν2
x̂α∂̂

γ(f)

= ∂
∂(∂ν2 )

(φγ
ν1

)(f̂) + x̂ν2
φγ

ν1
(f̂) + x̂ν1

φγ
ν2

(f̂) + x̂ν1
x̂ν2

∂̂γ(f̂)

−
(

∂
∂(∂ν1 )

(φγ
ν2

)(f̂) + x̂ν1
φγ

ν2
(f̂) + x̂ν2

φγ
ν1

(f̂) + x̂ν1
x̂ν2

∂̂µ(f̂)
)

−Cα
ν1ν2

φγ
α(f̂) − Cα

ν1ν2
x̂α∂̂

γ(f̂)

= ( ∂
∂(∂ν2 )

(φγ
ν1

) − ∂
∂(∂ν1 )

(φγ
ν2

) − Cα
ν1ν2

φγ
α)(f̂)

The injectivity of ρ implies that ∂̂γ(iµν f̂) = 0 for every f̂ iff the operator
in the brackets on RHS vanishes, what amount to our main assumption (4).
It is trivial that ∂̂(f̂ iµν) = 0 as well, namely this is sufficient to check for

monomial f̂ , but this is f̂ ∂̂(iµν) + [∂̂, f̂ ](iµν). We already know that the
first summand is zero. The commutator in the second summand is some
polynomial in ∂̂-s, hence it is clearly zero modulo iµν by induction on the
degree of monomials and linearity.

Notice for the classical case of the abelian Lie algebra, that [∂, f̂ ] = ∂̂(f̂),
while this is not true in general (the equality always makes sense: LHS

is the bracket ∂f̂ − f̂∂ in the smash product Ŝ(g∗)♯U(g), while RHS is in

U(g) →֒ Ŝ(g∗)♯U(g)).

16. We saw in 11 that giving the Lie homomorphism φ for which the
matrix φ(−x̂i)(∂

j) = δi
j + O(∂) is equivalent to giving a coalgebra isomor-

phism ξ : S(g) → U(g) which is identity when restricted to k ⊕ g. This
homomorphism helps us define the star product

⋆ : S(g) ⊗ S(g) → S(g), f ⋆ g = ξ−1(ξ(f) ·U(g) ξ(g)). (9)

17. One can alternatively describe operators ∂̂µ = ρφ(∂
µ) from 15 by

the formula
∂̂µ(ξ(f)) = ξ(∂µ(f)), f ∈ S(g),

where ξ = ξφ is described in 11. Therefore also ξ−1∂̂µ = ∂µξ−1. It is
straightfoward to check that this description agrees with the inductive de-
scription of ∂̂µ in 11. It is of course convenient to have such an invariant
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description. Moreover, for any P ∈ Ânk, understood in a usual way as an
operator S(g) → S(g), we form P̂ : U(g) → U(g) by the same transport rule
P̂ (ξ(f)) = ξ(P (f)).

The deformed coproduct ∆(∂̂µ) =
∑
∂̂µ

(1)⊗ ∂̂
µ
(2) is defined by ∂̂(u ·U(g)v) =

∑
∂̂µ

(1)(u) ·U(g) ∂̂
µ
(2)(v) for u, v ∈ U(g). This is equivalent to the “deformed

Leibniz rule”, popular in some physics works:

∂µ(f ⋆ g) =
∑

i

∂µ
(1)f ⋆ ∂

µ
(2)g, f, g ∈ S(g),

as the following calculation shows: ∂µ(f ⋆ g) = ∂µ(ξ−1(ξ(f) ·U(g) ξ(g)) =

ξ−1(∂̂µ(ξ(f)·U(g)ξ(g))) = ξ−1(∂̂µ
(1)ξ(f)·U(g)∂̂

µ
(2)ξ(g)) = ξ−1(ξ∂̂µ

(1)(f)·U(g)ξ∂̂
µ
(2)(g)) =

∂µ
(1)(f) ⋆ ∂µ

(2)(g).

From now on, when commuting with elements in U(g) →֒ Ag,φ we will

by ∂ ∈ S(g∗) mean ∂̂ ∈ S(g∗) →֒ Ag,φ and so on – this amounts to the
identification of the deformed and undeformed Weyl algebras, cf. 8. The main
purpose of this article is describing more concretely this deformed coproduct.

18. This coproduct is related to but different from the dual coproduct

(S(g))∗ ∼= Ŝ(g∗)
∆′

→ Ŝ(g∗)⊗̂Ŝ(g∗) to the star product (9). The defining prop-

erty of ∆′ is 〈u1′, f〉〈u2′, g〉 ≡ 〈∆′(u), f⊗g〉 = 〈u, f ⋆g〉 for u ∈ S(g)∗ ∼= Ŝ(g∗),
f, g ∈ S(g).

The coorespondence P 7→ (f 7→ P (f)(0)) is the linear isomorphism from
the space of derivations of S(g) to the space of linear functionals S(g)∗.
Evaluating at zero the n-th partial derivative is the same as evaluating the
product of first partial derivatives except that one has to adjust the factor
of n! what amounts to a different pairing between the graded components
Sn(g) and Sn(g∗) (i.e. a different identification Sn(g∗) ∼= Sn(g)∗).

19. Lemma. If â = aαx̂α and f̂ ∈ U(g) then

∂̂µ(âpf̂) =

p−1∑

k=0

(
n

k

)
aα1aα2 · · ·aαk âp−k[[[∂̂µ, x̂α1

], . . . , x̂αk
](f̂) (10)

Proof. This is a tautology for p = 0. Suppose it holds for all p up to some
p0, and for all f̂ . Then set ĝ = âf̂ = aαx̂α. Then ∂̂µ(âp0+1f̂) = and we can

10



apply (10) to ∂̂µ(âp0 ĝ). Now

[[[∂̂µ, x̂α1
], . . .], x̂αk

](ĝ) = aαk [[[∂̂µ, x̂α1
], . . .], x̂αk

](x̂αk
ĝ)

= â[[[∂̂µ, x̂α1
], . . .], x̂αk

](f̂) +

+ aαk+1 [[[[∂̂µ, x̂α1
], . . .], x̂αk

], x̂αk+1
](f̂).

Collecting the terms and the Pascal triangle identity complete the induction
step.

20. Given a basis x̂1, . . . , x̂n in a Lie algebra g, and structure constants
defined by [x̂i, x̂j] = Ck

ijx̂k, denote by C the matrix with entries in An,k whose
(i, j)-th entry is

Ci
j = Ci

jk∂
k

In [3] we have shown that if ξ : S(g) → U(g) is the coexponential map then
the corresponding φ is determined by

φ(−x̂β)(∂α) = φα
β =

∞∑

N=s

(−1)NBN

N !
(CN )α

β

where BN are the Bernoulli numbers. For the reason of structure of the coex-
ponential map, from now on we will say that this is the case of symmetric
ordering. It has the property that ξ−1(exp(aαx̂α)) = exp(aαxα). In fact
there is a bit more general fact, which we will show in [10]:

21. (Symmetric case; tensorial form only) Given Ck
ij,C as above

let U be any subalgebra of An,k[[t]] (a priori not necessarily isomorphic to
U(g)) generated by n generators X1, . . . , Xn which satisfies the following two
conditions

(i) the mapping xα1
· · ·xαk

7→ 1
|Σ(k)|!

∑
σ∈Σ(k)Xασ1

· · ·Xασk
extends to a

onto map ξ : k[x1, . . . , xn] → U
(ii) Xi =

∑∞
N=0ANxα(CN)α

i , where AN ∈ k for all N > 0 are arbitrary,
A0 = 1 and where the summation over α is understood. We will denote
φ =

∑∞
N=0ANCN , hence Xi = xαφ

α
i .

Then the following theorem holds

22. Theorem. Let θ : U → k[x1, . . . , xn] be defined as

θ(P ) = P (1).

11



where P (1) is evaluated in the sense of the natural action of An,k[[t]] on
k[x1, . . . , xn][[t]]. Then θ ◦ ξ = id. In particular, ξ is then injective, hence by
(i) an isomorphism of vector spaces.

23. [∂̂µ, x̂α] = φµ
α, [∂̂µ, x̂α](1) = δµ

α,

[[∂̂µ, x̂α], x̂β] =
∂

∂(∂ρ)
(φµ

α)φρ
β = φµ

α,ρφ
ρ
β

In the case of the symmetric ordering (cf. 20),

φµ
α,ρφ

ρ
β(1) =

1

2
Cµ

αβ

when ξ is the coexponential map (the case from the paper with Durov [3])
and the higher order terms are not so easy to evaluate at 1 in a clean form
(involves identities between different tensors in C-s, what should be probably
handled with tree calculus and so on).

Given φα
β ∈ Ŝ(g∗) as above, denote

φα
β,ρ1ρ2...ρk

:=
∂

∂(∂ρk
)
. . .

∂

∂(∂ρ2
)

∂

∂(∂ρ1
)
φα

β

and we use the extension of this notation to more complicated expressions,
e.g. (ab),ρ = a,ρb+ ab,ρ is the derivative of the product ab with respect to ∂ρ.

24. Lemma. Let x̂1, . . . , x̂n be a basis of g. For any φ as above,

[. . . [[∂̂µ, x̂α1
], x̂α2

], . . . , x̂αk
] = (. . . ((φµ

α1,ρ1
φρ1

α2
),ρ2

φρ2

α3
),ρ3

. . .),ρk−1
φρk−1

αk
(11)

The proof is an obvious induction, using the chain rule.
Using the Leibniz rule we can rewrite the formula (11) as a sum of terms

for which every derivative operator ∂
∂(∂ρ)

is applied only to a single φ-series,

rather than to products. Indeed, it is clear that ∂
∂(∂ρ1

)
applies only to φµ

α1
,

then ∂
∂(∂ρ2

)
applies either to φµ

α1
or φρ1

α2
, and in general, ∂

∂(∂ρs )
applies to φ

ρp−1

αp

where 1 ≤ p ≤ s and ρ0 := µ. This means that we have (k − 1)! summands.
For example for k = 4 we have 6 summands:

φµ
α1,ρ1

φρ1

α2,ρ2
φρ2

α3,ρ3
φρ3

α4
+ φµ

α1,ρ1
φρ1

α2,ρ2ρ3
φρ2

α3
φρ3

α4
+ φµ

α1,ρ1ρ3
φρ1

α2,ρ2
φρ2

α3
φρ3

α4

+φµ
α1,ρ1ρ2

φρ1

α2
φρ2

α3,ρ3
φρ3

α4
+ φµ

α1,ρ1ρ2
φρ1

α2,ρ3
φρ2

α3
φρ3

α4
+ φµ

α1,ρ1ρ2ρ3
φρ1

α2
φρ2

α3
φρ3

α4

I will call this expansion “expansion 1”.
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25. We now specialize to the case of the series corresponding to the
symmetric ordering

φα
β,ρ1,...,ρs

=
∞∑

N=s

(−1)N BN

N !
(CN)α

β,ρ1...ρs

The sum over N ≥ k for each φ in the form of expansion 1, will be called
expansion 2. By applying the Leibniz rule again, we notice that (CN),ρ1...ρs is
a sum ofN !/(N−s)! summands, each of which is monomial which is a product
of N − s C-s and s C-s. This is the expansion 3. Performing consequently
expansions 1,2 and 3, the commutator in (11) becomes a multiple sum of
terms which are labelled by certain class of attributed planar trees and each
summand is certain contraction of several C-tensors and several C-tensors
with k + 1 external indices µ, α1, . . . , αk, and with some pre-factor involving
(products of) Bernoulli numbers and factorials. To describe the details, we
introduce several “classes” of planar rooted trees and their “semantics”.

26. Class T consists of all planar rooted trees with two kinds of nodes,
white and black, where black nodes may only be leaves.

We will draw the trees in T with the root on the top. ’Planar’ implies
that the (left to right) order of child branches of every node matters. If
t ∈ T , then w(t) ≥ 0 and b(t) ≥ 0 are the number of white and black nodes
in t respectively. Class T is graded in obvious way T =

∐∞
P=1 TP by the

total number of nodes P , and bigraded by the numbers b and w of black and
white nodes: T =

∐
w+b>0 Tw,b. Clearly TP =

∐
w+b=P Tw,b.

Class T ord consists of pairs (t, l) where t ∈ T and l is a numeration (with
values 1, . . . , w) on the set of white nodes of t which is descending in the
sense that white children nodes are always assigned greater values than their
parent nodes. Let T ord

P and T ord
w,b be the sets of all pairs (t, l) ∈ T ord such

that t ∈ TP and t ∈ Tw,b respectively. Given s ∈ T ord and t ∈ T we say s ∈ t
if s = (t, l) for some numeration l. This means that we identify t with the
set of all pairs of the form (t, l).

27. (Example: counting trees in T ord) Let sw be the cardinality of
T ord

w,0 , that is the number of distinct numerated planar rooted trees with
descending numeration and only white nodes. We suggest reader to check
that s1 = s2 = 1, s3 = 3 an s5 = 15. It is easy to derive a recursion for sw.
The trees in T ord

w+1,0 have a root node with at most w numerated branches
which are themselves planar rooted trees with labels. The exact labelling

13



is determined by first choosing the set of labels of each branch, and then
choosing a descending numeration on the labels within each branch. For
the whole process w labels are available, regarding that the root branch is
mandatory labelled with 1. Thus we obtain the recursion

sw+1 =
w∑

k=1

∑

w1+w2+...+wk=w

w!

w1!w2! · · ·wk!
sw1

sw2
· · · swk

, w ≥ 1.

The solution of this recursion is sw = (2w − 3)!! = 1 · 3 · 5 · · · (2w − 3).
Cardinality of T ord

b,w may be determined similarly: for w ≥ 0,

sw+1,b =

w∑

k=1

∑

w1 + . . .+ wk = w
b1 + . . .+ bk = b

w!

w1!w2! · · ·wk!
sw1,b1sw2,b2 · · · swk,bk

.

28. Suppose now g and its basis x̂1, . . . , x̂n are fixed; and hence the dual
basis ∂1, . . . , ∂n and the structure constants Ci

jk. Given t ∈ T ord
w,b and labels

1 ≤ µ, α1, . . . , αw ≤ n, we define ev(t)µ
α1,...,αw

∈ S(g∗) as follows. We first
replace the numeration labels 1, . . . , w on white nodes with α1, . . . , αw. Then
label arbitrarily the inner lines by distinct new variables ρ1, . . . , ρw+b−1, and
attach a new external incoming line to the root node and label it with label
µ. To form an expression ev(t)µ

α1,...,αw
apply the Feynman-like rules: to each

white node with label αk, incoming node ρl and outgoing nodes ρv1
, . . . , ρvs

assign value (−1)s Bs

s!
C∗

αkρv1
C∗

∗ρv2
· · ·Cρl

∗ρvs
, where ∗ replaces the intermediate

labels of summation which agree pairwise: superscript ∗ of a preceding C
with the first lower subscript of subsequent C. If s = 0, i.e. the white
node is a leaf, the value is the Kronecker delta δρl

α . To each black leaf assign
∂ρl ∈ g

∗ ⊂ S(g∗). Multiply so assigned values of all nodes and sum over
labels of internal lines. Example:

µ
��

GFED@ABCα1

ρ1

����
��

��
��

�
ρ2

!!
CC

CC
CC

CC
C

• GFED@ABCα2

B2

2!
(C∗

α1ρ1
∂ρ1)Cµ

∗ρ2
δρ2

α2
=

1

12
C∗

α1
Cµ

∗α2
(12)
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Clearly ev(t)µ
α1,...,αw

are components of some tensor which will be of course
denoted ev(t) ∈ g ⊗ T n(g∗). In this notation,

[. . . [[∂̂µ, x̂α1
], x̂α2

], . . . , x̂αw ] =
∞∑

b=0

∑

t∈T ord
w,b

ev(t)µ
α1,...,αw

(13)

29. For a tree t ∈ T ord
w,b one defines its full evaluation

fev(t)µ :=
1

w!
∂α1 · · ·∂αw ⊗ ev(t)µ

α1,...,αw
,

and for s ∈ T one defines

fev(s)µ :=
∑

t∈s,t∈T ord

fev(t)µ.

30. (Basic selection rule) Suppose a tree t ∈ T has at least one white
node y such that its most left child branch is a white leaf. Then for all µ,

fev(t)µ = 0.

Proof. Once the Feynman rules are applied the fact is rather obvious.
Namely, suppose that white node has s child branches, its label is k and
of its most left child branch is l (then l > k). Then the Feynman rules for
ev(t)µ

α1,...,αk,...,αl,...,αw
assign to the white node y the factor (−1)s Bs

s!
C∗

α1ρ1
C∗

∗ρ2
· · ·Cρ0

∗ρs

if the incoming line to y is labelled by ρ0 and outgoing from left to right by
ρ1, . . . , ρs. The white leaf contributes by a factor δρ1

α2
. Thus we get a factor

of the type C∗
αkρ1

δρ1

αl
= C∗

αkαl
which is antisymmetric in lower indices. To

obtain fev(t)µ contract 1 ⊗ ev(t)µ
α1,...,αk,...,αl,...,αw

with the symmetric tensor
1
w!
∂α1 · · · · · ·∂αw ⊗ 1 what vanishes by symmetry reasons. Q.E.D.

Notice that this selection rule holds for fev but not for ev (the latter does
not involve symmetrization). The subset of trees which are not excluded in
calculation of fev by the basic selection rules are called (fev)-contributing
trees and the correspoding subclasses are distingushed with supersctipt c,
e.g. T c

w,b ⊂ Tw,b.

By similar symmetry reasons, the following result holds:

31. Lemma. Let x̂1, . . . , x̂n be a basis of g. If ξ : S(g) → U(g) is the
coexponential map, then for w ≥ 2,

∑

σ∈Σ(w)

[. . . [[∂̂µ, x̂σα1
], x̂σα2

], . . . , x̂σαw ](1) = 0,
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where on the left hand side the evaluation at unit element (“vacuum”) is in
the sense of the action of the Weyl algebra on the usual symmetric algebra
S(g). The evaluation at vacuum simply kills all the strictly positive powers
of ∂-s, hence only the terms coming from trees in T ord

w,0 survive. Thus the
lemma may be restated as

∑

σ∈Σ(k)

∑

t∈T ord
w,0

ev(t)µ
σα1···σαw

= 0.

The proof in the latter form is obvious: applying the Feynman rules to a
graph with w nodes and w − 1 internal lines produces a tensor which is
proportional to some contracted product of w − 1 copies of the structure
constants tensor C, w − 1 contractions, w lower external labels and one
upper external label µ. In particular at least one pair of labels αi, αj will
be attached as lower labels of the same C-tensor. By the antisymmetry in
subscripts of C, after symmetrization of α1, . . . , αw we obtain zero.

32. Corollary. In the symmetric ordering (if ξ is the coexponential
map), the formula for the derivatives of (â)p = (aβx̂β)p is of the classical
(undeformed) shape, i.e.

1

s!
∂̂α1 ∂̂α2 · · · ∂̂αs(âp) =

(
p

s

)
aα1aα2 . . . aαs âp−s, p ≥ s.

This follows by an induction on k; the induction step involves applying the
case k = 1. For k = 1, the formula follows from (10) for f̂ = 1 after noticing
that aα1aα2 · · ·aαk in (10) is symmetric under permutations of α1, . . . , αk,
hence by 31 the only term which survives is the top degree term which is of
classical shape.

33. Up to the fourth order in total derivative, or equivalently, third order
in C-s one gets the following

∆∂̂µ = 1 ⊗ ∂̂µ + ∂̂µ ⊗ 1 + 1
2
Cµ

αβ∂̂
α ⊗ ∂̂β + 1

12
C⋆

αβC
µ
⋆γ(∂̂

α ⊗ ∂̂β ∂̂γ + ∂̂β ∂̂γ ⊗ ∂̂α)

− 1
24
C∗

αβC
∗
∗γC

µ
∗δ∂̂

α∂̂γ ⊗ ∂̂β ∂̂δ +O(C4)

where we sum on pairs of repeated indices (including ∗, where on two con-
secutive ones).

34. Theorem. If ξ is the coexponential map, the coproduct is given by

∆∂̂µ = 1 ⊗ ∂̂µ + ∂̂α ⊗ [∂̂µ, x̂α] +
1

2
∂̂α∂̂β ⊗ [[∂̂µ, x̂α], x̂β ] + . . .
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or, in symbolic form,

∆∂̂µ = exp(∂̂α ⊗ ad (−x̂α))(1 ⊗ ∂̂µ) (14)

and in the tree expansion form, using the notation from 29,

∆∂̂µ =
∑

t∈T ord

fev(t)µ. (15)

Of course, each ad(−x̂α) in (14) has to be applied to ∂̂µ before applying the
whole expression on the elements in S(g)⊗S(g) (for the Leibniz rule for the
star product) or on the elements in U(g)⊗U(g) (for the Leibniz rule for the
usual noncommutative product).

Proof. It is well known that the expressions of the form (â)p where â =∑
α a

αx̂α with varying a = (aα) span U(g). Thus it is sufficient to show that

for all a, all f̂ ∈ U(g) and all p the twisted Leibniz rule

∂̂µ(âpf̂) =

p∑

w=0

1

w!

∑

α1,...,αw

∂̂α1 · · · ∂̂αw (âp)[[. . . [∂̂µ, x̂α1
], . . .], x̂αw ](f̂).

holds. This follows by comparing the Corollary 32 which holds for symmetric
ordering only with the formula (10) which holds for general ordering.

35. Let ∂abc = ∂a∂b∂c and so on. Recall φµ
ν = φµ

ν(∂) = [∂̂µ, x̂ν ].
Corollary. In symmetric ordering, for any f̂ , ĝ in U(g),

φµ
ν(∂)(f̂ ĝ) =

∞∑

N=1

1

N !

N∑

k=1

∂i1···ik−1ik+1···iNφik
ν (∂)(f̂ ) · [[. . . [∂µ, x̂i1], . . . , x̂iN ](ĝ)

Notice that the last sum is from 1, not 0. Summation over repeated
indices understood. This formula is equivalent to giving the formula deformed
coproduct for the argument ∆([∂̂µ, x̂ν ]) = ∆(φµ

ν). For the proof, calculate
∂̂µ((x̂ν f̂)ĝ) using the twisted Leibniz rule from the theorem 34, and subtract
similarly x̂ν ∂̂

µ(f̂ ĝ) and group the terms and commutators appropriately.

36. Let τ : S(g∗)⊗̂S(g∗) → S(g∗)⊗̂S(g∗) be the standard flip interchang-
ing the tensor factors (in the completed tensor product).

Theorem. Let s1,p be the unique tree in T ord
1,p . Then for all µ,

τ(fev(s1,p)
µ) = (−1)p+1

∑

(t,l)∈T ord
p,1

fev(t)µ (16)
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or more explicitly

ev(s1,p)
µ
β ⊗ ∂β = (−1)p+1

∑

t∈T ord
p,1

1

p!
∂α1 · · ·∂αp ⊗ ev(t)µ

α1,...,αp
(17)

µ
��
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ρ1

~~}}
}}

}}
}}
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��

ρ3

  
AA
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@@

@@
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µ
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t7
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µ
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t8
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��
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��
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��
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��•
The diagrams above show s1,4 and the 8 diagrams t1, . . . , t8 ∈ T c

4,1.
Proof. For p = 1 the assertion is a tautology. Let us prove the assertion

for p > 1.
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By the Feynman rules, the LHS of (17) equals

(−1)pBp

p!
C∗

βρ1
C∗

∗ρ2
· · ·Cµ

∗ρp
∂ρ1∂ρ2 · · ·∂ρp ⊗ ∂β = (−1)pBp

p!
(Cp)µ

β ⊗ ∂β .

Therefore it is sufficient and we will show by induction that

∑

t∈T ord
p,1

1

p!
∂α1 · · ·∂αp ⊗ ev(t)µ

α1,...,αp
= (−1)p+1Bp

p!
(Cp)µ

β ⊗ ∂β .

Bournulli numbers and hence this expression are zero for odd p > 1 and
nonzero for even p > 1.

By the basic selection rule 30, the only trees t ∈ Tp,1 (no labelling) which
may give a nonzero contribution are those who have no leftmost white leafs,
and regarding that there is only one black node in our case, only one white
node may have a leftmost leaf (which is black). That means that every
contributing tree in T c

p,1 is composed as follows: start with a vertical chain
made of r + 1 ≤ p white nodes ending with a black node on the bottom and
on this white chain there are attached (p − r − 1) ≥ 0 right-hand side leafs
(to some among the white nodes of the vertical chain), but no branches of
length ≥ 2 are attached.

Notice that each t ∈ T c
p,1 for p > 1 may be also composed alternatively

starting with the top white node, attaching the left-most branch t′ ∈ T c
r,1

and p − r − 1 leafs, r ≥ 0. We group the trees by the number 0 ≤ r < p.
Let us now consider the ordered trees t ∈ T c,ord

p,1 . To the top node we must
assign label 1, then we may choose any r remaining numbers β1, . . . , βr to
distribute them within t′ branch according to the usual ordering rules within
t′ and distribute the remaning p−r−1 labels γ1, . . . , γp−r−1 to the white leafs
in any order. Other way around, given t with labels, if t′ as a branch of t, then
its labels are renumerated as 1 to r in the same order. For example, labels
2, 5, 7, 8, 3 of white nodes in t′ as a branch will be replaced by the position
labels 1, 3, 4, 5, 2 in t′ as an independent tree. Thus for a given ordering

evµ
1,...,r(t) = (−1)pBp

p!

∑

ρ

C∗
1,ρC

∗
∗γ1

· · ·Cµ
∗γp−r−1

evρ
β1,...,βr

(t′)

(of course each i has to be replaced by αi). Now we need to count all ordering
and combine into fev. The ordering constraints described above give some
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combinatorial factors, as well as 1/n! in the definition of fev. We obtain

∑

t∈T c
1,p

fev(t)µ =
1

p!

∑

r

(−1)p−r+1 Bp−r

(p− r)!

(
p− 1

r

)
r! fev(t′)ρ(p−r−1)!((Cp−r)µ

ρ⊗1).

Notice here an additional sign from the first C-factor (by antisymmetry of
lower indices): C∗

α1ρ∂
α1 = −C∗

ρ.

By the induction hypothesis, fev(t′)ρ = (−1)r Br

r!
(Cr)ρ

β ⊗ ∂β , hence,

∑

t∈T c
1,p

fev(t)µ =
1

p
(−1)p

∑

r

Bp−r

(p− r)!

Br

r!
((Cp)µ

β ⊗ ∂β)

Regarding that, for p > 1, Bp−r and Br on the right are simultaneously
nonzero if and only if r and p−r are both even, the proof finishes by applying
the well known identity for Bernoulli numbers

l∑

s=1

B2s

(2s)!

B2l−2s

(2l − 2s)!
=

−B2l

(2l − 1)!
+

1

4
δl,1, l > 0.

37. In these terms we state the following conjecture on the star product
In our notation we will often not distinguish any more ∂ from ∂̂; with

the convention that when we write [∂, x̂] where x̂ ∈ U(g) we mean ∂̂; as well
as when we apply ∂̂(f̂) with f̂ ∈ U(g); however when we apply ∂(f) with
f ∈ S(g) we mean the usual (undeformed) Fock representation. In any case
∆ is deformed and ∆0 undeformed coproduct: ∆0(∂

µ) = 1 ⊗ ∂µ + ∂µ ⊗ 1.

38. Conjecture.

f ⋆ g =
∑

i1,i2,...,in≥0

xi1
1 x

i2
2 · · ·xin

n

i1! · · · in!
m

((
n∏

l=1

(∆ − ∆0)((∂
l)il)

)
(f ⊗ g)

)
, (18)

where f, g ∈ S(g) and m is the commutative multiplication of polynomials
S(g) ⊗ S(g) → S(g). Notice that for any concrete f and g, the summation
on the right has only finitely many nonzero terms. This formula is proved
in some special cases ([8]). In general, if f is a first order monomial and g
arbitrary, this formula boils down to our main formula of article [3].

Formula (18) can be expressed via normal ordered exponential :exp():
(here x-s to the left, ∂-s to the right)

f ⋆ g = m : exp(xα(∆ − ∆0)(∂
α)) : (f ⊗ g)
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and m is the usual product.

39. In articles [8, 6] for a particular Lie algebra, the case of “kappa-
deformed Eucledean space” the conjecture has been verified for general φ.

40. Theorem. For symmetric ordering the conjecture holds for all g.
In fact we can prove it more general, for those φ which are obtained using

certain procedure of twisting basis by a wide class inner automorphisms.

41. (The recursive form of Campbell-Hausdorff series.) Given X, Y ∈ g

where g is finite-dimensional with a norm inducing the standard topology.
The series H(X, Y ) is uniquely defined by

exp(X) exp(Y ) = exp(H(X, Y ))

and it converges in such norm. Then H(X, Y ) =
∑∞

N=0HN(X, Y ) where
“Dynkin’s Lie polynomials” HN = HN(X, Y ) are defined recursively by H1 =
X + Y and

(N+1)HN+1 =
1

2
[X−Y,HN ]+

⌊N/2−1⌋∑

r=0

B2r

(2r)!

∑

s

[Hs1
, [Hs2

, [. . . , [Hs2r
, X+Y ] . . .]]]

where the sum over s is the sum over all 2r-tuples s = (s1, . . . , s2r) of strictly
positive integers whose sum s1 + . . .+ s2r = N . This identity is well-known
and we do not reprove it here.

42. (Linear parts in either X or Y ) The linear part in X of the Haus-
dorff series is H1,⋆(X, Y ) =

∑∞
N=0(−1)N BN

N !
[Y, [. . . , [Y,X]]] where N is the

degree of Y in the Lie polynomial involved. Similarly, the linear part in Y
is H⋆,1(X, Y ) =

∑∞
N=0

BN

N !
[X, [. . . , [X, Y ]]] where N is the degree of Y in the

Lie polynomial involved.

43. (Symmetries of Hausdorff series) Identity eXeY = (e−Y e−X)−1 im-
plies H(−Y,−X) = −H(X, Y ). Dynkin’s polynomials are of fixed total
degree, hence the change (X, Y ) 7→ (−Y,−X) does not mix them and
HP (−Y,−X) = −HP (X, Y ) for all P > 0. We refine the degree grading
on a free Lie algebra on two generators by a bigrading which induces a de-
composition HP (X, Y ) =

∑
w+b=P Hw,b(X, Y ) where Hw,b is the sum of all

Lie polynomials in HP (X, Y ) of degree w in X and degree b in Y . Clearly,
knowing HP determines Hw,b for all w, b with w + b = P .

21



44. Proposition. The following w-recursion and b-recursion hold

(w + 1)Hw+1,b =
1

2
[X,Hw,b] +

⌊w/2−1⌋∑

r=0

B2r

(2r)!

∑

wi,bi

[Hw1,b1 , [. . . , [Hw2r,b2r
, X] . . .]]

bHw+1,b = −1

2
[Y,Hw,b] +

⌊b/2−1⌋∑

r=0

B2r

(2r)!

∑

wi,bi

[Hw1,b1, [. . . , [Hw2r,b2r
, Y ] . . .]]

where in the sum on the RHS
∑

i wi = w and
∑

i bi = b for the w-recursion
and

∑
i wi = w + 1 and

∑
i bi = b− 1 for the b-recursion.

Proof. For the purpose of the proof we introduce two new sets of Lie
polynomials. The first set will have members HW

w,b and the latter HB
w,b where

w ≥ 0, b ≥ 0, w + b > 0. For w = 0 we set HW
w,b = H(w, b) what is 0

unless b = 1 when HW
0,1 = X; similarly for b = 0 we set HB(w, b) = H(w, b).

Also set HW
1,0 = Y and HB

0,1 = X, regarding that (0, 0) point is undefined.
By definition, w-recursion is used to define HW

w,b at all other pairs (w, b)
and similarly the b-recursion is used to define HB

w,b. E.g. for w-recursion
we first use the recursion at the line b = 0, increasing from w = 1 on,
then at the line b = 1, increasing from w = 1, and so on. Clearly each
recursion relation is used exactly once to determine one new value and all
instances of relations are used. Notice that on the line b = 0, the w + 1 =
w + b + 1 = P + 1, hence the w-recursion gives the same values on this
line as the standard recursion for Hw,b. In that manner we notice that the
initial values (line b = 0 and (0, 1)) given to HB agree with the value of
HW and H obtained by w-recursion and the standard recursion. The initial
values hence also satisfy the symmetries Hw,b(X, Y ) = −Hb,w(−Y,−X) in
both cases. We want to prove that the values within the quadrant agree as
well, not only the conditions on the boundary. But, the b-recursion may be
obtained from w-recursion also by the same symmetry operation! Regarding
that the symmetry holds for initial values and also for the recursion, than
this is true for each pair of new points to which the two recursions assign
the values. Conclusion: HB = HW . Therefore we can now safely combine
two recursions without being afraid of nonconsistency. But adding up the
w-recursion and b-recursion we clearly get the standard recursion. Regarding
that the initial value w + b = P = 1 for standard recursion is checked and
that the standard recursion is the consequence, and also that the values HP

determine Hw,b, we conclude H = HB = HW .
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45. (Recursive formula for D = D(k, q)) Let x̂1, . . . , x̂n be a basis of g,
i =

√
−1, X = ikax̂a, Y = iqax̂a and H(X, Y ) = iDa(k, q)x̂a, where k =

(k1, . . . , kn), q = (q1, . . . , qn); let also D = D(k, q) = (D1(k, q), . . . , Dn(k, q)).
Then Dµ(k, q) =

∑∞
N=0D

µ
n(k, q) where Dµ

1 (k, q) = kµ + qµ and the recursion

(N + 1)Dµ
N+1 =

1

2
(ka − qa)(EN)µ

a +

⌊N/2−1⌋∑

r=1

B2r

(2r)!

∑

s

(ka + qa)(Es1
· · ·Es2r

)µ
a

(19)
holds where

(EP )µ
ν :=

∑

σ

iCµ
νσD

σ
P , P ≥ 1,

are the components of a matrix EP , and the product of matrices on the right
is via the convention that the superscript is the row index. The sum over
a on the right is understood and the sum over s is again over 2r-tuples of
positive integers adding up to N .

46. For the coexponential map ξ, the equality ξ(exp(ikaxa)) = exp(ikax̂a)
holds. Therefore the star product f ⋆ g = ξ−1(ξ(f) · ξ(g)) reduces to calcula-
tions with Hausdorff series. Namely if f(x) = exp(ikaxa), g(x) = exp(iqaxa),
then (f ⋆ g)(x) = exp(iDa(k, q)xa). For general f and g, it is convenient to
expand f and g in Fourier components (reasoning understood in the sense
of 8) f(x) =

∫
dnk

(2π)n (Ff)(k) exp(ikaxa) and, by bilinearity, we obtain

(f ⋆ g)(x) =

∫
dnk

(2π)n

∫
dnk

(2π)n
(Ff)(k)(Fg)(q) exp(iDa(k, q)x),

or alternatively,

(f ⋆g)(x) = m exp(iza(D
a(−i∂⊗1,−i⊗∂)+ i∂a⊗1+ i⊗∂a))(f⊗g)(x)|za=xa

where ∂ = (∂1, . . . , ∂n). Now notice that Da
1(−i∂ ⊗ 1,−i⊗ ∂) = −i∂a ⊗ 1 −

i⊗ ∂a, hence

(f ⋆ g)(x) = m exp(iza(D
a −Da

1)(−i∂ ⊗ 1,−i⊗ ∂))(f ⊗ g)(x)|za=xa

Notice that iDa
1(−i∂ ⊗ 1,−i ⊗ ∂) = ∆0(∂

a). In fact, using the filtration by
the total degree, we see that the previous theorem is equivalent to

47. Theorem. Let ∆P (∂a) be the summand in ∆(∂a) consisting of terms
of total homogeneity P ≥ 1. Then for every P ≥ 1,

iDa
P (−i∂ ⊗ 1,−i⊗ ∂) = ∆P (∂a)
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The theorem will be proved by induction on P . In other words, we have to
prove the corresponding recursion for ∆P . We use two tools: Fourier trans-
form (this is only heuristic term here, strictly speaking we use the denseness

of the linear span of all exponential series exp(aαxα) in Ŝ(g) and do not
require the existence of the imaginary unit, cf. 12) and the combinatorics
of the trees whose Feynman rule contribution is involved here. Every de-
gree in homogeneity corresponds to a node. The new node can always be
assumed the top node, and, in particular white. This gives in the same way
as the counting of trees in 27), but with weights, the w-recursion formula
(in Fourier transformed form) which agrees with the w-recursion formula for
Hausdorff series. The initial conditions for w-recursion are the same as for the
w-recursion of the Hausdorff series, as calculated in Theorem 36. Therefore
the equality.

48. The classical case of Moyal noncommutative space, where the de-
formation is given by an antisymmetric matrix θµ,ν and the commutation
relations are given by [xµ, xν ] = θµ,ν can be treated as special case of this
framework by multiplying θµ,ν by a central element c. Then one calculates
the star product and obtains the classical formula, after setting back c to 1.
In the classical case also one has the formula f ⋆g = mF (f ⊗g) where F is a
Drinfeld twist. For this to make sense in general we need to have some Hopf
structure, Our “normally ordered exponential” formula for the star product
should be rewritten by means of some element in H ⊗ H where H is some
(completed) Hopf algebra containing S(g∗), but we also need some combi-
nations involving xi-s as seen from the formula. Hence H is strictly bigger
than S(g∗) and smaller than the full Weyl algebra (the latter has no Hopf
structure extending the one on S(g∗)). Twisted Leibniz rules for some oper-
ators involving both xi-s and ∂i-s are studied in the literature and maybe a
good step toward understanding which extension of S(g∗) could be the place
where F lives (e.g. for “kappa-deformed space” the answer is known).

49. By the Hausdorff formula, using the notation from (8),

ξ(exp(ikx))ξ(exp(iqx)) = exp(iK(k)x̂) exp(iK(q)x̂)
= exp(iD(K(k), K(q))x̂)
= ξ(exp(iK−1(D(K(k), K(q)))x))

where we wrote the contractions with surpressed indices. If we denote

Dφ(k, q) := K−1(D(K(k), K(q))), K = Kφ,
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then we write this as ξ(exp(ikx))ξ(exp(iqx)) = ξ(exp(iDφ(k, q)x)) or equiv-
alently

exp(ikx) ⋆φ exp(iqx) = exp(iDφ(k, q)x).

In physics papers (e.g. [7, 8]) ξ(exp(ikx)) is usually written as φ-ordered
exponential : exp(ikx̂) :φ. Similar expressions one can write for the deformed
coproducts (in Fourier harmonics picture).

iDµ
φ(k, q) exp(iDφ(k, q)x) = ∂µ(exp(iDφ(k, q)x))

= ∂µ(exp(ikx) ⋆φ exp(iqx))
= mφ(∆φ(∂

µ)(exp(ikx) ⊗ exp(iqx)))
= ∆µ

φ(ik, iq)(exp(ikx) ⋆φ exp(iqx))

= ∆µ
φ(ik, iq) exp(iDφ(k, q)x)

where ∆µ
φ(ik, iq) is obtained from ∆φ(∂µ) by substituting ∂α 7→ kα or qα

depending on the tensor factor and multiplying. Thus iDµ
φ(k, q) = ∆µ

φ(ik, iq).

50. Let Mτ := Cλ
τµxλ∂

µ. The correspondence x̂τ 7→ Mτ is a homo-
morphism of Lie algebras g → Lie(An,k) – if we corestrict to the image
g

M = Spank{M1, . . . ,Mn} and restrict the action of ∂-s to g ⊂ S(g), then this
is precisely the adjoint representation. On the other hand, the g

M⊕g
∗ ⊂ An,k

is closed under the bracket (obviously: [Mτ , ∂
ρ] = −Cρ

τ,µ∂
µ, hence g ∼= g

M

acts on g
∗ here by the coadjoint representation).

51. Theorem. Let f ∈ Ŝ(g∗). Then (in symmetric ordering)

Mµ(xν ⋆ f) − xν ⋆ Mµf = Mµ(xν)f +Mτχ
τ
µνf (20)

where for every 1 ≤ τ, µ, ν ≤ n, χτ
µν ∈ Ŝ(g∗) and

χτ
µν =

∞∑

N=1

(−1)NBN

N !

[
Cτ

µα(CN−1)α
ν − (CN−1)τ

ν,αCα
µ

]
.

where Cα
β := Cα

βρ∂
ρ, (CN−1)τ

ν,α := ∂
∂(∂α)

(CN−1)τ
ν, and Mµ(xν) = Cλ

µνxλ.

Proof. Write xν ⋆ f = xαφ
α
ν f hence Mµ(xν ⋆ f) = Cλ

µρxλ∂
ρxαφ

α
ν f =

Cλ
µρxλ(δ

ρ
α + xα∂

ρ)φα
νf = xν ⋆ Mµf + Cλ

µαxλφ
α
νf − xαC

λ
µρ∂

ρφα
ν,λf , relabel the

indices in the last term to obtain

Mµ(xν ⋆ f) − xν ⋆Mµf = xτ (C
τ
µαφ

α
ν − Cλ

µφ
τ
ν,λ)f

=
∑∞

N=0(−1)N BN

N !
xτ [C

τ
µα(CN)α

ν − (CN)τ
ν,λCλ

µ]f.
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For N = 0 only the summand Cτ
µα(CN)α

ν = Cτ
µν survives within the brackets.

For N > 1 both summands survive, and within the second summand use
the Leibniz rule for ∂

∂(∂λ)
in the form (CN)τ

ν,λ = Cτ
ρ(C

N−1)ρ
ν,λ + Cτ

ρλ(C
N−1)ρ

ν .
In the rightmost summand so obtained, use the Jacobi identity, in the form
−Cτ

ρλCλ
µ = −Cτ

µλCλ
ρ + Cτ

λC
λ
µρ, contracted with (CN−1)ρ

ν , and after a cancela-
tion of one summand, accounting for the signs and for the antisymmetry in
lower indices, and reassembling the Mτ , one obtains the formula above.
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