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Abstract

We present a turbulence closure for neutral and stratified atmospheric conditions.

The closure is based on the concept of the total turbulent energy. The total turbu-

lent energy is the sum of the turbulent kinetic energy and turbulent potential energy,

which is proportional to the potential temperature variance. The closure uses recent

observational findings to take into account the mean-flow stability. These observa-

tions indicate that turbulent transfer of heat and momentum behaves differently

under very stable stratification. Whereas the turbulent heat-flux tends to zero be-

yond a certain stability limit, the turbulent stress stays finite. The suggested scheme

avoids the problem of self-correlation. The latter is an improvement over the widely

used Monin-Obukhov based closures. Numerous large-eddy simulations, including a

wide range of neutral and stably stratified cases, are used to estimate likely values

of two free constants. In a benchmark case the new turbulence closure performs

indistinguishably from independent large-eddy simulations.
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1 Introduction

Atmospheric motion occur from the planetary scales, limited from above by the

size of Earth, to the turbulent scales, which are limited from below by the molec-

ular viscosity of air. All scales are important for a complete understanding of the

atmosphere. However, it is neither feasible nor desirable to resolve all motions in

models of the atmosphere. Rather we prefer to parameterize the motions, which

we are not explicitly resolving. Prime examples that require parameterization are

convection, cumulus clouds, gravity waves and turbulence. The latter is the subject

of the present study.

The purpose of a turbulence closure model is to predict the tendencies of the

small-scale turbulent disturbances on the large-scale mean-flow. A classical tur-

bulent boundary layer approach is obtained by assuming horizontal homogeneity

and applying the Boussinesq approximation (e.g. Stull 1988). Prognostic equations

for the mean state wind and the mean potential temperature of the atmospheric

turbulent boundary layer in their Reynolds averaged form are:

DU

Dt
= −∂uw

∂z
− f(Vg − V ), (1)

DV

Dt
= −∂vw

∂z
+ f(Ug − U), (2)

DΘ

Dt
= −∂wθ

∂z
, (3)

where uw and vw are the vertical momentum fluxes, wθ is the vertical potential

temperature flux, f is the Coriolis parameter, D/Dt denotes the total derivative and

Ug and Vg are the zonal and meridional components of the background geostrophic

wind vector. Upper case letters denote means, while lower case letters are turbulent
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departures from the mean. Obviously, numerical weather prediction and climate

models also account for tendencies of, for instance, radiative and moist processes.

In order to solve the coupled equation system (1)-(3) it is necessary to parame-

terize the turbulent fluxes. This can be done in many different ways, but the most

common is to define turbulent conductivity, wθ = −Kh
∂Θ
∂z

, and turbulent viscosity,

τ = KmS, where τ = −(uw, vw) is the turbulent stress vector and S =
(

∂U
∂z

, ∂V
∂z

)

is

the shear vector. The most simple case is to assume that Km and Kh are equal and

constants, in which case the problem decouples such that only (1) and (2) needs to be

solved simultaneously. Ekman (1902) found a spiraling flow steady-state analytical

solution for the case of constant turbulent viscosity.

To properly account for the effects of the mean-flow on turbulence a myriad of

turbulence closure models have been developed. First-order closures are formulated

in terms of the mean variables themselves, while higher-order closures add one or

more prognostic variables to the problem, for instance turbulent kinetic energy is

a popular choice (see Holt and Raman, 1988 for a general review). First-order clo-

sures tend to be used mostly in general circulation models, in operational weather

forecasting, and in climate studies. They bear the advantage of being computation-

ally efficient and most often quite insensitive to the rough vertical and temporal

resolutions applied (Ayotte et al., 1996). Prime examples are based on the Monin-

Obukhov scaling (Monin and Obukhov, 1954), which relates the stability of the

flow to a non-dimensional ratio of the turbulent heat-flux to the turbulent stress

(e.g. Louis, 1979). Unfortunately, Monin-Obukhov scaling suffers from the sta-

tistical problem known as self-correlation (Hicks, 1978; Mahrt et al. 1998; Klipp

and Mahrt, 2004). Higher-order closures tend to be used in meso-scale to regional

weather forecasting and in research, though there are exceptions. There, most mod-
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els owe their legacy to the second-order turbulence closure models presented by

Mellor and Yamada (1974), which treat all second moments of the flow.

Efforts have been made to understand the differences between the many differ-

ent closures within the GEWEX Atmospheric Boundary Layer Study (GABLS -

GEWEX stands for the Global Energy and Water Cycle Experiment). The first in-

tercomparison case was an idealized setup with a constant background geostrophic

wind and a slowly cooling surface. A weakly stable boundary layer grew against

a background stratification, qualitatively resembling an Arctic stable case (Koso-

vic and Curry, 2000). The intercomparison included both 11 large-eddy simulations

(LES, in Beare et al. 2006) and 20 different turbulence closure schemes (1D-models)

from operational weather services and research type models (Cuxart et al. 2006).

Whereas the LES agreed on a boundary layer depth of 150-200 m, depending on

resolution and sub-grid scale model, the 1D-models varied between 120 and 483 m.

The deepest boundary layer was found for the scheme presented by Viterbo et al.

(1999), as implemented in the operational model at the European Center for Medium

Range Weather Forecasts (ECMWF). The scheme was designed deliberately to be

more diffusive in stably stratified conditions than what micro-meteorological obser-

vations indicate in order to improve forecasts night-time minimum temperatures and

synopoptic cyclones (Viterbo et al. 1999; Anton Beljaars, personal communication).

This choice unfortunately leads to overprediction of the depth of the boundary layer.

The boundary layer height (H) is an integral measure, usually defined as the level

where the turbulent stress vanishes. Predicting the H may not seem practically

important, for instance compared to the 2 m temperature or the development of

a synoptic storm. However, Cuxart et al. (2006) demonstrated that the turbulent

surface stress and downward surface heat-flux is nearly proportional to H within the
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models tested in the first GABLS case. Further, Svensson and Holtslag (2007) found

that models predicting deeper boundary layers compared to LES had a too small

surface-wind angle with the geostrophic wind and too large cross-isobaric Ekman

transport. Obviously, these deficiencies are bound to have severe consequences for

weather and climate predictions, assuming LES results bear some resemblance with

the behaviour of the real atmosphere.

The first GABLS intercomparison considers a particular idealized case, whereas

the real atmosphere experiences a wide range of conditions. Hence, succesful emula-

tion by a turbulence closure of a single case does not prove its worth as a generally

applicable parameterization. Instead Esau and Zilitinkevich (2006) generated a

database of idealized LES cases. Both neutral and different types of stable bound-

ary layers with H ranging from 12 to 1600 m. Given the same initial and boundary

conditions as the LES we applied the turbulence closure, suggested by Viterbo et

al. (1999). The results are compared with the LES and plotted as gray symbols in

Figure 1, details of the figure will be given later. The figure shows that the Viterbo

et al. (1999) closure performs quite acceptably for the deeper (> 500 m) boundary

layers. However, as stability increases and the boundary layer becomes shallower,

this closure systematically overestimates H , in the worst case by an order of magni-

tude. A different version of the closure based on Monin-Obulhov scaling, intended

to resemble micro-meteorological observations, was also tested and found to yield

overprediction of the stable boundary layer H in the worst case only by a factor

of three, though. In the present study we present a new turbulence closure model,

based on the prognostic total turbulent energy equation, with the aim of improving

modelling of both the neutral and the stably stratified boundary layer.
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2 Model

A common approach to the turbulence closure problem is to apply additional prog-

nostic equations to the mean state equations (1)-(3), so-called higher-order closures.

Usually the prognostic turbulent kinetic energy (Ek) equation is applied (A-1).

Richardson (1920) found, using the Ek-equation, that beyond a certain stability

limit, which was later to be known as the critical Richarson number, turbulence

would decay. Here, we consider instead the total turbulent energy (E = Ek + Ep),

which is the sum of both the turbulent kinetic and the turbulent potential ener-

gies. The latter is proportional to the density variations in the fluid, which can be

expressed in the potential temperature variance (Zilitinkevich et al. 2007):

Ep =
1

2
σ2

θ

β2

|N2| ,

where σ2
θ is the potential temperature variance, β = g/Θ is the buoyancy parameter,

N2 = β ∂Θ
∂z

is the squared Brunt-Väisälä frequency and the vertical bars denote the

absolute value. The two budget equations, for Ek and σ2
θ ( Ep), have been used in

a turbulence closure model proposed by Zilitinkevich (2002). In order to derive the

total turbulent energy equation one multiply the temperature variance equation by

β2/N2 and add the result to the turbulent kinetic energy equation (Appendix 1).

The total turbulent energy equation accordingly reads:

DE

Dt
= τ · S − γ − ∂FE

∂z
+















0 for N2 ≥ 0

2βwθ for N2 < 0
, (4)
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where γ is the dissipation rate of E and FE is the third-order flux. The terms on

the right-hand side we refer to as shear-production, dissipation, third-order flux-

divergence and buoyancy production terms, respectively. The principle of (4) is

illustrated in Figure 2. Both the sources, τ · S and 2βwθ, and the sink, γ, owe their

existence to the presence of turbulence such that reality is more complicated than

it appears from Figure 2. It is possible to solve a steady-state version of (4) instead,

which may be beneficial in models that require long time-steps.

In neutral and stratified, steady-state, horizontally homogeneous conditions the

first three terms on the right hand side of (4) should balance. In most situations the

third-order flux-divergence, which acts to redistribute E vertically, is much smaller

than the shear-production and dissipation terms. In neutral conditions Ep is actually

zero, so here the prognostic equation for Ek, (A-1), applies in itself. However,

the major step forward in applying (4) is in stably stratified conditions, where

the term βwθ which is negative, cancels out. The term is often referred to as

buoyancy destruction in stratified conditions. From the present analysis it seems

more appropriate to name it buoyancy redistribution, as the term merely serves

to transfer energy from Ek to Ep in stratified conditions. In statically unstable

conditions the buoyancy production term appears in (4). This means that even

in the absence of shear, there will be production of E. It is, however, necessary

to include a parameterization of the non-local effects of convection (e.g. Troen

and Mahrt 1986). The main advantage of using the total turbulent energy is that

Richardsons (1920) critical limit in stable stratification disappears.
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3 Turbulence closure assumptions

In order to solve the system of prognostic equations (1)-(4), we need five turbulence

closure assumptions. This is because the system contains the unknown variables

uw, vw, wθ, γ and FE besides the prognostic variables. The latter two arrose as we

introduced (4). Adding additional prognostic equations to the problem introduces

even more unknown variables, known as the turbulence closure problem. Here, we

have decided to keep things as simple as possible while benefitting from the physics

contained in (4). Further simplification can be obtained by assuming steady-state

in (4), making it a diagnostic equation.

For the second-order vertical fluxes, we utilize observed properties of turbulence

at weak and strong stabilities by Mauritsen and Svensson (2006). They plotted

several non-dimensional entities, including normalized fluxes and variances, from six

different atmospheric observational datasets as functions of the gradient Richardson

number:

Ri =
N2

S2
, (5)

where S2 is the squared magnitude of the shear-vector. Only positive values of Ri

were considered, as the main focus is stable stratification. In short, Mauritsen and

Svensson (2006) found that stably stratified turbulence is very different in weak-

(Ri < 0.1) and strong stability (Ri > 1). In weak stability the turbulent fluxes

are proportional to the variance, i.e. the turbulent eddies are actively transporting

both momentum and heat. However, in strong stability the normalized turbulent

stress is diminished to a fraction of the weakly stable level, while the normalized

turbulent heat-flux is statistically indistinguishable from zero. Note that this does

not necessarily imply that the heat-flux itself is zero. It may be explained by the
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temperature variance growing at a higher rate than the heat flux with increasing

stability. Between the two regimes a rapid transition occurs in the range 0.1 < Ri <

1. Here, we use the non-dimensional stress and heat-flux:

fτ =
|τ |
Ek

, fθ =
wθ

√

Ekσ
2
θ

. (6)

In Figure 3 we plotted these quantities as functions of Ri, details of the analysis

can be found in Mauritsen and Svensson (2006). Simple stability functions were

subjectively fitted to the observations, fτ = 0.17(0.25 + 0.75(1 + 4Ri)−1) and fθ =

−0.145(1+4Ri)−1. These functions are shown in the plot. Given these functions and

the turbulent variances (see Appendix 1), it is easy to calculate the fluxes of heat and

momentum from (6). In the latter case, we assume the stress-vector is aligned with

the wind-shear. It is common to formulate turbulence closures in terms of turbulent

viscosity and conductivity, rather than fluxes, primarily for numerical reasons. These

may be obtained analytically from the presented closure, see Appendix 2.

We assume the presence of a dissipation range for turbulent energy, following the

ideas of Kolmogorov (1941), see e.g. Frisch (1995), such that the dissipation rate

can be approximated by:

γ = Cγ
E
√

E

l
, (7)

where Cγ is an empirical constant and l is the dissipation length scale. It is however

noteworthy that Cγ is not a free constant. In truly neutral, stationary, horizontally

homogeneous conditions, neglecting vertical energy transport (FE = 0), we have

τ = S2l2 and E = Ek, using the budget equation (4) and the definition (6) we get

Cγ = fτ (0)3/2 ≈ 0.07. We approximate the dissipation length scale by a multi-limit
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formulation as follows inspired by Blackadar (1962):

1

l
=

1

kz
+

f

Cf

√
τ

+
N

CN

√
τ
, (8)

which takes the distance from ground, the Coriolis effect and static stability into

account (Rossby and Montgomery 1935; Zilitinkevich 1972; Nieuwstadt 1984; Hunt

et al. 1985; Zilitinkevich and Mironov 1996; Zilitinkevich and Baklanov 2002; Zil-

itinkevich and Esau 2005). Whereas the above mentioned studies mostly considered

the bulk of the boundary layer, we here intend to resolve the boundary layer. As a

consequence we use local τ and N , rather than the surface stress and background

stability in the formulation of the length scale. This approach is more flexible, and

allows for decoupled, elevated turbulence in e.g. resolved low-level jets, breaking

gravity waves and turbulence in baroclinic flows. The von Karman constant, k, is

here taken to be 0.4. The free constants, Cf and CN , will be found by adjusting the

model results to fit reasonably with multiple LES results.

Finally, for the turbulent energy flux we use l as an approximate mixing length

for turbulent energy, such that

FE = −|S|l2∂E

∂z
.

The effect of the third-order flux divergence in this parameterization is therefore

local and only active where there is a non-zero curvature in the turbulent energy

profile. The effect of the term is small in the steady-state, but may be important in

developing boundary layers. A more advanced closure for FE have been suggested

by Zilitinkevich (2002) to account for the effect of gravity waves, which are emmitted
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from the boundary layer to the free atmosphere. Further, in convective conditions

non-local transport of E occurs due to the vertical advection by thermals. Here we

refrain ourselves from such further complications.

4 Numerical solution

Equations (1)-(4) are conveniently solved on a vertically staggered grid. The first

level is a mass-level, containing U , V and Θ, at the roughness height, z0. At this

level we assume U = V = 0. The vertical resolution was usually on the order of a few

meters, though coarser resolutions were tested. Between the mass-levels, we placed

the turbulence levels, where E, uw, vw and wθ were calculated. The computational

grid is depicted in Figure 4. Straightforward linear finite difference approximation

was used everywhere, except at the first turbulence level, where we applied the

logarithmic approximation (e.g. Arya, 1991). We used explicit time-stepping.

Close to the surface the velocity gradient is governed by the turbulent stress and

the distance to the ground, since l ≈ kz as can be seen from (8), hence S ≈ √
τ/kz

and it is easy to show that the wind profile is logarithmic,
√

τ = kU(z)/ ln(z/z0)

(e.g. Landau and Lifshitz, 1987). In practice, however, the first level is often

at a considerable fraction of the entire boundary layer, and therefore we need to

compensate for flow stability in the same way as in the rest of the model. We

assume steady-state and replace kz → lk → l
√

fτ (Ri)
fτ (0)

, where the turbulent mixing

length with respect to momentum, lk, is equal to the dissipation length in neutral

conditions, but smaller when Ri > 0, in accordance with observations by Tjernström

(1993). Hence, the average stress between the first and second mass-levels for the
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general case is:

τ(1) =
U(2)2 + V (2)2

zt(1)2 ln
(

zm(2)
z0

)2 · fτ (Ri)

fτ (0)
· l(1)2, (9)

where the first fraction on the right hand side is the logarithmic finite difference

approximation of S2 taken at the first turbulence level, zt(1), and the meaning

of the symbols can be found in Figure 4. Note how (9) can be rewritten into

the form τ(1) = Cm(U(2)2 + V (2)2), where Cm is the well-known surface drag

coefficient. As such, in neutral conditions, close to the surface the the formula

reverts to the logarithmic wind-law. However, as l < kz and Ri > 0 the first

level stress decreases. By using (9) the results are less sensitive to resolution, as it

provides a seamless transition from the logarithmic layer near the surface and the

rest of the boundary layer. Note that τ(1) is not the surface stress. Unlike many

surface-layer formulations, we do not assume the presence of a constant-flux layer.

If the first mass-level is at some fraction of the entire boundary layer, there may be

considerable flux divergence in the layer below. Therefore, a better way to diagnose

the turbulent surface stress is to linearly extrapolate from the first two turbulence

levels, zt(1) and zt(2), to the surface. This was not necessary, though, in the present

study.

Next, we consider the heat transfer in the layer close to the ground. Again we

seek the average flux between the lowest mass-levels; for generality, we place the

lowest level at the roughness height with respect to heat, zT0. The heat flux, wθ,

is governed by the temperature gradient, ∂Θ
∂z

, the turbulent stress, τ(1), and the

turbulent length-scale, l ≈ kz. In this case Landau and Lifshitz (1987) showed that

wθ = ∂Θ
∂z

· kz
√

τ
Pr(0)

, where the additional parameter, Pr(0) = Km/Kh, is the turbulent

Prandtl number in neutral conditions. In terms of the present model Pr(0) ≈ 0.69
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(see Appendix 1). The effective Prandtl number increases implicitly with increasing

Ri within the model. Generalizing as above to some finite height above ground and

compensating for the flow stability, we get:

wθ(1) =
Θ(2) − Θ(1)

zt(1) ln
(

zm(2)
z0T

) · fθ(Ri)

|fθ(0)| ·
l(1)

√

τ(1)

Pr(0)
. (10)

Again we must stress that wθ(1) is not the surface heat flux. Rather the latter should

be found by extrapolation. Note how the expression again can by insertion of (9)

be rewritten into the traditional form wθ(1) = Ch(Θ(2) − Θ(1))
√

U(2)2 + V (2)2,

where Ch is the surface heat-transfer coefficient. If the temperatures at the first two

mass-levels are given, it is straightforward to apply (10). Such a case is presented

in Section 6. In applications where the surface condition is the surface heat flux,

it is necessary to linearly interpolate between the surface level, zT0, and the second

turbulence level, zt(2), to obtain wθ(1). In the latter case the surface temperature,

Θ(1), can be diagnosed by rearranging (10). This technique is used in Section 5.

5 Determining the free constants

The turbulent dissipation length scale contains two unknowns or free constants (8).

One constant, Cf , accounts for the dampening effect of Earth’s rotation on the

largest eddies and the other, CN , for the suppression by the mean flow stratifica-

tion. Ideally, data from the atmosphere should have been used to determine these

constants. However, the atmosphere seldom obeys the criteria of being horizontally

homogeneous and stationary on the synoptic scale as is convenient to assume in the

model. To cover a large range of background conditions, a particular field exper-
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iment would not be enough. Furthermore, to be able to constrain the constants,

information from the surface properties, through the turbulence profiles and back-

ground stability and flow in the free atmosphere are needed. If not, the uncertainties

in the experimental data will easily overpower the estimations. For the purpose of

determining these constants, we have instead utilized a large database of LES cases

presented by Esau and Zilitinkevich (2006). Here the background conditions were

varied systematically in an attempt to span a major part of the parameter-space

for the horizontally homogeneous, neutral and stably stratified dry atmospheric

boundary layer. The LES cases consist of four types of boundary layers and are

summarized in Table 1. Normalized profiles of the mean and turbulent variables are

plotted in Figure 5.

5.1 LES database

In all cases an initial temperature profile, either neutral or with constant stratifi-

cation, a constant background geostrophic wind, the surface roughness length and

surface heat-flux was prescribed. Each case was run for 15 hours to achieve a quasi-

steady state. The truly neutral class has uniform potential temperature and zero

heat-fluxes. While this class is somewhat academic, in the sense that truly neutral

boundary layers hardly ever occur in the real atmosphere, it provides an impor-

tant limit in parameter-space. More realistic are the conventionally neutral and

nocturnal classes. The former is neutral in the sense that the surface heat-flux is

zero, but it is growing against a stably stratified atmosphere. As a consequence the

lower part of the boundary layer is well-mixed, while at the same time, it is capped

by a stably stratified elevated inversion. These cases are representative of windy
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situations when the surface heat-flux is neglegible. The nocturnal boundary layers

grow against a neutral atmosphere, while heat is lost at the surface. These bound-

ary layers occur during night-time over land where the near-neutral residual layer

is remnant from the day-time convective boundary layer and the surface is cooling

radiatively. Finally, the surface cooling and background stratification is combined

in the long-lived stable boundary layer class. These boundary layers are frequently

found at high latitudes, over land during winter-time and over large glaciers. The

bulk stability parameters, L, Lf and LN , as described in Zilitinkevich (2002), along

with the boundary layer heights, indicate the wide stability range covered by the

database, see Table 1.

The LES used a dynamic sub-grid scale closure model and a resolution of 643

gridpoints. This is moderate with present standards, but necessary due to the large

number of cases. Further, Esau and Zilitinkevich (2006) found only insignificantly

different results at higher resolution for a limited number of cases. The grid spacing

varied from case to case in order to well accomodate the boundary layer in its total

depth. Quality of the included cases was ensured: Cases when the LES domain was

chosen smaller than 1.5 times H or when the turbulent fluxes did not tend to zero

at the domain top were removed. The LES did not conserve heat exactly, unlike the

presented model, and therefore cases when the integrated cooling did not correspond

to within 20 % of the imposed surface-cooling were rejected for the nocturnal and

long-lived classes. For the conventionally neutral class this objective criteria was not

applicable, since the surface cooling was zero. Here cases, which did not conserve

heat, were subjectively removed. In most cases these coincided with the ones that

had too shallow domains to accomodate the entire boundary layer. After quality

control we were left with 90 cases in total.
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5.2 Strategy for determination of Cf and CN

We decided to use the boundary layer height as a metric for determining the free

constants. First, the truly neutral cases were used to determine Cf . Figure 6 shows

the average H normalized by the LES heights, HLES, for varying Cf . It appears that

the truly neutral H is proportional to the square root of Cf and that the optimal

value is about Cf = 0.185. Also plotted are 95 % confidence intervals indicating a

possible range of 0.16−0.22, while the outliers indicated a range of 0.12−0.27 for Cf .

The use of confidence intervals is questionable because we cannot assume gaussianity

of the error distribution. Therefore the latter, more cautious, uncertainty range

should be used. Setting Cf = 0.185 we proceeded to determine CN with the three

other classes. Figure 7 shows the normalized boundary layer heights for varying CN

for each class. Class optimal values are 1.3 for the conventionally neutral, 1.8 for

the long-lived and 2.5 for the nocturnal class, respectively. The largest sensitivity

to CN is for the long-lived class, which also includes the most shallow boundary

layers. This means that perfect optimization across the classes cannot be achieved.

However, zero bias against these LES cases is obtained for CN = 2.0. Here H for

the conventionally neutral and long-lived classes are overpredicted by 5 % and the

nocturnal class is underpredicted by 8 %. Again, the uncertainty range is quite

wide, roughly between 1 and 3. CN have only been measured within the concept of

mixing length (Nieuwstadt 1984; Hunt et al. 1985; Mahrt and Vickers 2003), finding

values of Cmix
N of 0.5-1. Remembering that the mixing length is shorter than the

dissipation length by a factor of 2 to 4 for stratified cases (Tjernström 1993) these

values are consistent with our findings.

Modelled boundary layer heights, using Cf = 0.185 and CN = 2.0, are shown
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in Figure 1. It appears that the model predicts H in individual cases to within 20

%. Closer inspection reveals that the conventionally neutral and long-lived cases

are overpredicted, while the nocturnal cases are consistently underpredicted. Figure

5 graphs modelled normalized profiles of mean wind, potential temperature and

turbulent fluxes for each class. The normalization is done using the LES values as

described in the figure caption in order to emphasize the biases between the model

and the LES. In general the agreement is good, as the model is able to capture the

overall vertical structure in the different classes. The heat-flux profiles most clearly

show the biases. A deeper boundary layer yeilds a stronger downward heat-flux, and

consequently a warmer surface temperature. This is the case for the conventionally

neutral and long-lived classes, while the opposite is the case for the nocturnal class.

Finally, we plotted the surface wind angle to the geostrophic wind vector in Figure

8. Large surface wind angles are usually associated with shallow boundary layers.

Here performance is good up to about 40 degrees, while the model underpredicts

compared to LES at larger angles. It is likely that even the LES is underpredicting

the extreme angles by a few degrees, as some wind-turning may occur below the

lowest computational level. The more diffusive Viterbo et al. (1999) closure seems

to be unable to produce surface wind angles larger than about 30 degrees.

6 The first GABLS case

Within GABLS, an idealized case was set up to resemble a typical Arctic stably

stratified dry boundary layer. A constant geostrophic wind of 8 ms−1 allowed an

initially 100 m deep neutral boundary layer to grow against a background stratifica-

tion of 0.01 Km−1 aloft. At the same time the surface temperature was prescribed
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to decrease by 0.25 Kh−1. The experiment was run for 9 hours, achieving a quasi-

steady state. In principle this is a long-lived case as described earlier, except that

the surface temperature is prescribed rather than the surface heat-flux. Eight LES

achieved to run with a resolution of 3.125 m (Figure 9). The vertical potential tem-

perature distribution exhibits a surface inversion, followed by a less-stratified mixed

layer, which in turn is capped by an elevated inversion. The wind profile shows a

typical Ekman-spiral with a jet in the vicinity of the capping inversion.

Along with the LES results, we also plotted the results from the presented model

and our implementation of the Viterbo et al. (1999) turbulence closure model. The

latter overpredicts the boundary layer depth compared to LES roughly by a factor

of two, in good agreement with the earlier results of Cuxart et al. (2006), despite the

differences in implementation. Hence the deficiency of the scheme is neither related

to the resolution nor the numerical method, rather the physical parameterization

itself. The high resolution version of the presented model (4), on the other hand,

performs indistinguishably from the LES.

We also performed tests with sparse vertical grids. An example is shown in

Figure 9 using a stretched grid with mass-levels at 30, 78, 155, 278 and 474 m,

respectively. This resolution is typical for operational models, though not specific

to any particular model. Even though the model now hardly resolves the inversion

and the jet, there is a good resemblance with the high-resolution version. Essential

for this good agreement is the boundary conditions (9) and (10), which extend the

turbulence closure scheme properly all the way to the surface. Obviously, the results

are bound to degrade for more shallow boundary layers or with poorer resolutions.

Note how a linear extrapolation of the first- and second-level turbulent fluxes down

to the surface is a good approximation of the surface fluxes.
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The approach we used to determine the free constants provides us with uncer-

tainty intervals, rather than definite values. As an illustrative example, we may

investigate the sensitivity of the model to the choice of CN in the first GABLS case.

The potential temperature profile is shown in Figure 10. The three values of CN

correspond to the three points of intersection with unity for the individual classes

in Figure 7. The constant CN only impacts the inversion layer because the surface

temperature is fixed. The smaller CN provides a sharper inversion, while the larger

CN allows for a deeper inversion layer. The spread among the different realizations

of the model is about the same as the spread among the LES, though there is a

tendency towards a better qualitative resemblance for the smaller values. While the

sensitivity to the choice of CN may seem to be small, it may have a large impact on

more stably stratified cases and, for instance, the evolution of shallow cloud layers

as it controls the amount of entrainment.

7 Discussion

A turbulence closure model is founded on closure assumptions or hypotheses. These

hypotheses can take many different forms. Hence the problem leaves room for sev-

eral subjective choices, with respect to both formulation and constants. We have

presented a new turbulence closure model, based on (4), and determined optimal

values of the free constants with respect to the average bias on the boundary layer

height. Obviously, this does not ensure reasonable physical behaviour of the model.

For example, a closure model that gives a constant boundary layer depth, could have

yielded optimal values of the free constants on a finite dataset. Neither does succes

in a single case, such as the first GABLS case, provide a sufficient justification for
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further interest in yet another turbulence closure. Investigating the detailed results

of the cases in the LES database does not provide independent evidence for its value.

Nor does comparison with the complex reality give good guidance to the worthiness

of the model due to the uncertain initial and background conditions. So can we be

sure the new model is of any value?

Quantitative, controlled and detailed observations of turbulence in the stably

stratified boundary layer are very difficult to obtain (e.g. Mahrt, 1999). Of par-

ticular interest for the purpose of the model validation is the vertical structure of

turbulent fluxes. Models for the stable boundary layer are commonly validated by

normalized observed profiles by Caughey et al. (1979) and Nieuwstadt (1984) as

in e.g. Andrén (1990). In the former case the heat-flux profile was strongly con-

cave, while in the latter it was slightly convex. It is not possible to tell whether

steady-state has been achieved, nor to which extent horizontal heteorogeneity and

topography influenced the results. In fact, quasi-steady state is seldomly achieved

in the real-world nocturnal boundary due to the passing nature of night and the

wealth of natural phenomena and variability (e.g. Mahrt, 1999; Poulos et al. 2002).

The presented model is able to provide both concave heat-flux profiles early in the

nocturnal cases, while convex profiles similar to Nieuwstadt’s are found in some

of the long-lived cases. The latter can also be obtained in the nocturnal case if

the surface reaches an equilibrium temperature. This only demonstrates the im-

portance of knowing the actual initial conditions, forcings and transient behaviour

when comparing with observations.

Our first hypothesis is that the turbulent fluxes of momentum and heat are

related to the turbulent variances through unique functions, which depend on the

local gradient Ri only. As a hypothesis it has already failed, as several of the datasets
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shown in Figure 3 disagree significantly with the empirical curves (Popper 1934).

Other parameters than Ri may be of importance. However, it is a matter of debate

if these differences are due to physical differences or whether they reflect different

measuring and dataset preparation techniques (Mauritsen and Svensson, 2006). Our

second hypothesis is that the turbulent energy dissipation can be described by a

dissipation length scale according to (8). As a hypothesis this choice is less fortunate,

as testing this hypothesis is difficult if not impossible with present-day atmospheric

observational systems.

The process of determining the model constants after the model has been run

is often referred to as ’tuning’ (Randall and Wielicki, 1997). The use of tuning is

disliked in the scientific community, for instance because tuning of models could

mask fundamental errors in our understanding of the problem. Hence, tuning can

be detrimental to the scientific development. However, given the importance of the

processes, clearly seen in Figures 6 and 7, we are left with no choice but to tune the

constants. While tuning the performance of a complex model to some dataset, one

should be aware of the datasets limitations and biases. For instance the LES cases

contain forcings and boundary conditions, which was chosen rather subjectively.

Further, the approach allows for a number of subjective choices, such as the metric

with which we assess the performance. The model which we are tuning could also

be formulated in a slightly different manner with the sole purpose of resembling the

LES results. However, given the large number of cases which has been used, it would

not have been possible to tune the model using only two constants in the absence

of fundamentally sound physics.
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8 Conclusions

An essentially new turbulence closure scheme for neutral and stably stratified at-

mospheric boundary layers is presented. The scheme is based on the prognostic

turbulent energy equation, which is the sum of the turbulent kinetic and turbulent

potential equations. The use of this equation is preferable over the turbulent ki-

netic energy equation, because it predicts turbulence in the presence of wind-shear,

regardless of stratification.

The effect of stable stratification is to reduce turbulence and diminish the vertical

turbulent fluxes. The scheme is founded on simple relations between the turbulent

variances and fluxes and the idea of a characteristic turbulent length scale. Together,

these relations account for the effects of stratification, within the framework of the

presented model. Observations of the ratios, plotted as functions of the gradient

Richardson number avoids the problem of self-correlation. This is an improvement

over the widely used Monin-Obukhov based turbulence closure models. Surface

conditions are derived, which are essentially and extention of the closure to the layer

close to ground. Here we avoid the assumption of the presence of a constant-flux

layer.

Two free constants were undetermined by micro-meteorological observations.

Therefore the scheme was tuned, or calibrated, against a large number of LES

cases. The method may be rightfully questioned, because in principle the model is

forced to give the result we desire. However, without fundamentally sound physics

it would probably not have been possible to mimic 90 LES cases only by varying

two constants. The procedure provides us with guidance in the form of intervals

with likely values of the constants.
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The performance of the turbulence closure model is tested in an independent

case against other LES. The resulting profiles of high-resolution integrations are

indisitinguishable from the LES results. Using a coarse vertical resolution, typical of

operational models, does not degrade the performance significantly for this particular

case.
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Appendix 1

The primary aim of this appendix is to derive equation (4) for the general horizon-

tally homogeneous case. Second, we approximately diagnose the relative contribu-

tions of Ek and Ep given E. Among the equations for the second order moments

(e.g. Stull, 1988), we study two equations; those for turbulent kinetic energy, Ek,

and potential temperature variance, σ2
θ :

DEk

Dt
= τ · S + βwθ − ǫ − ∂Fk

∂z
, (A-1)

D 1
2
σ2

θ

Dt
= −wθ

∂Θ

∂z
− φ − ∂Fθ

∂z
, (A-2)

where ǫ and φ are the dissipation rates, and Fk = Ekw + pw/ρ and Fθ = σ2
θw/2 are

the third-order vertical fluxes of Ek and σ2
θ , respectively.

We note that in stable stratification wθ < 0 and ∂Θ
∂z

> 0. Hence, in this case,

the second term on the right hand side of (A-1) is negative, while the first term

in (A-2) is positive. Next, in unstable stratification, wθ > 0 while ∂Θ
∂z

< 0. Thus,

both buoyancy terms in (A-1) and (A-2) are positive. Keeping this in mind we may

multiply (A-2) by β2/|N2| and use the definition of N2 to get

DEp

Dt
= β|wθ| − β2

|N2|

(

φ +
∂Fθ

∂z

)

. (A-3)

We then add (A-1) to (A-3), in order to obtain equation (4). Here we have defined

the dissipation rate γ = ǫ + φβ2/|N2| and the third-order energy flux FE = Fk +

Fθβ
2/|N2|. We parameterize ǫ = CǫEk

√
E/l and φ = Cφ

1
2
σ2

θ

√
E/l assuming the

same dissipation length-scale applies to E, Ek and Ep. In neutral conditions it is

clear that Cǫ = Cγ, where Cγ was the dissipation constant with respect to E. In
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the lack of better we shall also assume Cφ = Cγ, which simplifies the following

derivations slightly.

In the present study, we only solve (4), not (A-1) and (A-3) separately. Thus, we

need to diagnose Ek and σ2
θ to calculate the fluxes of momentum and heat. Assuming

steady-state and neglecting vertical energy transport, dividing (A-3) by (A-1) and

using the above definitions we obtain:

Ep

Ek
=

β|wθ|
τ · S + βwθ

(A-4)

When Ri → −∞, i.e. |τ · S| ≪ β|wθ|, we get Ep/Ek → 1. In the neutral limit,

when Ri → ±0, we have |τ · S| ≫ β|wθ|. Using the definition of Km, Kh and that

the turbulent Prandtl number is Pr = Km/Kh, we obtain:

Ep

Ek

≈ 2f 2
θ

f 2
τ

Ri =
Ri

Pr(0)
, (A-5)

where Pr(0) = f2
τ

2f2
θ

is the neutral limit Prandtl number in terms of the present model

(see Appendix 2). If Cφ 6= Cǫ a factor of Cφ/Cǫ appears in the expression of Pr(0).

Finally, we consider the limit Ri → +∞. Recalling Figure 2, the sole source of E

in stably stratified conditions is the shear-production. Hence it is not possible that

the buoyancy redistribution term exceeds the shear production. Taking the limit

β|wθ| → |τ ·S| we find an upper bound of (A-4) for very stably stratified conditions

is:

Ep

Ek

≈ 1

2
, for Ri → ∞. (A-6)

This limit is in good agreement with observations presented by Mauritsen and Svens-

son (2006) and somewhat higher Schumann and Gerz (1995). For a field of linear
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internal gravity waves, in a non-rotating fluid, the ratio is unity (e.g. Nappo, 2002).

The difference is that in the latter case the energy source is external to the flow.

In the present study we diagnose the relative contribution of Ep to E by simply

interpolating between the limits (A-5) and (A-6).
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Appendix 2

Ever so often, models are formulated in terms of turbulent diffusivity and conductiv-

ity, Km and Kh, rather than directly using the turbulent fluxes. Approximate values

of Km and Kh can be diagnosed from (A-1) and (A-2). Assuming again steady-state,

neglecting vertical energy transport we multiply (A-1) by Km and rewrite:

Km ≈ τ 2

ǫ − βwθ
(A-7)

=
f 2

τ E2
k

Cǫ
Ek

√
E

l
− βfθ

√

Ekσ2
θ

.

Note how the expression reverts to the form Km ≈ fτ (0)2

Cǫ
l
√

Ek in near-neutral con-

ditions. Also, the redistribution term reduces Km in stably stratified conditions,

while it enhances the turbulent viscosity in unstable stratification. We proceed in

the same way with (A-2) to get:

Kh ≈ wθ
2

φ
(A-8)

=
2f 2

θ Ekl

Cφ

√
E

.

It is interesting to note that the turbulent conductivity does not include temperature

variance, thus, even a neutrally stratified fluid is conductive to heat.
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List of Figures

Figure 1. Comparison of boundary layer heights from LES and 1D-models. Gray sym-

bols are for the Viterbo et al. (1999) closure, while black symbols are for the

turbulence closure model presented here. The solid line is one to one corre-

spondence, while the dotted and dashed lines are 20 and 50 percent difference,

respectively.

Figure 2. Simplified sketch of the turbulent energy equation (4) in stably stratitied con-

ditions on the left hand side and in unstably stratified conditions on the right

hand side. Note that we assumed steady-state and that the vertical energy

transport has been neglected. Sources of E are placed on the left, while sinks

are on the right hand side.

Figure 3. Observed non-dimensional turbulent a) stress and b) heat-flux from six exper-

iments. Shaded areas are 95-percent confidence intervals on the binned mean.

Thick dashed curves are empirical fits.

Figure 4. The computational grid. M is the number of mass-levels. Note that z0 may

be different for wind and temperature.

Figure 5. Detailed comparison of normalized average-profiles from LES and the pre-

sented model. Thick lines are averaged for the presented model, while thin

line are from LES. The vertical normalization was done with the LES bound-

ary layer height, HLES. G is the geostrophic wind, u2
∗ is the LES total surface

stress, Θ0 is the LES surface potential temperature, Θ1.5 is the LES potetial

temperature at 1.5 · HLES and wtmin is the minimum potential temperature
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flux in the LES. This normalization emphasizes the biases between the model

and LES.

Figure 6. Boundary layer height for the neutral cases with varying Cf . Dots are mean,

vertical thick lines are 95 % confidence intervals, while thin lines indicate

maximum and minimum values.

Figure 7. Boundary layer height for the stably stratified cases with varying CN and fixed

Cf = 0.185 and k = 0.4.

Figure 8. Comparison of surface wind angle from the geostrophic wind. Black symbols

are for the model presented in the current study and gray symbols are for the

turbulence closure presented by Viterbo et al. (1999).

Figure 9. Comparison of profiles with the first GABLS case. Thick solid line is the

presented model and thin solid lines are the participating LES. The thick

dashed line is a rough resolution version of the presented model, where the

large dots denote the computational levels. The thick solid gray lines are for

the Viterbo et al. (1999) closure.

Figure 10. Sensitivity of the potential temperature profile to the value of CN in the first

GABLS case. Thick lines are for the presented model, while thin lines are for

LES.
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Figure 1: Comparison of boundary layer heights from LES and 1D-models. Gray
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Figure 2: Simplified sketch of the turbulent energy equation (4) in stably stratitied
conditions on the left hand side and in unstably stratified conditions on the right
hand side. Note that we assumed steady-state and that the vertical energy transport
has been neglected. Sources of E are placed on the left, while sinks are on the right
hand side.
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Figure 4: The computational grid. M is the number of mass-levels. Note that z0

may be different for wind and temperature.
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Figure 8: Comparison of surface wind angle from the geostrophic wind. Black
symbols are for the model presented in the current study and gray symbols are for
the turbulence closure presented by Viterbo et al. (1999).
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Table 1. LES database overview of boundary layer classes, number of cases, stability

ranges covered and boundary layer depths. Here u∗ =
√

τ0 is the surface fric-

tion velocity, wθ0 is the surface heat-flux and N+ is the background atmosphere

Brunt-Väisälä frequency.
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Table 1: LES database overview of boundary layer classes, number of cases, stability
ranges covered and boundary layer depths. Here u∗ =

√
τ0 is the surface friction

velocity, wθ0 is the surface heat-flux and N+ is the background atmosphere Brunt-
Väisälä frequency.

Class wθ0 N+ # L = Θ
gk

· −u3
∗

wθ0

Lf = u∗
f

LN = u∗
N+

HLES

Truly neutral 0 0 16 ∞ 67-2900 ∞ 43-1400
Conv. neutral 0 > 0 30 ∞ 1000-6700 5.0-2800 115-1400
Nocturnal < 0 0 28 22-1900 600-4500 ∞ 32-1600
Long-lived < 0 > 0 16 3.2-1100 370-2300 1.8-120 12-440
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Figure 9: Comparison of profiles with the first GABLS case. Thick solid line is the
presented model and thin solid lines are the participating LES. The thick dashed
line is a rough resolution version of the presented model, where the large dots denote
the computational levels. The thick solid gray lines are for the Viterbo et al. (1999)
closure.
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Figure 10: Sensitivity of the potential temperature profile to the value of CN in the
first GABLS case. Thick lines are for the presented model, while thin lines are for
LES.
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