
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zrinka Puljiz

DISTRIBUTED REAL-TIME SIMULATION
OF HIGH SPEED IP NETWORKS

DISTRIBUIRANA SIMULACIJA BRZIH IP-
MREŽA U STVARNOM VREMENU

MASTER THESIS
MAGISTARSKI RAD

Zagreb, 2007.

Magistarski rad izrađen je na Zavodu za telekomunikacije
Fakulteta elektrotehnike i računarstva

Mentor: prof. Miljenko Mikuc

Magistarski rad ima: 117 stranica

Magistarski rad broj:

Povjerenstvo za ocjenu:

1. Prof.dr.sc. Mladen Tkalić, predsjednik

2. Prof.dr.sc. Miljeko Mikuc, mentor

3. Doc.dr.sc. Darko Huljenić, Ericsson Nikola Tesla Zagreb

Povjerenstvo za obranu:

1. Prof.dr.sc. Mladen Tkalić, predsjednik

2. Prof.dr.sc. Miljeko Mikuc, mentor

3. Doc.dr.sc. Darko Huljenić, Ericsson Nikola Tesla Zagreb

4. Prof.dr.sc. Branko Mikac, zamjenik

Datum obrane: 26.listopada 2007. godine

Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 IMUNES 3

2.1 Network representation in IMUNES 3

2.2 IMUNES properties . 7

2.3 IMUNES implementation . 7

3 Topology generation 11

3.1 Internet-like topology . 12

3.1.1 Metrics . 12

3.1.2 Regular lattices . 13

3.1.3 Random networks . 14

3.1.4 Small-world networks . 15

3.1.5 Scale-Free networks . 16

3.1.6 Internet-like topologies . 18

3.2 Internet topology generators . 19

3.3 Our topology generator . 20

3.3.1 Algorithm . 21

3.3.2 Results . 23

4 Topology partitioning 29

4.1 Graph partitioning . 30

4.1.1 Greedy graph partitioning algorithm 32

iii

4.1.2 Multilevel graph partitioning algorithm 32

4.2 Application of graph partitioning methods to IMUNES 33

4.2.1 Transformation of IMUNES topology into a graph 35

4.2.2 Preprocessing steps . 36

4.2.3 Postprocessing steps . 39

4.3 Results . 39

4.3.1 Metrics . 40

4.3.2 Results . 41

4.4 Future work . 42

5 Going distributed 45

5.1 Theoretic background in distributed systems 45

5.1.1 Desired properties . 46

5.1.2 Architectural models . 48

5.1.3 Fundamental models . 51

5.1.4 Middleware . 55

5.2 State of the art in distributed network simulation 56

5.3 Centralized vs. Decentralized . 59

5.3.1 Centralized architecture in network simulators 60

5.3.2 Decentralized architectures in network simulation 61

6 Distributed network simulator based on IMUNES 63

6.1 Our system architecture . 63

6.2 Naming conventions . 67

6.2.1 Servers . 67

6.2.2 Experiments . 67

6.2.3 Users . 68

iv

6.2.4 Nodes . 68

6.2.5 Links . 68

6.3 Remote procedure call . 69

6.4 Client-server communication . 69

6.4.1 State machine of the client-server communication 70

6.4.2 Security issues . 72

6.5 Inter-server communication . 74

6.5.1 Global state . 74

6.5.2 Communication model . 74

6.5.3 Critical resources . 76

6.5.4 Security issues . 80

7 Results 81

7.1 Introduction . 81

7.2 Scalability and responsiveness time 82

7.3 Performance measurement . 90

8 Conclusion and future work 98

9 Abbreviations 100

References 101

Abstract 107

List of Figures

2.1 IMUNES objects . 4

2.2 GUI of IMUNES . 5

2.3 Usage of standard UNIX application within emulated nodes 8

2.4 Packet passing support . 10

3.1 Regular lattice . 14

3.2 A random network . 15

3.3 Poisson distribution . 16

3.4 A small-world network . 17

3.5 A scale-free network . 18

3.6 The generated network . 22

3.7 Pseudo-code of the proposed algorithm 24

3.8 The degree distribution exponent for networks of different sizes 25

3.9 Network topology with 200 nodes . 25

3.10 Network topology with 500 nodes . 26

3.11 Network topology with 1000 nodes 26

3.12 The average path length . 27

3.13 The clustering coefficient . 28

4.1 METIS phases . 34

4.2 Simple IMUNES topology . 37

4.3 Corresponding graph . 38

4.4 Bisection of networks with links of different bandwidths 42

4.5 Bisection of networks with links of same bandwidth 43

5.1 Client-server model . 49

vi

5.2 Peer-to-peer model . 50

5.3 Multiple server model . 51

5.4 Reception times of messages in distributed system 53

5.5 Middleware . 56

5.6 Centralized distributed network simulator 60

5.7 Peer-to-peer server architecture for network simulator 61

6.1 Architecture of our distributed network simulator prototype 66

6.2 Client-server communication . 71

6.3 Connection establishment phase . 75

6.4 Creation of new experiment . 77

6.5 Stopping the node’s processes . 78

6.6 Distributed experiment with VLAN 79

6.7 Distributed experiment with UDP tunnels 80

7.1 Example topology used for measurement of scalability and responsive-

ness time . 83

7.2 Experiment establishment time for prototype implementation 84

7.3 CPU load of the system . 85

7.4 Memory load of the system . 86

7.5 Establishment time . 88

7.6 Experiment establishment time . 89

7.7 Experiment termination time . 90

7.8 Scalability and responsiveness of PC network 91

7.9 Simulation scenario . 92

7.10 Packets on a real link going form one simulated node to another when

the distribution is done with vlan tags. 95

7.11 Simulation scenario . 96

List of Tables

5.1 Omission failures . 54

6.1 Set of messages . 73

7.1 The setup of the machines used for the experiment 83

7.2 Router memory consumption . 87

7.3 Network performance measurement 94

7.4 Processing time for VLAN and UDP tunnels per one packet measured

in ms . 97

Chapter 1

Introduction

Over the past few years interest in network simulators has rapidly grown. The

main reason for this is the overwhelming need for test environments in research and

development of network protocols. Using real network data offers the most reliable

results in that area, but it comes with certain drawbacks, such as the need for eco-

nomical resources which are commonly not available. Changing the topology or any

other parameter of a real network environment reveals its inherent inflexibility. This

can be, and often is, reduced by using network simulations.

Network simulators that operate in real time and provide emulation interfaces can

be very demanding in terms of CPU cycles or memory usage. But at the same time

they give more realistic results and a chance to mix synthetic traffic with real one

[53]. In order to reduce this demand the approach used distributes network simulation

over an existing topology and therefore preserves simulation benefits. These include

reducing the costs of real test environments, providing centralized control of the

simulation and using all the available resources to make the simulation more realistic.

The focus of this thesis is on distributing network simulation based on IMUNES.

IMUNES is a network emulator that operates in real time and offers a very good

scalability (10s to 100s of nodes on one commodity PC).

There are three three main areas of contribution:

• Design of a new algorithm for Internet-like topology generation.

• Usage and performance comparison of different graph partitioning algorithms

on the IMUNES topology.

• Design, implementation and evaluation of a decentralized distributed network

2

emulator.

In the case of large network simulations, the process of defining a network either

by using GUI or writing a configuration file can be very time demanding and error

prone. As a result, the need for building a network topology generator that would

speed up the process was identified. The network generator should provide support

for building Internet-like topologies with a given number of nodes.

Division of the topology into disjoint pieces that can be simulated on different

machines takes place once a large network topology for testing is created. Graph

partitioning algorithms can be useful when dealing with this problem. Further on, a

performance comparison between two graph partitioning algorithms is given.

The most significant contribution of this thesis is building a distributed network

environment for network emulation. Four key management components are identi-

fied and implemented as a prototype of the system. The system is designed to be

decentralized, transparent and secure.

The road map for this thesis is as follows. In Chapter 2 there is an overview

of IMUNES. The topology generation is presented in Chapter 3. In Chapter 4 the

focus is on the graph partitioning algorithms and their usage in network simulation.

Chapters 5, 6 and 7 cover the design implementation and evaluation of distributed

network simulation environment. Chapter 8 is the conclusion.

Chapter 2

IMUNES

IMUNES is a fast network emulator developed at the University of Zagreb, Faculty

of Electrical Engineering and Computing, at the Department of Telecommunications

[52]. IMUNES operates in real-time and does the network simulation on packet level

using real TCP/IP stack. In this chapter description of IMUNES is given because

our distributed emulator is built on top of it.

As observed from Figure 2.1, IMUNES has a GUI where a network can easily be

defined. IMUNES distinguishes between GUI level objects and kernel level objects.

GUI level objects are used for topology specification, and kernel level objects are used

for emulation. Kernel level objects are created only upon starting the simulation, and

destroyed after the simulation is stopped.

In the following few sections there are IMUNES topology models, properties and

the implementation. Except for presenting the background, this chapter can be viewed

as a motivation chapter describing IMUNES possibilities and limitations that are

overcome in the distributed version.

2.1 Network representation in IMUNES

IMUNES uses GUI for topology specification. The design of GUI is presented

in Figure 2.2. The topology in IMUNES consists of two basic building units: nodes

and links. Nodes can exist independently whereas links always connect two different

nodes.

Nodes are entities where packets are created or through which the packets are

processed. Depending on the operation executed on the node, nodes are classified

into two different groups: link layer nodes and network layer nodes.

4

Figure 2.1 IMUNES objects

5

Figure 2.2 GUI of IMUNES

6

Link layer nodes provide just link layer functionality of transmitting received

packets to all exit ports (hub) or just to the port where the packet destination is

(switch). There is also a interface node that is used for the interaction of synthetic

network with the real one. This node is also a link layer node. Link layer nodes do

not pass the packet through TCP/IP stack.

Network layer nodes are the ones capable of acting as a packet source and des-

tination. They have full TCP/IP stack functionality. In IMUNES three predefined

network level nodes exist: PC, host and router. The difference between various net-

work layer nodes is in the booting process and configuration.

Routers are predefined to route the packets. For routing the packets the router

can use static or dynamic routing through routing models quagga [36] i xorp [49].

Default configuration for the router consists of using quagga model with rip routing.

Host and PC do not forward packets and use static routing by default. The host

starts additional services (like telnet) during the booting process, while the PC starts

clean. This is the predefined version, but each user can specify what he wants to start

on the machine during the emulated booting process.

On any network layer node in IMUNES after starting the experiment an UNIX

shell can be opened and any of the standard applications that are available for the

hosting machine can be started.

In IMUNES only one link between any two nodes can be created. All links are

presumed to be operating in full duplex mode. In addition to creating nodes and

links in IMUNES their properties can be changed through GUI. Different routing

models, queuing disciplines, services that will be started during the execution of the

experiment, as well as bandwidth of the links, can be specified through GUI.

7

2.2 IMUNES properties

IMUNES is an acronym for the Integrated Multiprotocol Network Emulator/Simulator.

The multi-protocol part of the name is justified by the fact that IMUNES provides

the support for different routing protocols, as well as providing the support for both

IPv4 and IPv6 traffic.

Compared to virtualization used in other machine emulators [42], [17] IMUNES

offers higher scalability, being able to emulate 10s to 100s of network level nodes on

only one commodity PC. This kind of scalability is a result of lightweight virtualiza-

tion used in IMUNES, described in next section.

Fidelity of IMUNES is another important issue. In IMUNES all the network layer

nodes use real kernel calls that are processed in the same way they are processed

on a real machine. Furthermore, this results in IMUNES being capable of using any

standard UNIX application (Figure 2.3).

Because IMUNES uses kernel level objects, it is strongly dependent on the kernel,

i.e. FreeBSD kernel [12] The version of IMUNES that is used as a base for distributed

version is built on top of a FreeBSD 4.11 kernel.

2.3 IMUNES implementation

GUI and the management unit of IMUNES are written in the Tcl/Tk language

[6].

For emulation purposes IMUNES maps the GUI objects, nodes and links, to kernel

level objects. Kernel level objects used for emulation are virtual machines and kernel

level interconnection nodes.

Links and link layer nodes are designed as netgraph nodes, where the netgraph is

an interconnection module and a standard part of FreeBSD kernel. Some of the net-

graph nodes existed before, like ng hub that represents hub in IMUNES or ng bridge

8

Figure 2.3 Usage of standard UNIX application within emulated nodes

9

that represents LAN switch in IMUNES. For emulation of links, a new type of node

was designed. This type of netgraph node supports all the link properties like band-

width, delay, BER as well as queueing policy of the interface connected to the node.

The netgraph node representing the link is named ng pipe node. A detailed descrip-

tion of all netgraph nodes listed here is available through man pages.

Network layer nodes are implemented as virtual machines. Virtual machine sup-

port is custom designed and presents the heart of IMUNES. Instead of using the

usual approach of full virtualization [42] IMUNES uses the lightweight virtualization

method. Full virtualization reduces the scalability of virtual machines, since for each

emulated packet the user space emulator has to pass the packet to kernel by packet

data copying and context switching. By using lightweight virtualizaton, in IMUNES,

all the virtual machines share the same kernel except from network stack and some

other variables that became private for each virtual machine. The difference between

these two types of virtualization is presented in Figure 2.4.

Full virtualization has benefits, such as that heterogenous operating systems can

be simulated, but because scalability in IMUNES is more important than different

operating systems support, the lightweight virtualization approach is preferred. The

virtualization support for IMUNES is designed as a kernel patch, so it is kernel depen-

dant. For each new version of the kernel a new patch has to be created. Manipulating

with virtual machines is done with a stand-alone application vimage. A detailed de-

scription is available through man pages of vimage.

Emulation of all the links and nodes in kernel space removes the unnecessary

packet copying while keeping the realistic approach of using the real operating system

code in a packet level emulation. All the properties mentioned, like scalability and

fidelity, are the result of IMUNES implementation.

10

Figure 2.4 Packet passing support

Chapter 3

Topology generation

Although the structure of the Internet is constantly changing, this status may

be efficiently described. This chapter describes the evolution of network structures

using some standard measurements and Internet-like topology generators. Based on

the knowledge about Internet structure an algorithm that creates an Internet-like

topology was developed and evaluated.

The evolution of network structures is important since it gives us an idea of the

metrics that have been used over the years of describing a network structure. The

overview of network structures, presented here, goes from regular latices to scale-free

networks, that ultimately describe Internet topology in the best suitable way [25].

The metrics used for describing each network include average path length, clustering

coefficient and degree distribution.

Over the years different topology generators emerged because of different inter-

pretations of Internet. These generators produced networks with different underlying

structures; some produced random networks [46], some used a hierarchical approach

[8] and in the end, after the structure of Internet had been described as scale-free,

new topology generators emerged [22], [28], [48].

An algorithm for creating an Internet-like topology [35] was designed and its

performance was evaluated. This algorithm combines two different approaches, using

the scale-free approach as well as hierarchical approach. In the design of the algorithm

it was kept in mind that the algorithm will be used in IMUNES.

12

3.1 Internet-like topology

In order to describe an Internet-like topology, here is an overview of different

networking structures and the metrics used to distinguish properties of the networks.

This overview starts with definitions of metrics used. Then, regular lattices are

presented. Further, there is a description of a more recent structure of random net-

works that are defined with statistical properties. Somewhere in the space between

regular lattices and random networks there is a gap that is filled with small-world net-

works with very specific properties. The most recent discovery in the area of networks

is a scale-free network with very distinguishable characteristics. Finally, Internet-like

topology is defined as a subclass of scale-free networks.

3.1.1 Metrics

Here the exact definitions of average path length, clustering coefficient and degree

distribution are provided.

The average path length is a simple measurement that calculates the average

distance between any pair of nodes. Our network is modeled as a graph Γ(V,E) with

the set of vertices V and the set of edges E. Vertex vi is an element of V. Edge

eij is in set E if there exists an edge between vertices vi and vj. Since the graph is

undirected, eij is equal to eji. The path from vi to vj is a set of edges of the form

of eig...ehj. The minimum path is the smallest set of this kind. The path length,

dij is the number of elements in the minimum path set. The average path length

for a vertex is the average distance from that node to all the other vertices in graph

3.1. The average path length of the graph is the average path length of each vertex

averaged over all the vertices [25]

d =
1

n · (n− 1)

∑

i6=j

dij. (3.1)

13

The clustering coefficient can be defined in two different ways [25]. The clustering

coefficient presented here was introduced by Watts and Strogatz [45]. This definition

is based on the number of triangles that are connected to a vertex. A triangle is a

structure in the graph which occurs with the existence of edges in the form of eij, ejk

and eki. The clustering coefficient for a vertex vi is defined as the ratio

Ci =
Number of triangles connected to vi

Number of possible triangles on vertex vi

. (3.2)

The average clustering coefficient is calculated by averaging the vertex clustering

coefficient over all the vertices in the graph.

C =
1

n

n∑

i

Ci. (3.3)

A large clustering coefficient typically means that the value of the clustering coefficient

decreases at a rate much slower than O(1/N) where N is the total number of nodes

[44].

The last metric considered is the degree distribution metric. The degree of a vertex

is simply the number of edges that are connected to that vertex, i.e. the number of

neighboring vertices.

3.1.2 Regular lattices

Regular lattices are highly structured networks where each node is connected

with a given number of nodes closest to it. A regular lattice is constructed with a

given number of nodes and a given number of neighbors. Each node is connected

to a 2k number of neighbors. The resulting structure is presented in Figure 3.1.

This structure is very well defined in the literature in terms of degree distribution,

connectivity, clustering coefficient and average path length. When talking about

degree distribution, each node has the same degree, so there is no distribution, instead

there is a predetermined value of the degree. In terms of measurements of connectivity,

14

Figure 3.1 Regular lattice

the structure is connected for each k ≥ 1. The average path length of a regular lattice

increases proportionally with the number of nodes in the network. The clustering

coefficient of a regular lattice is constant, so it does not change with the growth of

the network.

3.1.3 Random networks

Random graphs are mathematical structures describing random networks. They

were introduced by Erdös and Rènyi in 1959 (Figure 3.2). A random graph can

be created by placing vertices on a plane and then randomly connecting pairs of

vertices. In random graphs, there is a well-defined threshold value of edges after

which the resulting graph becomes connected [25].

The average path length of a fully connected random graph is small, i.e. it is

proportional with log(N) where N is the number of nodes in random graph. Degree

15

Figure 3.2 A random network

distribution of a random graph follows the Poisson distribution (Figure 3.3). The

clustering coefficient, on the other hand, tends to zero when the size of the network

tends to infinity.

3.1.4 Small-world networks

Before the introduction of small-world and scale-free networks, the two most

widely used graphs were regular lattices and random graphs.

Small-world graphs (Figure 3.4) lie somewhere in between random graphs and

regular lattices [44]. Namely, small-world graphs have a small average path length,

comparable to that of random graphs, while their clustering coefficient approaches

some small, but non-zero, value like in regular lattices.

The most popular algorithm for generating small-world networks starts with a

regular lattice. Edges of a regular lattice are rewired with certain probability. As this

rewiring probability increases, the graph transits the phases from a regular lattice,

through the small-world model and ends up as a random graph. The small-world

16

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Node degree

P
ro

ba
bl

ili
ty

 o
f d

eg
re

e

Figure 3.3 Poisson distribution

regime is the narrow area characterized by a small average path length and yet still

a large clustering coefficient.

In small-world networks the average path length increases as log(n) [44]. The

clustering coefficient tends to a finite small value with the increase in size of the

network. Degree distribution of a small-world network is still Poisson, the same as in

random networks.

3.1.5 Scale-Free networks

The scale-free property of the Internet was first observed in 1999 by the Faloutsos

brothers [10]. The scale-free property actually means that the degree distribution

follows a power law in the form of

P (k) ∼ k−α. (3.4)

An example of a scale-free network is shown in Figure 3.5. The scale-free prop-

erty of networks is sometimes referred to as the 80-20 law or the rich-get-richer-law,

meaning that a small percentage of nodes dominate most of the network connections.

17

Figure 3.4 A small-world network

The nodes with a very large number of neighbors are called hub nodes. Hub nodes

represent a minority in the network, and yet they control the majority of network

connections.

The power law degree distribution leads to two interesting properties of the net-

work [4], [25]: the network is very resilient to random failures, but very fragile in the

presence of targeted attacks on the hubs and viruses will always spread and persist

in the network.

Barabási [4] provided an explanation for the origin of scale-free networks based on

the mechanisms of preferential attachment and network growth. Preferential attach-

ment refers to the concept that vertices with higher degrees are more likely to obtain

new connections, where the probability of gaining new connections increases linearly

with the current degree of the node. As a network grows, new nodes are continuously

added to the network and connect to existing nodes using preferential attachment [4].

Although this is the most common approach to generating scale-free networks,

these networks can be obtained by using different generation models as described in

[25].

Scale-free networks have a small average path length and a finite clustering coef-

18

Figure 3.5 A scale-free network

ficient.

3.1.6 Internet-like topologies

Today, the Internet is most often described as a scale-free network [25]. But in

addition to the scale-free property the Internet also has a hierarchical structure.

The hierarchical structure of the Internet consists of three different layers: LANs,

stubs and transit domains [8]. Based on hierarchical models, nodes with the most

connections are placed at the edges of the network. However, modeling the Interent

topology using just this hierarchical approach neglects the fact that the Internet shows

global behavior that goes beyond this hierarchy. In the large-scale mapping of the

Internet in 1999, [10] it was discovered to have a scale-free property.

Preferential attachment and network growth principles, as described in the previ-

ous section, result in scale-free networks [4], but they are not considered to describe

the Internet topology well [1]. This is because preferential attachment and network

growth model the network in such a way that the hub nodes are always the oldest

19

nodes and mainly lie in the center of the network.

3.2 Internet topology generators

Three different types of generators are available in literature for modeling Internet-

like topologies:

• Random topology generators

• Hierarchical generators

• Scale-free generators

The first Internet-like topology generator was designed by Waksman in the late

80’s [46]. This model is a flat model since it all the nodes are at the same level.

The nodes are interconnected by assuming that the probability of a link decreases

exponentially with the distance between two nodes. For a long time, this model was

considered best, despite the fact that the underlying graph was basically random.

The next generation of network topology generators, introduced in the mid 90’s,

was characterized by hierarchical structures [8]. The Internet was divided into three

different hierarchical levels:

• LANs - representing a local area network.

• Stubs - representing a network of interconnected LAN-s. Here traffic originates

and ends within a single domain.

• Transit - representing backbone nodes. Here traffic crosses the transit domain

when going from one Stub to another.

Two different models for generating Internet-like topologies that fall into the category

of hierarchical network generators are the Trans-Stub model and the Tiers model [8].

20

The Trans-Stub model only works with one type of nodes - routers - and provides

support for Stub and Transit levels. Tiers uses a minimum spanning tree to create

all three levels of hierarchy and assigns weight to the links. It was shown in [28] that

neither the Waxman topology generator nor the hierarchical models follow power

laws.

The most recent class of network topology generators emerged at the beginning

of this decade, influenced by the discovery of Internet topologies following a power

law [22], [48], [39] and [28]. These Internet-like topology generators provide a way

of generating networks on two different levels, the autonomous systems level [39],

[48] and the router level [22], [28]. Both of these models result in topologies with

just one type of nodes on one hierarchical level. Autonomous systems (AS) [16]

level topologies represent topologies where one node represents one AS. Some scale-

free generators offer the possibility to analyze the resulting networks by comparing

the network parameters generated with real Internet data [22]. In order to obtain

power laws, some of the algorithms may yield unconnected networks [28], which are

later discarded, and the process is repeated until a connected network is obtained.

Some generators take into account the physical placement of the nodes [39], providing

another similarity with real Internet topologies.

3.3 Our topology generator

Here is an overview of our topology generator and an evaluation of it based on

the metrics described in the previous section.

In order to generate an Internet topology, an approach of combining the hier-

archical approach [8] with power law models [28] was used. The resulting network

topology is presented in Figure 3.6. From the Figure it can be observed that there

are three different hierarchical layers. The process of creating the topology consists

21

of three phases. In the first phase assignment of target degrees to all the nodes in

the network takes place. Next, a small-world network is created as the core topology.

This network consists only of routers, and it consists of 20% of all nodes. In the last

phase local area networks are created and connected to the core routers. In assigning

degrees to the nodes the target degrees are calculated to be as close as possible to

the values assigned in the first step.

Our algorithm is evaluated based on the measures of average path length, clus-

tering coefficient and degree distribution. Based on obtained values, the resulting

topology matches the standards of scale-free topology.

3.3.1 Algorithm

The target network is hierarchical and has three different layers. On the first layer,

routers are interconnected into a small-world network. The core router network, thus,

has a small average path length and a large clustering coefficient. On the second

layer, hub nodes, which correspond to real world hubs, are connected so that they are

responsible only for local nodes. On the last layer, PC representees are connected to

the hub nodes.

The pseudo-code of the algorithm is presented in Figure 3.7. The parameters of

the algorithm are:

• n - the number of nodes in the network,

• alpha - the degree distribution exponent,

• k - the average small-world degree of a router,

• p - the small-world rewiring probability.

The algorithm starts by generating a power law distribution with a specified power

law exponent using a method similar to that described in [28]. After creating a

22

Figure 3.6 The generated network

23

power law degree distribution with parameter alpha, the process continues by creating

a small-world network for the core, where 20% of the nodes are routers with an

average small-world degree k, and with rewiring probability p. Once a small-world

core network is created, the corresponding node degrees are mapped to the pre-

calculated degrees for the whole network. The mapping takes into account the target

degree of the core network as opposed to the current degree, leaving free connections

for hub nodes. Next, a degree from the rest of the degree distribution pool is assigned

to the hub nodes. These nodes are then connected to routers and to a certain number

of PCs corresponding to the degree specified. The mapping between the resulting and

specified degrees is not exact, i.e. the resulting degrees are allowed to be different

from the specified ones.

3.3.2 Results

The resulting network topologies and the corresponding degree distributions for

networks with 200, 500 and 1000 nodes are presented in Figures 3.9-3.11. The re-

sulting power law exponent differs from the specified one, since the algorithm does

not support exact mapping between the obtained degree distribution and the artifi-

cially created degree distribution. As observed, the resulting degree distribution of

the algorithm follows a power law distribution, so the creation of a small-world core

network does not significantly influence the resulting distribution shape, although the

resulting power law exponent changes from its initially specified value.

The curve representing the resulting degree exponent of the differently sized net-

works is presented in Figure 3.8. Our results are compared to those published in

[22]. Those measurements are not repeated here, but instead the given threshold and

target values are used. One can see that, even for moderately sized networks, the

obtained degree exponent values are within 2%.

24

power_law(maxDegree = n, alfa)

for (i in 1 to n):

degree(i) = power_law.getDegree(random())

smallworld(routers, k, p)

pcs = Count(elements with degree==1)

hubs = n - routers - pcs

for (i in 1 to routers):

map_smallworld_to_degree

leave free connections for hubs

is_hub=true

for (i in k to n):

if is_hub:

map degree

connect to random free router

nPcs = hub.free_connections

is_hub = false

else:

connect to hub

nPcs--

if nPcs = 0 is_hub=true

Figure 3.7 Pseudo-code of the proposed algorithm

25

0 500 1000 1500 2000 2500 3000 3500 4000
−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

Network size

D
eg

re
e

ex
po

ne
nt

Degree exponent for different size networks

Degree exponent
Treshold
Target

Figure 3.8 The degree distribution exponent for networks of different sizes

10
0

10
1

10
0

10
1

10
2

Node degree

F
re

q
u

e
n

cy
 o

f
d

e
g

re
e

Node degree distribution

n = 200, alfa = −2.15, k = 3, p = 0,1
fitting curve alfa = −1.881

Figure 3.9 Network topology with 200 nodes

26

10
0

10
1

10
0

10
1

10
2

Node degree

F
re

q
u

e
n

cy

Node degree distribution

n = 500, alfa = −2.15, k = 3, p= 0.1
fitting curve alfa = −2.331

Figure 3.10 Network topology with 500 nodes

10
0

10
1

10
0

10
1

10
2

10
3

Node degree

F
re

q
u

e
n

cy

Node degree distribution

n = 1000, alfa = −2.15, k = 3, p = 0.1
fitting curve alfa = −2.331

Figure 3.11 Network topology with 1000 nodes

27

200 400 600 800 1000 1200 1400 1600 1800 2000

4

6

8

10

12

14

16

18

Number of nodes

A
ve

ra
ge

 p
at

h
le

ng
th

Average path length

alfa = −2.15, k=3, p = 0,.1
alfa = −2.15, k=4, p = 0.1
Threshold
Target

Figure 3.12 The average path length

In Figure 3.12, the average path length as a function of the number of nodes in

the network is presented. The average path length is influenced by the selection of

parameter k. Since parameter k influences the small-world core network, a conclusion

can be drawn that the average path length is highly dependant on the core network’s

properties. The target and threshold values correspond to those presented in [22].

From Figure 3.13, it is evident the clustering coefficient remains relatively con-

stant for different sizes of the network as well as for different values of k. The clus-

tering coefficient remains the same regardless of network size, which is the behavior

of Internet-like topologies as well.

28

200 400 600 800 1000 1200 1400 1600 1800 2000
0.02

0.03

0.04

0.05

0.06

0.07

0.08
Clustering coefficient

Number of nodes

C
lu

st
er

in
g

co
ef

fic
ie

nt

alfa=−2.15, k=3, p=0.1
alfa=−2.15, k=4, p=0.1

Figure 3.13 The clustering coefficient

Chapter 4

Topology partitioning

Dividing a network topology into parts is necessary for distributed emulation.

All available resources that are distributed must be mapped to the network topology

without redundancy. There are various techniques available when dividing a topology

into parts. The focus here is on graph partitioning, although some other methods

also exist in the literature [37]. Here, the road map for the rest of this chapter is

presented.

First, a description of graph partitioning problem is given. Graph partitioning is

the process of finding disjoint sets of vertices, i.e. partitions with some constrains.

The weight of the partition represents the sum of the weights of all vertices belonging

to that partition. All the partitions must have equal weights and the total weight of

all the edges connecting vertices from different partitions must be minimum. With

this optimization criteria the graph partitioning problem is an NP-complete problem

(for definition of NP-complete problem refer to [9]), so the proposed solutions are

heuristical. Good heuristics have been developed to deal with this NP-hard graph

partitioning problem. The most common include spectral graph partitioning [31],

genetic algorithms [23], greedy heuristics [18] and multilevel approach [19].

Second, there is conversion of network topology into a graph so graph partitioning

methods can be used. The usage of graph partitioning approach is not new in network

simulation. As presented in [50] there have been other attempts of implementing the

graph partitioning method in distributed network simulation. Our attention is focused

on converting IMUNES topology into a suitable graph. There is also a description of

our modifications to the algorithms used.

Third, the results are presented and the usage of two different graph partitioning

30

methods on IMUNES is discussed. The chosen algorithms are referred to and the

applicability of both of them is discussed.

Finally, further research topics for this area are given. The usage of graph parti-

tioning methods is not the only option in dividing a network topology. Recently, a

new kind of problem was introduced that addresses the issue of mapping a network

topology into a testbed topology [37]. This new method has been adopted in network

simulators like [15] and [5].

In the distribution of simulation the goal is to maximize the usability of available

network resources. In order to do so, nodes which are deployed on different machines

are disjoint, i.e. one node is simulated on only one machine. This way there is also

a reduction in the cost of overall synchronization between multiple instances of the

same simulated node. Graph partitioning algorithms are a good tool for creating

subsets of nodes that meet these demands.

4.1 Graph partitioning

The graph is defined with the set of vertices V=v1, v2, ..., vn and set of edges

E=e1,e2, ..., em. Any edge in the graph is defined as a pair of vertices that it connects.

A graph is directed if the pair of vertices defining an edge is ordered. The graph can

also be weighted, and then it is defined as Γ(V, E, wv, we). wv is a function that

assigns weight to each vertex, i.e. wv : V → R+
0 . we assigns weight to each edge, i.e.

we : E → R+
0 , where R+

0 is a set of positive real numbers including zero.

Clustering of a graph is defined as finding subsets of the set of vertices V1,V2,Vn

such that
⋃

Vi = V. A subset of vertices Vi is also called a cluster.

The graph partitioning problem can be viewed as a special case of the clustering

problem, where clusters are disjoint. The problem of n-way partitioning is as follows.

The set of vertices V is divided into disjoint sets V1,V2, ...,Vn with the following

31

properties:

1.
⋃

Vi = V

2. Vi
⋂

Vj = ∅, for i 6= j

If these conditions are fulfilled clusters can also be called partitions.

A subset of E, called E0 contains all the edges between vertices that belong to

different clusters. In other words, set E0 represents the edge-cut of the partitioned

graph.

The n-way graph partitioning problem has two objectives. The first objective is

to find the partitions with equal loads, i.e.

∑

v∈Vi

wv(v) =
∑

u∈Vj

wv(u) (4.1)

The second objective is to find such partitions for which the sum of the weights

of all edges in E0 is minimized, i.e.

min(
∑

e∈E0

we(e)) (4.2)

The problem of partitioning graphs is a NP-complete optimization problem so

heuristic algorithms are used to find suboptimal solutions [2]. The most common

approach is to solve the problem for 2-way partitioning (so called bisections) and

then solving k-way partitioning by recursively creating bisections [19].

Algorithms for graph partitioning rely on different techniques. Techniques which

differ with respect to the approach used include spectral methods [31], multilevel tech-

niques [19] or genetic algorithms [23]. Techniques which use a similar approach but

differ with respect to implementation include Kernighan-Lin heuristic [2], Fiduccia-

Mattheyses heuristic [11]; multilevel heuristic using random matching or heavy edge

matching [19]. The performance of two different algorithms was measured: greedy

32

graph partitioning algorithm [18] and multilevel graph partitioning [19]. The con-

sidered algorithms present the fastest graph partitioning methods according to [19].

The description of the algorithms is presented in the following subsections.

4.1.1 Greedy graph partitioning algorithm

This algorithm was introduced by Ciarlet and Lamour [18]. The Greedy parti-

tioning heuristic is as follows. Clusters are subsequently created by iteratively adding

nodes for as long as the total weight of the cluster remains less than the previously

defined threshold. Nodes included in a cluster are further called marked nodes. Each

cluster initially consists of a single node, referred to as the starting point. In each

iteration following it, all the unmarked nodes adjacent to the cluster are added if the

resulting weight of the cluster is within the allowed bound (less than threshold). If

this is not the case, a tie-break strategy is applied. This process is repeated subse-

quently to create k− 1 cluster. The k-th cluster is created by simply marking all the

remaining nodes. This algorithm deeply depends on the choice of the starting point

of each cluster. Those nodes which have the least number of adjacent nodes that are

unmarked, i.e. not yet included in any other cluster are considered good.

4.1.2 Multilevel graph partitioning algorithm

The multilevel graph partitioning algorithm was introduced by Karypis and Ku-

mar [19]. This algorithm is called multilevel since it iteratively reduces the number of

vertices in the graph. There are three main phases that the algorithm goes through:

coarsening phase, partitioning phase and uncoarsening phase.

The coarsening phase is the phase of reducing the number of vertices. In this phase

new graphs are iteratively created. Each new graph has a corresponding level. The

graph of a level n is constructed by matching two adjacent vertices of the previous level

33

graph and presenting them with one new vertex in the n+1 level graph. The vertices

that were not matched, but have all the neighboring vertices matched, are simply

added to the graph. The matching techniques described by Kaypis and Kumar include

random matching (for any vertex that is not matched, if an unmatched neighbor is

found then they will be matched), heavy edge matching (edges with the highest weight

are found and the vertices they connect are matched), light edge matching (edges with

the lowest weight are found and the vertices they connect are matched) and heavy

clique matching (the matching is performed by the edge density, the sets of vertices

that are most highly connected are presented with one vertex on the next level). The

matching technique used is heavy edge matching.

The partitioning phase occurs when the graph is completely coarsened, i.e. the

number of vertices in the graph is fully reduced. As the partitioning algorithm, greedy

graph partitioning is used, but on a smaller number of vertices and edges, therefore

reducing the partitioning complexity.

Uncoarsening is the process of restoring the original graph. Here the partitions

from the graph on level n are transferred to the graph on level n-1 and refinement

techniques are used to improve these partitions, on each stage of the way. The whole

algorithm is presented in Figure 4.1.

Implementation of this algorithm is publicly available as a part of METIS program

suite [24], and is often introduced as the fastest graph partitioning algorithm [19].

4.2 Application of graph partitioning methods to IMUNES

For applying graph partitioning methods to IMUNES topology it was necessary to

define transformation from a network topology into a graph and add some IMUNES

specific steps to the partitioning algorithms [32]. In this section there is an overview

of IMUNES specific details that lead to the implementation of graph partitioning

34

Figure 4.1 METIS phases

35

algorithms.

4.2.1 Transformation of IMUNES topology into a graph

The description of IMUNES is in Chapter 2, but here some basic facts are revised.

IMUNES has two types of construction units: nodes and links, so any simulated

network is completely defined with two sets: a set of nodes and a set of links. A

weighted graph is constructed: Γ(V, E, wv, we), where V represents the set of

vertices corresponding to the set of nodes in the simulation and E represents the set

of edges corresponding to the set of links in IMUNES topology. Function wv assigns

weight to vertices of a graph and is defined as wv : V → R+
0 . Function we assigns

weight to every edge of a graph and is defined as we : E → R+
0 .

Nodes in IMUNES are classified into nodes with IP stack and nodes without IP

stack. Nodes with IP stack use more resources than those without it.

The nodes with IP stack are: router, PC and host. Routers perform the function

of routing the packets in the simulation, and wv(router) = wv
r . PCs represent the

client machines and have assigned weight wv(PC) = wv
p. Hosts, the most demanding

elements, represent the servers, which run all the desired applications. The weight of

a host is denoted as wv(host) = wv
h.

Nodes without IP stack are: hub, LAN switch and physical interface. LAN

switches are used for distributing packets to destinations on a local network segment.

The weight of a hub and LAN switch is approximately the same, so by definition

wv(LAN switch) = wv(hub) = wv
ll. A Physical interface is the emulation interface

and is a real physical interface on the machine. Based on an assumption that it does

not put any additional weight on the machine we define wv(physical interface) = 0.

Adding a node to the set of nodes simulated on one machine increases the load on

that machine. This increase in load is symbolically represented by the node weight.

36

Because the load of each simulated node in IMUNES depends on many factors, there

is no fixed number for each weight. The weight is an experiment specific measure

and it should be defined per each experiment individually. Currently all nodes of the

same type have the same weight. The host has the maximum weight, and the LAN

switch and hub minimum. Therefore adding a host would increase the overall load of

the machine more than adding a LAN switch or hub to the same machine.

Different types of links can be simulated in IMUNES by setting link parameters to

various values. These parameters include: bandwidth, delay, BER and duplicate. For

defining the weight of the link only the bandwidth parameter was used. Therefore, we

is defined with a function as wv(link) = link bandwidth in Mbps. Links connecting

physical interface to a node have maximum weight.

The example of transformation from IMUNES network topology into a weighted

graph is displayed in Figures 4.2 and 4.3. The process of creating the graph from the

network topology is demonstrated on the elements from IMUNES simulator, but the

same process can be used with any other simulator.

4.2.2 Preprocessing steps

Before starting the graph partitioning algorithms on the transformed IMUNES

topology there are some additional actions that have to be done having in mind that

the constructed graph is in fact a network topology and that the partitioned topology

needs to fit it to another topology that has limited resources.

Based on the fact a network topology is in question, it was possible to combine

some nodes together to form only one node in a graph. This includes combining

physical interface with their adjacent node, as well as combining a local area network

into only one node.

An additional constraint in our case is the equipment on which the simulation

37

Figure 4.2 Simple IMUNES topology

38

Figure 4.3 Corresponding graph

39

is deployed. The number of end partitions is equal to the number of machines on

which the simulation is run. The bandwidth available between machines dictates the

maximum value of the edge-cut (the edge-cut must be lower than the total bandwidth

available). There are preprocessing steps which coarsen the graph on the edges that

require more bandwidth than available. This process is recursive and ensures that

every edge in the final graph can be simulated with the available bandwidth.

4.2.3 Postprocessing steps

Postprocessing steps are introduced to improve original partitions obtained by the

greedy graph partitioning algorithm and the multilevel graph partitioning algorithm.

As a refinement technique Fidducia-Mattheyses heuristic [11] was used, but only on

the vertices with neighbors in different partitions, i.e. boundary vertices. For each

vertex in the boundary area the maximum gain and the maximum gain cluster is

calculated. Gain of a vertex v for cluster i is equal to the reduction of edge cut

achieved by moving vertex v to cluster i. The maximum gain cluster for vertex v

is the cluster for which this gain of vertex v is maximum. The process iteratively

moves vertices from the original cluster to the maximum gain cluster. In each pass

of the iteration, the vertex first to be moved is the vertex with the maximum gain

from the cluster with the maximum weight. Once moved, neither a vertex nor any

of its neighbors can be moved again during the same pass. This process is stopped

after a previously defined number of iterations. The resulting partitions are the best

partitions obtained during the process.

4.3 Results

In order to talk about the results, a definition of metrics is required. In this case

it is the efficiency metric, that combines the two optimization goals of the graph

40

partitioning algorithm. With the defined metrics it is possible to compare the results

obtained for two different graph partitioning methods and discuss the results.

4.3.1 Metrics

To define metrics of efficiency, the demands on each algorithm have to be defined as

well. The demands are presented in terms of minimizing the edge-cut and maximizing

the load balance. The presented metrics are contradictory, i.e. by minimizing the

edge-cut, load put on every machine varies a lot (as an extreme example consider

the case where one machine runs the whole simulation so there is no edge-cut). As

a result, two different efficiency metrics are introduced: edge-cut metric and load

balance metric.

For the efficiency metric of an edge-cut the ratio of cumulative weight of all edges

which are in E0 to cumulative weight of all edges in E is used. The value of this

ratio is subtracted from 1, to get the efficiency measure in which the higher values

become more preferable. The edge-cut measure represents the bandwidth used for

communication between clusters. The formula for the edge-cut measure is:

effe = 1−

∑

e∈E0

we(e)

∑

e∈E

we(e)
=

∑

e∈E\E0

we(e)

∑

e∈E

we(e)
(4.3)

The value of effe is in the range of 0 to 1. The higher the value of edge-cut

efficiency the lower is the total bandwidth that connects the clusters. The effe can be

equal to 1 only in the case of connected topology when all the nodes are simulated

on only one machine.

For efficiency metric of load balance, load balance metric is used. The deviation

of load for each machine can be computed in the following way [23]:

41

l(i) =

∑

v∈Vi

wv(v)− ∑

u∈V

wv(u)

k

∑

u∈V

wv(u)

k

2

(4.4)

The lower the value of l(i) the partition is more balanced in the sense that the

load of the partition is more similar to the average load per partition. The efficiency

of balancing the load is defined in the following way:

effl = e
−

k∑

i=1

l(i)
(4.5)

The same as in the case of edge-cut metric, this metric is also limited to the interval

[0, 1]. In this case the best result is reachable for perfectly balanced partitions, i.e.

the effl can be 1.

The total efficiency metric combines both of these metrics. The total efficiency of

partitioning is calculated as a weighted combination of the above mentioned efficien-

cies:

eff = r · effe + (1− r) · effl (4.6)

Factor r determines which objective criteria dominate. When r is equal to 1, the

edge-cut efficiency alone represents the total efficiency.

4.3.2 Results

Both algorithms described were tested on randomly generated networks. The

networks were sparse and had 22, 33, 44 and 53 nodes. The results for bisection are

displayed in Figure 4.4 and 4.5. Partitioning was performed for k ∈ {2, 3, 4, 5}, and

the multilevel algorithm had higher efficiency for network with differently weighted

links.

42

Figure 4.4 Bisection of networks with links of different bandwidths

The multilevel algorithm (multi) showed better graph partitioning results for

graphs with a higher number of parts and for larger graphs with differently weighted

edges. However, the greedy graph partitioning (ggp) algorithm seems to perform

better in the environments with equally weighted links.

However, in our network topology scenarios most of the links have different band-

widths (the local area networks are usually connected with more bandwidth than wide

area networks). So, the support for multilevel graph partitioning through METIS

software package was implemented in our network simulator.

4.4 Future work

The idea of distributing network simulation over an existing network is not a new

one. The benefits of clustering network simulation are various, from increased scal-

ability and functionality to improved simulation capabilities. ModelNet [50], a large

43

Figure 4.5 Bisection of networks with links of same bandwidth

44

network emulator, uses the standard graph partitioning methods for clustering net-

work topology. In [50], network topologies are transformed into weighted graphs and

the simulation is deployed over an existing topology. Comparing graph partitioning

methods to random partitioning significant benefits have been found in clustering the

simulation by using standard graph partitioning methods.

In this chapter the procedure of distributing network simulation using the graph

partitioning approach was presented. The IMUNES network topology is efficiently

transformed into a weighted graph and partitioned using standard graph partition-

ing methods. The proposed efficiency measure reflects the characteristics of edge cut

measure or load balancing measure depending on the value of parameter r. Results

indicate that both of the tested algorithms have good properties and can be used

for partitioning different types of graphs, i.e. the multilevel technique for graphs

with differently weighted links and the greedy graph partitioning method for graphs

with equal edge weights. Because of the results usage of multilevel graph partition-

ing approach is preferable, since in network topology scenarios a variety of different

bandwidths can be encountered.

The promising approach presented in [37] is another approach that was not tested

in our environment, but because this approach is used in many network simulators

[15], [5] the support for this kind of mapping should be implemented in the future.

Chapter 5

Going distributed

5.1 Theoretic background in distributed systems

The trends of globalization, networking and mobility increase the importance of

distributed systems. Resource sharing that distributed system provide can be viewed

in two major ways, one is in having larger resources available, and the other is in the

flexibility of approaching the resources from different locations. A distributed system

in those terms provides larger resources that are shared among people and have a

greater efficiency.

The distributed system as defined in [14] is a system of interconnected machines

that communicate to each other by passing messages. Based on this definition the

authors draw the following consequences:

• Concurrency - all the machines work at the same time on the same problem or

on different problems.

• No global clock - there is a limit in achieving synchronization because commu-

nication is allowed only through the messages.

• Independent failures - all components can fail independently, so the designer

must have that in mind when designing a distributed system.

These consequences are the inherited properties of all distributed systems and also

indicate the main challenges of distributed systems.

46

5.1.1 Desired properties

When designing distributed systems there is a list of challenges. Depending on the

purpose of our distributed system some of these challenges are more or less important.

Heterogeneity

In the definition of the distributed systems it was mentioned that all the communi-

cation is done by passing the messages, but it was not specified what kind of network

or what types of machines are cooperating. Ideally, achieving perfect heterogeneity

means to be able to pass the messages regardless of the underlaying network or the

types of the end machines. To achieve heterogeneity in the past years the term of

middleware was coined. Middleware is a layer that masks all the differences between

underlaying networks and machines and presents a common interface to upper layers.

It can also be viewed as a distributed operating system that resides on top of the

base operating system of each machine. Middleware will be described in more detail

later in this chapter.

Openness

Openness is the property of distributed systems that allows a system to be ex-

tended in an arbitrary way, including the addition of hardware or software. In order

to make this possible, the distributed system has to have published and well de-

fined key interfaces, a standardized way of accessing the shared resources, and all the

components must be carefully tested so that they truly correspond to the interface.

Security

Distributed systems present shared resources and in that sense they have great

value for a group of people, so security issues are very important. In meeting security

47

requirements there are two main challenges: first, to send a message over the network

in a secure manner and second, to identify the remote user correctly. The first chal-

lenge is met with the usage of cryptography and the second one with authentication.

If both of these methods are used, the communication is going through a secure chan-

nel. Most of the security threats are resolved with secure channels, but some attacks

like denial of service have not been resolved yet.

Scalability

In order to be scalable, a distributed system must be cost effective, extendable and

the performance loss by addition of new resources in the system must be controllable.

In addition, the developer must take care that the software resources do not run out

(IP addresses) and that performance bottlenecks are avoided.

Failure handling

Failures in distributed systems show greater variety that in undistributed systems.

For example, it is possible that some of the components fail while other continue to

work properly. The failure handling process goes from detecting failures and if possible

masking or tolerating failures, if not then recovering from failures. Here redundancy

must be mentioned, as a means of tolerating failures.

Transparency

Transparency is a property of accessing and using a distributed system as a whole

without a need to identify the system components. This challenge is one of the most

important challenges when designing a distributed system. As a result, transparency

is classified as:

• Location transparency - the resource location is not known to the user, by

48

accessing the resource the user does not have to know the physical location of

the resources.

• Name transparency - the name of the resource is not directly connected to the

location of the resource.

• Access transparency - both local and remote resources are accessed using the

same operations.

• Migration or mobility transparency - migration of the resources and clients

without affecting the job that is being executed.

• Replication transparency - in the system there might be multiple copies of the

resource but this fact is concealed from the user or application programmer.

• Concurrency transparency - multiple processes can use the same resource with-

out interference.

• Failure transparency - if a part of the system fails the whole system does not.

• Scaling transparency - addition of the new resources does not require changes

in algorithms or structure.

Access and location transparency are sometimes referred to as network transparency

and they present the most important transparencies for our model.

5.1.2 Architectural models

The architectural models of distributed systems simplify the functions of individ-

ual components and present their placement and interrelationships. This simplifica-

tion in terms of process classifies processes as server processes, client processes and

peer processes.

49

Figure 5.1 Client-server model

The distributed system can be constructed as centralized or decentralized. The

centralized solution is the simplest solution, providing easy software update. But at

the same time central authority is the most critical part of the system - if it fails, the

whole system fails. Distributed or decentralized systems suffer from other types of

problems, like the increase of the overall traffic as a result of needed broadcasts.

Client-server model

This model is presented in Figure 5.1. In this model there is a difference between

the client that does the invocation of the server and the server that executes the job

and returns the results to the client. From the figure it can be observed that servers

can also act as clients for other servers. The problem of client-server architecture is

that it scales poorly.

Peer-to-peer model

In peer-to-peer architecture all the processes play similar roles, so the hierarchy is

flat. There is no distinction between client and server processes so all the processes

50

Figure 5.2 Peer-to-peer model

are peer processes. Peer-to-peer architecture is presented in Figure 5.2. The pattern

of communication depends only on application needs.

Hybrid models

Aside from client-server model and peer-to-peer model there are also some varia-

tions. The main include:

• Multiple server model - since it is important for this thesis it will be covered in

a separate section.

• Mobile code and mobile agents - In the case of mobile code, the code is down-

loaded to the client and from there the processing is done. In the case of mobile

agent, a running program goes from one computer to another to fulfil a task.

• Network computer - it downloads the operating system and application from

the remote server. The applications are run locally but the data are received

remotely.

51

Figure 5.3 Multiple server model

Multiple servers model

Multiple server model assumes that there are multiple servers that are equal and

that cooperate in order to provide service to a client. This architecture is presented

in Figure 5.3. If the servers are tightly connected this architecture is also known as a

cluster architecture.

This is a hybrid between client-server and peer-to-peer model since the client

can be identified, but among the servers there is no strict hierarchy, so servers can

collaborate together in a peer-to-peer fashion.

5.1.3 Fundamental models

All of the architectural models have some fundamental properties like interaction

or security, so in order to describe these properties fundamental models are used.

Fundamental models include the interaction model, the failure model and the secu-

rity model. In the interaction model the communication and coordination between

different parts of distributed system in time are described. The failure model models

the types of failures that can occur with regard to their position in the communication

52

channel. The security model models the solution to the threats that are anticipated.

All of these models are described in more detail in the following subsections.

Interaction model

In the definition of distributed systems it was said that the only communication

between different parts is done by message passing. The communication channel has

the properties of latency (time from the start of transmission to the start of the

reception), bandwidth (total amount of data that can go through the channel in a

given time) and jitter (variation of time required to deliver a series of messages).

Since the delay in the delivery of messages is not constant it is impossible to use

reception times to calculate the exact ordering of the messages. This situation is

presented in Figure 5.4. In order to have a logical sequence of events it is necessary

to introduce a logical notation of time. In this notation the only thing that can be

claimed is what event happened prior to another event.

Because of no absolute time there is a problem of synchronization. That means

that in distributed systems there can be no discussion of perfect synchronization. But

it is still possible to talk about synchronous systems, if the time boundaries for the

processing, communication channel and the underlying machines can be well defined.

The modeling of the system as a synchronous system is helpful, because based on

the boundaries values timeouts can be defined. In asynchronous systems there are

no time bounds, and solving of the design problems is harder, so most of the existing

distributed systems are modeled as synchronous.

Failure model

The failure model defines the possibilities, reasons and consequences of failures.

The taxonomy of failures used was introduced by Hadzilacos and Toueg [14], classi-

53

Figure 5.4 Reception times of messages in distributed system

54

fying the failures as omission failures, arbitrary failures and timing failures.

Omission failures are the failures in the communication channel. Based on the

location of the failure in the communication channel, omission failures are classified

as presented in Table 5.1.

Class of failure Affects Description

Send-omission Process Error occurred between process and outgoing mes-

sage buffer

Omission Channel Error occurred between outgoing and incoming

message buffer

Receive-omission Process Error occurred between incoming message buffer

and process

Table 5.1 Omission failures

Arbitrary or Byzantine failures are the widest range or failures, introducing the

failures that occurred without knowing why, or how. The error can be observed but

the conditions that lead to the failure can not be repeated. Arbitrary failures in the

communication channel include reception of duplicate messages.

Timing failures include the failures that occur because of a false notion of time.

If the system is modeled to be synchronous and a timeout has occurred as a result of

slow connection, this might be interpreted as a sign of failure.

Security model

When talking about distributed system security the topic is the security of the

processes and communication channels. The securing of the processes starts with the

definition of access rights. The processes of authentication and authorization are used

55

to enforce the access rights. The client request is checked before execution to ensure

that the client has sufficient rights for requested service.

Communication channels can be secured using cryptography and authentication.

The channels that have a layer of cryptography and authentication on top of the

existing services are known as secure channels. Examples of secure channels are SSL

and TSL. Except from authentication, secure channels are resilient to tampering,

ensuring the message privacy and integrity. Most of the security threats can be

eliminated using secure channels, but some still persist, like denial of service attack.

Designing a security model is not straightforward, since the encryption and au-

thentication operations are expensive in terms of performance. A detailed analysis

of threats, risks and consequences of the threats can be made using a threat model.

Based on this model, the right security mechanism is used.

5.1.4 Middleware

Middleware is a software layer used in distributed systems that masks the under-

lying differences between system parts making them transparent to the upper layer

programmers. The abstraction level implemented in middleware allows the program-

mer to interact with the distributed system using tools like remote procedure call or

remote event notification. These tools simplify management of the distributed system

providing a uniform view of a heterogeneous system. The position of middleware in

the context of layers is presented in Figure 5.5.

Remote procedure call (RPC) is one of the oldest distributed system concepts.

RPC function is to provide a transparency for the system by masking the fact that

procedures called are implemented remotely. On the side of the client (calls the

remote procedure) there must be a part implemented to recognize that the procedure

is implemented remotely and on the part of the server there must be a way to get the

56

Figure 5.5 Middleware

arguments right from the client. By implementing this support for RPC, different

programming languages on the client and the server can be used, as long as the

conversion takes place when passing the arguments as well as results.

A specific type of middleware created to transparently provide access to shared

resources on a very large scale is called grid. A grid is a collection of loosely coupled

machines that cooperate together without fully trusting each other.

5.2 State of the art in distributed network simulation

Network simulation is a broad term and with multiple definitions. The term of

network simulation is used in this thesis as a system that is capable of representing

real world communication networks in terms of connectivity (topology) as well as

communication (networking protocols and/or traffic).

A topology is a network model that consists of nodes and the description of how

the nodes are connected. Depending on the type of network simulator there can be

only one type of nodes or several types of nodes, specialized for certain purposes. The

57

connectivity between nodes is commonly described with links that connect one pair

of nodes, which also have some specific properties.

Most network simulators offer specific network protocols as well as complete pro-

tocol suits to support the traffic generation and capturing. For instance, the TCP/IP

protocol suite can be found in most of the existing network simulators since it is the

most widespread protocol suit in use today.

Further on, there are two kinds of network simulators, off-line simulators, or just

simulators, and emulators. The key difference is in the notion of time. Emulators use

real time for processing while simulators use logical time.

Simulators use time notation to provide a correct sequence of events instead of

using absolute or wall-clock time. The simulation executed in off-line simulators can

be either faster or slower than in real-time systems. Network simulators such as ns-2

[7], GloMoSim [3] and PADS [20] belong to this category.

Emulators process events while keeping the notion of real time and are also called

real-time simulators. They are designed to highly resemble real systems, so they need

more resources than off-line simulators. Usually they provide connectivity with real

systems and can use unchanged applications in the simulation. This category com-

prises emulators such as EMPOWER [26], Emulab [15], ModelNet [51] and Planetlab

[5].

When comparing network simulators with so called testbeds, i.e. real networks

used solely for experimentation in closed conditions, the benefits from the simulation

are prevailing. These benefits are time and cost effective because they include easier

experiment manipulation and data acquisition as well as less space and less equipment

required.

As the network architecture evolves with time, requirements are made of the

network simulators to be more and more scalable, so even large networks can be sim-

ulated [13]. With the emergence of new kind of distributed applications like grid and

58

peer-to-peer ([41], [38]) systems, the demands on the network simulators have been

increased. Although small and medium scale network simulation provides valuable

insight of the network behavior, this is not enough to draw the conclusion about the

realistic behavior of the proposed new protocols, applications, mechanism or service.

The scalability of the network simulators presents the limit in the scale of the network

that can be successfully simulated.

To increase the scalability, simulators implement one of the following three method-

ologies:

• Simulation technology - by implementing more efficient programming struc-

tures, the scalability can increase, but using this approach the scalability can

be increased only to a certain maximum value.

• Simulation model abstraction - by simplifying the model, the resulting demands

will decrease, so in the end the realism of the simulation is being reduced.

• Computational power - additional computational or processing power can be

added to the system and in that way the scalability is increased. The addition

of the computational power can be achieved either by using a mainframe or by

designing a distributed network emulator.

Although all of the approaches increase the scalability of the simulation, only the

distribution of the network simulator offers a viable solution for a large-scale network

simulation.

Simulators like ns-2 [27] use all of the stated techniques to achieve the higher

scalability. Emulators tend to avoid the method of simulation model abstraction

since the primary purpose of emulation is in offering realistic results based on the

usage of a real code. But there are some exceptions to this rule (ModelNet [51]).

Some simulators started as single machine systems like ns-2 [27], but in time they

59

developed the distributed version. Others, like planetlab [5] and EMPOWER [26],

are envisioned as distributed from the beginning and a non distributed version (not

possible in Planetlab [5]) scales poorly.

There is also a class of network simulators that just combine more than one of the

existing network simulators and offer a uniform interface to the user PlanetSim [29]

and Emulab [15].

Along with the development of the general purpose network simulators that pro-

vide a support for large-scale application there is also a specialized class of purpose

specific network simulators like MaSSF [21], designed for grid applications.

In the past few years, the accent in the distributed system design has changed from

client-server models toward the peer-to-peer models. The reason for this behavior is

found in the better robustness and scalability of peer-to-peer systems. These kind of

systems are easily extendable mainly because of the lack of hierarchical approach and

the absence of central authority.

Since decentralized architectures are more recent and less controllable than cen-

tralized architectures, the architecture of most distributed network simulators is based

on centralized concepts (Planetlab [5], ModelNet [51] and Emulab [15]). In this ap-

proach client and server have well defined roles, and the management of the whole

system is done in a centralized fashion. This kind of approach has a bottleneck on

the machine that does the scheduling of the tasks.

5.3 Centralized vs. Decentralized

When developing a new distributed system of any kind, the first question is how

the system will be managed. There are two main streams, going centralized or going

decentralized. By analyzing the existing network simulators, based on the architecture

used, simulators can be placed into a centralized or decentralized category. However,

60

Figure 5.6 Centralized distributed network simulator

some of the systems like ModelNet [51] or PADS [20] require a manual setup of the

distribution model and do not fall in any of the following categories.

5.3.1 Centralized architecture in network simulators

Centralized architecture has a central element that presents the bottleneck of the

system. However, centralized architectures are more widely used since they offer easier

management. The synchronization between elements is straight-forward, since there

is one arbiter that has the view of the whole system and he makes all the decisions

about the system. Centralized architecture is presented in Figure 5.6.

Netbed [47] is an integrated environment for simulation and emulation. Real net-

work elements are intermingled with the simulated ones, each in charge of a different

network portion. In the core of Netbed is a cluster system allowing time-shared and

space-shared experimentations. Netbed architecture [47] contains a central element

called masterhost that takes care of the web interface as well as database and SNMP

management. Netbed evolved into Emulab [15], still leaving the centralized parts of

architecture.

NTCUns simulator [43] is capable of simulating wired and wireless networks. It

61

Figure 5.7 Peer-to-peer server architecture for network simulator

has an open architecture and is easily extendable. The architecture of NTCUns has

a dispatcher as a centralized element. This dispatcher is the critical element of the

system, and must remain alive at all times to manage the running simulations. All the

communication between users and simulation machines goes through the dispatcher.

5.3.2 Decentralized architectures in network simulation

Most of today’s attention in the design on distributed systems is focused in the

field of decentralized architectures. The scalability problem with centralized architec-

tures puts the limit on the size of the system that can still function with benefits. In

centralized architectures the central element always presents the bottleneck of the sys-

tem. Decentralized systems try to work a way around this limit and have a scalability

that largely extends the scalability of centralized architectures.

Peer-to-peer architecture presented in Figure 5.7 shows one of the possible de-

centralized architectures. There is no central element, all of the machines are equal

among themselves and there are ways of adding new peers or removing the existent

ones without the need for a global lock of the system. Systems like chord [41] or pas-

try [38] present some of the implementations of peer-to-peer architectures. In them

62

there are developed algorithms that manage the tasks of adding new and locating the

existing information.

Decentralized systems offer a lot of benefits mainly in the area of building scalable

and cost effective systems. However, they are also much more complicated to control

and in practice they are harder to design. In our distributed network simulator proto-

type decentralized architecture was implemented, since in the long run decentralized

solutions tend to be self-organizing, minimizing the management overhead.

Chapter 6

Distributed network simulator based on IMUNES

In this chapter our attention is focused on our system, covering some of the design

principles and problems encountered in the development of the system. Here the

communication model of the resulting system is presented in more detail. This chapter

can be of help to people dealing with the same or similar problems. Here the reader

can find explanations why some techniques were used and others disregarded.

6.1 Our system architecture

The management problems that were identified through many different network

simulators are:

• Resource management

• User management

• Experiment management

• Traffic management

Resource management provides for scalable and transparent usage of resources.

Scalability means that new machines are easily added to the system and that addition

of new machines will result in more resources available. Transparent usage of resources

means that all of the resources of the machines in the system will be available in a

uniform way. For meeting the scalability machines form a decentralized architecture.

The architecture used takes care of addition of new machines that present new re-

sources to the distributed system, as well as removal of machines from the system

and failure management if one of the machines fails. To achieve transparency the

64

naming scheme used for addressing the resources, i.e. machines, is independent of

their physical location. In our distributed system available machines are defined in

two different ways: explicitly and implicitly. Explicit means that there is a closed set

of well defined machines that is given during the configuration. In this case there is

no addition of new machines in the system. Implicit means that each new machine

searches the given IP address range in pursuit of an already existing set of machines

and joins the set if one is found, otherwise it waits. In the case of crash or sudden

leave of the machine, all the experiments that were partially or fully conducted on

that machine are stopped.

User management takes care of all the users that are available. This includes the

tasks of authorization, authentication and propagation of rights of existing users. The

authentication mechanism can be login and password authentication or a key authen-

tication. Propagation of rights occurs when a user asks the system for more resources.

If there is a machine willing to accept this user, the user rights should be propagated

to that machine so the user can gain access to more resources. Furthermore, the user

management should also takes care of new users, using the same mechanism to gather

the resources for a new user. After a user account is closed, another notification pro-

cess takes place to remove all the user information and processes from the system.

This event driven behavior of propagation of rights resembles the publish-subscribe

systems. Authorization of a user implies that a user can change only the experiment

that he owns, and that he cannot start an experiment on machines he does not have

the sufficient rights for. In our prototype version users are defined statically, and

there is no implementation of propagation of rights. Authorization is implemented

on the level of experiment. Authentication of a user is currently implemented with a

user providing only his username.

Experiment management presents another important issue, since tracking of the

experiments and keeping the information about them should be available through

65

a simple, but efficient mechanism. Experiments need to have a unique identifier so

that the information can be kept without interference between different experiments.

Each experiment can belong to only one user. Creation of a new experiment is another

event, and upon the creation of a new experiment all of the machines that provide

access to the owner of the experiment should be notified. This information about new

experiment is kept on all machines available to the user who created this experiment.

New experiment name is bound to the machine that user is communicating with

instead of user that is creating the experiment; this is done in order to circumvent the

racing conditions in case of a simultaneous creation of more than one experiment by

the same user. Stopping the experiment removes all the information about experiment

form all the machines, i.e. the global state of the experiment is cleared.

In traffic management it is important to separate each traffic flow, one from an-

other. This is required since there might be more than one experiment using the same

addresses. Our system is modeled to prevent that kind of situations. For traffic man-

agement traffic separators must be used. Currently, there are two options for traffic

separation: UDP tunneling and VLAN tags. Usage of tunneling introduces additional

delay in the system. However, at the same time it separates the simulated/emulated

traffic from the real Internet traffic and separates one traffic flow from another. For

creating a UDP tunnel two machines need to come to an agreement. Usage of VLAN

tags reduces the scope of the distributed network simulation to a local area network.

But there is lower overhead and less chance of IP fragmentation. Another downside

of using VLAN tags is that all the machines in the set should reach an agreement

which VLAN tag to use.

66

Figure 6.1 Architecture of our distributed network simulator prototype

67

6.2 Naming conventions

In our distributed system it is possible to identify certain objects. These objects

are servers, users, experiments, nodes and links. For a system to be scalable, naming

conventions must be applied so objects can be easily accessed and created.

6.2.1 Servers

All the servers have the information about all the other servers and all the iden-

tifiers for servers start with the letter ’h’ followed by the identifier. The identifier is

usually an IP address, but it can be anything else.

In the case of open architecture the system is deployed on top of a local area

network. A new system is created openly with all the machines in the local area

network broadcasting the request. Each new machine is added to the set of servers

without additional security checks. For this architecture a unique identifer is based

on the machine’s IP address to avoid global locks, but we keep additional information

about the IP address on each machine.

In closed architecture servers are defined statically and are assigned unique identi-

fiers in the configuration file. If there is a request from a machine with an IP address

not defined as a part of the allowed servers list, the request is not granted. Upon

the starting of the server, the software instantly tries to connect to all the machines

specified.

6.2.2 Experiments

Unique names for servers are important for the creation of new experiments and

access to the old ones. When a new experiment is created, the experiment’s configu-

ration file is transferred to the server. The server assigns a unique identifier to that

experiment and sends this information back to the client. So, each time the client

68

accesses the experiment he does that through the experiment identifier.

The name space of the experiments is divided among all the servers. Each server

has a limited number of experiment identifiers, so there is a limited number of ex-

periments that it can start. Each experiment identifier in its name contains also the

server identifier of the server where the experiment was created. So, there cannot be

more than one experiment with the same unique identifier.

6.2.3 Users

All the users in the system need to have a unique name. At the moment, all the

users are defined statically in the configuration file. In the future, the user’s name

space can also be divided, or a global lock for defining new users can be used.

6.2.4 Nodes

Each node in the distributed system is uniquely identified with the node name and

the experiment to which the node belongs. The node name must be unique within

one experiment. Node name starts with the letter ’n’ followed by the node number

(for example n12). Resulting kernel structures (virtual images and netgraph nodes)

have names that consist of an experiment identifier, a sign and the node name (for

example e0001 n12).

6.2.5 Links

Each link in the distributed system is uniquely identified with a link name and the

experiment to which the link belongs. The link name is unique within one experiment.

The link name starts with the letter ’l’ followed by the link number (for example

l12). Resulting netgraph nodes, ng pipes are named starting with the experiment id,

followed by the sign and first node identifier, sign - and second node identifier (for

69

example e0001 n12− n14).

6.3 Remote procedure call

For communication between client and server as well as for inter-server commu-

nication the Remote Procedure Call was used. Remote Procedure Call is the earliest

and best known model that allows clients to call procedures on the server programs

that reside on separate machines [14]. Since no standard module for RPC for Tcl/Tk

exist, we wrote our own implementation. In this implementation for each new server

there are three procedures: connect procedure, evaluate procedure and disconnect

procedure. Connect procedure is called when the communication is established. Eval-

uate procedure is called before the execution of local procedure called from remote

machine. Disconnect procedure is called when the connection is broken, either delib-

erately or due to failure.

There are three ways of calling remote procedure using RPC: synchronous, asyn-

chronous and with callback. Synchronous calls are non-blocking calls, which bring

the result when it becomes available. Asynchronous calls return a variable, where

the result will be stored as soon as it becomes available. Callback calls define a local

procedure that will be called with the results as an argument.

6.4 Client-server communication

In client-server communication the client sends the requests and the server re-

sponds. The client sends some of the predefined messages, while the server keeps the

state of the communication. In this subsection the messages interchanged between

client and server will be described, as well as the state machine of the client-server

communication. In the end security issues are discussed.

70

6.4.1 State machine of the client-server communication

Client-server communication is presented in Figure 6.2. This figure shows the

states in the communication and what messages are possible in each state.

States and messages

The possible states for the server are: Init, Normal, Topology get, SPL get, Topol-

ogy rcvd and Execute. In each of these states there is a list of possible messages. By

traversing the states the server executes the requested actions that it has sufficient

rights to do. All these states will be described, as well as possible messages for each

of them.

The Init state is the initial state of the server. The only message that is accept-

able in this state is user authentication message. After the user is recognized as an

authorized user of the cluster, the server goes to the state Normal.

Normal state is the state from which the user can start two different actions. He

can try to load the experiment that is already deployed on the distributed system, or

he can start a new experiment. When a user wants to load an existing experiment,

he can ask the system to give him the list of all his active experiments, so he can

choose which one he wants to load. The list of all experiments is obtained with the

getExpList message, and an experiment is loaded with the eLoad message. From the

state Normal, if the experiment is going to be distributed among different machines,

the user can ask for a list of all servers available with the message getServerList, to

do the mapping between parts of the experiment and available machines. With the

createConfFile message the user initiates the process of starting a new experiment.

In Topology get state, all the received data is part of the experiment topology

and it is automatically put into a file. Only the message createSPL will be recognized

as not being a part of the topology, but instead as start of the mapping. From

71

Figure 6.2 Client-server communication

72

Topology get state with the message closeConfigFile the server goes to the state

Topology rcvd.

SPL get state can be reached during the transmission of new experiment topology.

In this state the mapping between different parts of the experiment and the available

machines is received. This information is crucial for the experiments that want to use

more than one server. After this information is transmitted, the server changes the

state back to Topology get state with the message endSPL.

Topology rcvd state is an intermediate state in which the server finds itself after

successful reception of new experiment topology. The only message allowed in this

state is newExperiment, which causes the experiment to be started.

After the experiment is started, the server goes to the Execute state. This state

is at the same time assigned to the new experiment as well. When the server is in the

Execute state, it can receive different sets of specialized messages (listed in Table 6.1).

From Execute state with the message stopExperiment the server returns to Normal

state.

6.4.2 Security issues

As a transport layer security mechanism there is a support for optional SSH tun-

neling, providing that the information sent between client and server remains confi-

dential. This way all the communication goes through a secure channel, having both

cryptography and authentication support.

On the application layer our application is secured by additional checks. For each

received message there is a check if the message is supported and if the user has

sufficient rights for requested action.

73

Message Meaning

vimageShellServer Searches the servers and returns the IP address of the

server that simulates the node for which a user wants to

open a shell

setNodeDir Removes and recreates a node’s temporary directory

setNodeMTU Sets the nodes MTU value

nodeBoot Starts the node booting

stopNodeProc Stops all the processes on the node

stopNodeIfcIPv4 Removes the IPv4 address from the node’s interface

stopNodeIfcIPv6 Removes the IPv6 address from the node’s interface

setLinkIfcQDisc Sets the queueing discipline on the interface

setLinkIfcQDrop Sets the queue dropping policy on the interface

setLinkIfcQLen Sets the queue length on the interface

setLinkParams Sets the parameters of the link

findShell Returns the list of available shells on the machine where

the node is simulated

Table 6.1 Set of messages

74

6.5 Inter-server communication

Servers communicate with each other through a set of messages. All communica-

tion goes through RPC, and before each command is executed, the global function is

called to check the received messages.

6.5.1 Global state

Global state is held on each machine in the server. The Global state consists

of the list of all users, a list of all the servers and all the experiments. For each

server the information about the server IP address, server name and interface that

is used is kept, as well as the list of sockets that are used for communication with

that server. The user information is the information about the experiments that the

user has. Experiment information is the information about the topology, the list of

all the servers and parts of the topology that will be simulated. On each server as a

part of a global state there is also information about all the nodes and links of all the

experiments.

Global state changes after the addition of a new server, with server crash, with

creation of new experiments or by stopping the experiment.

6.5.2 Communication model

Servers communicate with each other by using the RPC model. For each con-

nection there are three different stages: connection establishment, command and

connection lost. These events are supported in our RPC implementation as different

procedures.

The connection phase starts as soon as the server application is started. The

started server gets the network that it scans in lookup for other hosts. When it finds

the other hosts it tries to connect to them. If the connection is successful, it adds

75

Figure 6.3 Connection establishment phase

76

a new host to its hosts list, and keeps the socket information. On the other hand,

if the server is already working, and a new host initiates the connection, the server

accepts the connection, and if the new host is not on the list he adds it to the list,

and initiates a new connection to that server. The connection establishment phase is

presented in Figure 6.3.

The command phase is the normal functioning of the server. The server in the

command phase can act in two different ways. One way is when a server communicates

with the other server on its behalf, another way is when the server acts on behalf of the

client, asking for specific commands to be executed. When a server communicates on

its own behalf, it sends specific messages to the other server concerning the experiment

as an undivided entity. In this form of communication the server updates the global

state of the cluster, and the same messages are relayed to all the machines in the

cluster. One example of the server-server communication is presented in Figure 6.4.

These kind of messages are shown in red. When the server issues specific commands

to just one server, the server is just relaying the command from client to the server

emulating some part of the experiment. This situation is presented in Figure 6.5.

The connection lost phase is defined as the closed state of the socket that is

connecting the machines, and is reported by RPC. When a server finds out that one

of the server machines is no longer available, the machine closes the connection and

immediately stops all the experiments that were run on the machine that is no longer

available.

6.5.3 Critical resources

The critical resource in our case is the physical link. Since it must be possible to

simulate more than one link on one physical link, there must be a way of separating

the simulated link traffic instances one from another. To be able to do that, two

77

Figure 6.4 Creation of new experiment

78

Figure 6.5 Stopping the node’s processes

79

Figure 6.6 Distributed experiment with VLAN

different techniques are used, one of which is separating simulated link traffic with

VLAN identifiers and the other is using UDP tunneling.

When using VLAN identifiers there is a need for synchronization in order to be

able to assign a new VLAN identifier that would be unique in the system. This

synchronization is expensive and the usage of VLAN identifiers restricts the system

to functioning only in local area networks. The advantage of this approach is that

the packets do not get fragmented on the network. The view of the emulated system

with VLAN identifiers is presented in Figure 6.6.

UDP tunneling does not require full synchronization, but it does require synchro-

nization between two servers that emulate nodes on both ends of the link. Because

the packet goes back to the TCP/IP stack, this solution is more expensive, not to

80

Figure 6.7 Distributed experiment with UDP tunnels

mention the fragmentation costs. But it provides good results as presented in Chapter

7. The view of the emulated system with UDP tunnels is presented in Figure 6.7.

6.5.4 Security issues

For transport layer security a secure tunnel is used. The implementation of secure

channel that was used is a SSH port forwarding mechanism. This mechanism ensured

that the other server is authenticated and that communication is encrypted.

For application layer security, a list of possible messages is used, so each message

received from another server is checked before execution. As can be observed, servers

do not fully trust each other.

Chapter 7

Results

7.1 Introduction

The performance of each distributed system is evaluated through standard mea-

sures. The objectives which a distributed system is trying to meet are described in

Chapter 5. Evaluation metrics such as scalability, response time and emulated net-

work performance were used to measure the performance of our distributed network

emulator.

For measuring scalability and responsiveness of a system a setup with large ex-

periments was required. To show the worst performance of the system, a network of

routers was created, each running a dynamic routing protocol and introducing the

highest memory and CPU load on the system. Created networks had up to 1000

routers and measured the performance in terms of memory usage, CPU usage, estab-

lishment time and tear down time. For comparison a network of up to 1000 nodes

of type PC was created, since PCs are the lightest consumers working on a network

layer.

The emulated network performance was measured in terms of network latency and

throughput. Some of the simulated links in a distributed simulator go through real

links and are separated one from another using two different technologies available in

our system: vlan tags and UDP sockets. Both of these technologies have their benefits

and drawbacks. Both methods of this methods were compared to the performance

of standard IMUNES having as a reference data from the testbed. For latency and

throughput measurement the setup was a simple experiment with only three nodes

and the network performance was evaluated with standard networking applications.

The measure of scalability actually measures the effective usage of the resources.

82

As will be presented, our system is scalable, and this scalability is proportional to the

number of nodes. The responsiveness time should be as low as possible, but there

is an overhead brought by the network characteristics that does not depend on the

design. For emulated network performance it is expected to observe that decrease in

performance will be within reasonable limits, still offering a good match between an

emulated system and a real one.

7.2 Scalability and responsiveness time

The scalability and responsiveness time of the system were measured. The scala-

bility is an important measure for all distributed systems, since it tell us about the

system’s limit in size. The scalability of the system was measured by measuring the

CPU and memory load of the dispatcher machine and the results obtained were an-

alyzed. The responsiveness time is also an important metric of the system since it

describes how easily the system can be manipulated. This is also the time the user

should wait for the resources to be allocated. The scalability is described first, and

later we move to responsiveness time.

For measuring the scalability a large network with several hundreds of nodes was

designed. The example of the resulting topology is presented in Figure 7.1. The goal

was to find out the load that the resulting system imposes on the dispatcher machine

in terms of CPU load and memory usage. The parameters of the system are given in

table 7.1.

In the experimental setup the distributed system was created with a given number

of machines acting as servers and one remote machine acting as a client. First, the

experiment topology was created and divided into partitions on the client machine.

Second, the topology is transferred through the network to the dispatcher server.

The dispatcher server dispatches the topology to all the other servers and starts the

83

Figure 7.1 Example topology used for measurement of scalability and responsiveness

time

Parameter Value

CPU Intel Celeron(R) 2.66GHz

RAM memory 1GB

Network card 100Mb/s

Operating system 4.11 FreeBSD, network boot

Number of machines from 2 to 10

Table 7.1 The setup of the machines used for the experiment

84

Figure 7.2 Experiment establishment time for prototype implementation

experiment. The communication pattern between the client and the dispatcher and

from the dispatcher to all the other servers is given in Chapter 6.

The CPU load and memory load on the dispatcher machine were measured after

several seconds, allowing the machine to come to a steady state.

The results of the prototype implementation of the distributed system are pub-

lished in [33] and are presented in Figure 7.2. The topology created for the experiment

published there was a simple chain topology with an equal number of each type of

IMUNES nodes.

From Figure 7.3 it can be observed that the CPU load increases with the number

of nodes in the experiment. The CPU load growth is not linear. With the growth of

85

0 100 200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50

60

70

80

90

100

Number of simulated routers

P
er

ce
nt

ag
e

of
 u

se
d

C
P

U

CPU load of the dispatcher host

2 servers
4 servers
6 servers
8 servers
10 servers

Figure 7.3 CPU load of the system

the network an increase in the data that has to be processed can also be observed.

The increase in the data is not linear, so the resulting CPU load should not be linear

neither. From Figure 7.3 it is obvious that CPU load does not present the bottleneck,

since with the maximum load the CPU usage goes to less than 20 percent.

In addition to the CPU load the memory usage (Figure 7.4) was measured. The

memory in use grows with the increase of the number of nodes in the experiment.

The experiments were run on network booted machines, which use RAM memory for

keeping the filesystem as well as for standard running data. There is also no swap

memory since the machine’s hard drive is not used at all. The memory constraints

in that sense are very hard, and if a system tries to use more memory then currently

86

0 100 200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50

60

70

80

90

100

Number of simulated routers

P
er

ce
nt

ag
e

of
 u

se
d

m
em

or
y

Memory load of the dispatcher host

2 servers
4 servers
6 servers
8 servers
10 servers

Figure 7.4 Memory load of the system

available, the machine will crash. By keeping the machine running for a longer pe-

riod of time the memory also gets used because the machines were booted from the

network, and in the consecutive runs the later ones will present more memory usage

than previous ones.

From Figure 7.4 one can observe that memory usage grows with the number of

nodes, and when the memory usage is correlated with the number of nodes, it can

be observed that the memory grows proportionally to the size of the experiment. So,

each new emulated node uses some predefined amount of memory. In table 7.2 we

can find the parameter of proportionality representing the memory required by each

node of the type router. We fitted the curve of memory usage with a linear function.

87

Number of servers Slope % of memory per router total memory per router

2 0.25785 0.5157 5.157MB

4 0.10592 0.4237 4.237MB

6 0.07625 0.4575 4.575MB

8 0.05593 0.4474 4.474MB

10 0.04424 0.4424 4.424MB

Memory usage per router: (0.4573% ± 0.0349%) of 1GB

Table 7.2 Router memory consumption

The results obtained with routers are the worst case scenario, since each router

runs a dynamic routing protocol. Just for comparison, topologies with PC type nodes

of the same scale were created. The results are in Figure 7.8. From that figure one

can see that a network topology with PCs only, scales much better since the memory

usage has been reduced substantially.

For measuring the responsiveness the same setup was used and the time required

to establish the experiment was measured as well as the time to tear it down. The

time in both cases is measured in seconds. In Figure 7.5 one can observe drop in

establishment time when the simulation is distributed over a larger set of machines.

The most significant drop is observed when increasing the number of servers from 2 to

4. In this case the time is reduced by a factor of 2. From that figure it can also be seen

that there is a threshold value for which the distribution reduces the establishment

time. This kind of behavior is visible from the data for 100 nodes distributed over 10

servers. In this case the establishment time increased with the number of machines,

because the distribution load is bigger than the processing load.

Figure 7.6 shows the time required for creating the experiment. As observed from

the figure, the time for the highest number of nodes and lowest number of machines is

88

2 3 4 5 6 7 8 9 10
0

50

100

150

200

Number of servers

T
im

e
in

 s
ec

on
ds

Experiment establishement time

100 nodes
200 nodes
300 nodes

Figure 7.5 Establishment time

89

0 100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

300

Number of simulated routers

T
im

e
in

 s
ec

on
ds

Experiment establishement time

2 servers
4 servers
6 servers
8 servers
10 servers

Figure 7.6 Experiment establishment time

around 5 minutes. This time is suitable for long term as well as short term simulations.

Although in a distributed simulation the whole configuration file must be sent to all

the machines, the overall time for distributed system employment decreases with the

increase in the number of machines. It can also be observed that the increase in time

required is not in a linear relationship with the number of simulated nodes.

Termination time for an experiment is presented in Figure 7.7 and we can see that

the improvement in terms of time is neglectable. This is because the overhead of the

distribution to more than one machine is of the same order as the decrease in the size

of the network. From this figure one can observe that there is a linear relationship

between the termination time and the number of nodes and the termination time is

90

0 100 200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

80

100

120

140

160

180

Number of simulated routers

T
im

e
in

 s
ec

on
ds

Experiment stopping time

2 servers
4 servers
6 servers
8 servers
10 servers

Figure 7.7 Experiment termination time

not influenced by the increase in the number of machines available.

Figure 7.8 shows the same results for a topology of the same scale, but with PCs

instead of router nodes. As one can observe, the memory and CPU load is very low,

keeping the system very scalable. Although this scenario gives much better results,

it is not a real scenario, since there is no point in simulating a network in which there

is no activity.

7.3 Performance measurement

The distributed simulation increases the resources available, but the price for this

is lower controllability of the environment. The links simulated over real physical

91

0 200 400 600 800
0

50

100

150

200

250

Number of simulated PCs

T
im

e
in

 s
ec

on
ds

Experiment establishement time

0 200 400 600 800
0

20

40

60

80

100

Number of simulated PCs

P
er

ce
nt

ag
e

of
 u

se
d

C
P

U

CPU load of the dispatcher host

0 200 400 600 800
0

20

40

60

80

100

Number of simulated PCs

P
er

ce
nt

ag
e

of
 u

se
d

m
em

or
y

Memory load of the dispatcher host

0 200 400 600 800
0

20

40

60

80

100

120

Number of simulated PCs

T
im

e
in

 s
ec

on
ds

Experiment stopping time

2 servers
4 servers
6 servers
8 servers
10 servers

2 servers
4 servers
6 servers
8 servers
10 servers

2 servers
4 servers
6 servers
8 servers
10 servers

2 servers
4 servers
6 servers
8 servers
10 servers

Figure 7.8 Scalability and responsiveness of PC network

92

Figure 7.9 Simulation scenario

links have characteristics that differ from the stated values. In order to measure the

impact a simulation scenario as presented in Figure 7.9 was created.

The performance measurements used are standard network performance measures,

latency and throughput. These measures are textbook measures ([30] and [40]. For

measuring latency round trip time (RTT) was used and for throughput the actual

throughput of the link was used. The round trip time is the time required for a packet

to leave one system, to be processed on another system and come back. This time

consists of transmission time, propagation time and processing time. Throughput is

a measure of how many packets (bits) can be received in a unit of time.

93

Four different scenarios measured were:

• Two nodes connected with a direct link and simulated on one machine. From

Figure 7.9, these are nodes n0 and n2.

• Two nodes connected through a direct link, but simulated on two different

machines. From the figure, these are nodes n0 and n1. The simulated link

between two nodes is implemented using VLAN tags.

• Two nodes connected through a direct link, but simulated on two different

machines. From the figure, these are nodes n0 and n1. The simulated link

between two nodes is implemented with UDP sockets.

• Two machines connected through a LAN connection.

The parameters of the system are given in Table 7.1 and the results are given

in Table 7.3. The measurements were repeated 5 times. For calculating round trip

time measurements were obtained through ping program and for throughput netperf

application was used.

The results indicate that VLAN implementation has better performance in terms

of lower RTT as well as higher bandwidth. This is due to the fact that for VLAN

implementation each packet is processed on link layer instead of going again through

network layer. For VLAN tags there is a space envisioned in an ethernet frame, so one

packet from the simulator is equal to one packet on the network as can be observed

from Figure 7.10

That is not the case with UDP tunneling, where the resulting packet can exceed

the MTU size, and get fragmented, as presented in Figure 7.11. When a UDP tunnel is

used, the system is operating on a higher level allowing the packets to be transmitted

to any destination machine as long as there is a route to that machine.

94

Environment Mean value Standard deviation error

Round trip time (RTT) measured through ping (64B) in ms

IMUNES 0.0266 0.0053 72%

Distr. IMUNES (vlan) 0.1374 0.0044 44%

Distr. IMUNES (UDP tunnel) 0.1538 0.0015 61%

Real system 0.0952 0.0008 0%

Throughput measured with netperf TCP stream test (10s) in Mbit/s

IMUNES 94.1760 0.0055 0.45%

Distr. IMUNES (VLAN) 88.9380 0.9178 5.14%

Distr. IMUNES (UDP tunnel) 88.0840 0.1504 6.05%

Real system 93.7560 0.1060 0%

Table 7.3 Network performance measurement

95

Figure 7.10 Packets on a real link going form one simulated node to another when the

distribution is done with vlan tags.

96

Figure 7.11 Simulation scenario

97

We can also observe that the RTT is approximately equal to the sum of RTT of

a packet simulated on one machine and real RTT on the physical link between the

machines. So, as expected that the processing time for VLAN is smaller than for

UDP sockets, bringing a better performance for VLAN than for UDP tunnels, but

UDP tunnels as well do not introduce a significant overhead. For both methods of

sharing a physical link among simulated links, the processing time based on Formula

7.1 was calculated.

tproc = ttot − (timun + treal) (7.1)

Table 7.4 shows the processing time for both VLAN and UDP tunneling. As can

be observed the processing for UDP sockets takes twice the time required for VLAN.

However, we are talking about really small performance decrease introduced by usage

of UDP tunnels.

Environment Mean value Standard deviation

Distr. IMUNES (VLAN) 0.0156 0.0069

Distr. IMUNES (UDP tunnel) 0.0320 0.0055

Table 7.4 Processing time for VLAN and UDP tunnels per one packet measured in ms

Chapter 8

Conclusion and future work

In the era of internetworking, most of the existing systems tend to be globally

distributed. To measure the performance or simply test these systems network sim-

ulators that have a larger capacity are required. In order to suit this incrementing

needs, but at the same time keep the model of the system as close to the real system,

distributed network emulators are required. Network emulation of large networks

gives an invaluable insight of the protocol performance on a large scale.

Standard testbeds offer to few resources for the cost of implementation and man-

agement. Network simulators offer scalability, with the price of neglecting details.

Network emulators fill this gap and offer a very realistic environment while keeping

the scalability. One of these emulators is IMUNES. Because the way IMUNES was

built, the scalability of IMUNES outgrows most of network emulators ([26], [5]) and

still keeps most of the details of the simulation. For making this emulation facility

available even for larger networks, a distributed version is required.

In this thesis a way of building a distributed version of IMUNES was presented.

This process started with a novel algorithm for large topology generation. Next, the

performance of two different graph partitioning algorithms was compared, and the

implementation of support for the better one was built in our system. In the end, the

distributed version of IMUNES was built, based on decentralized architecture and

the principles of scalability and transparency. The resulting system was deployed

over a local area network. The resulting system is shown to be scalable and to put

additional delay overhead of 0.05 ms per packet for simulated links that are deployed

over a physical link.

In the future more attention should be given to server management, user man-

99

agement, experiment management and traffic management utilities. In distributed

systems there are structures that can be adopted for distributed emulator purposes

[34].

There are many areas where this system can be useful. In educational environ-

ment, students can learn about networks having a FreeBSD system that runs the

simulation on the University and a variable OS for student client applications. As

IMUNES offers support for all the protocols that reside on top of TCP/IP suite, this

system can be used as a general testbed supplement for testing and development of

new protocols as well as research of the existing ones. It can also be useful in devel-

opment of new distributed applications. Since the code of the application does not

need to be modified after it was emulated on IMUNES, after successful testing of

protocols, they can be easily deployed on the real system.

Chapter 9

Abbreviations

AS - Autonomous System

BER - Bit Error Rate

CPU - Central Processing Unit

GUI - Graphical User Interface

IMUNES - Integrated multiprotocol network simulator/emulator

IP - Internet Protocol

LAN - Local Area Network

MTU - Maximum Transmission Unit

RAM - Random Access Memory

RPC - Remote Procedure Call

RTT - Round Trip Time

SSL - Secure Sockets Layer

TCP - Transmission Control Protocol

TSL - Transport Secure Layer

UDP - User Datagram Protocol

VLAN - Virtual LAN

101

References

1. David Alderson and Walter Willinger. A contrasting look at self-organization in

the internet and next-generation communication networks. IEEE Communica-

tions Magazine, 43:94–100, 2005.

2. S. Lin B. Kernighan. An efficient heuristic procedure for partitioning graphs.

volume 29, pages 291–308, 1970.

3. Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Rajive Bagrodia, and Mario Gerla.

Glomosim: A scalable network simulation environment. 1999.

4. Albert-László Barabási and Eric Bonaneau. Scale-free networks. Scientific Amer-

ican, 288(5):50–59, 2003.

5. Micah Beck, Terry Moore, and James S. Plank. An end-to-end approach to

globally scalable programmable networking. In FDNA ’03: Proceedings of the

ACM SIGCOMM workshop on Future directions in network architecture, pages

328–339, 2003.

6. Ken Jones Brent Welch and Jeffrey Hobbs. Practical Programming in Tcl and

Tk. Prentice Hall PTR, 4 edition, 2003.

7. Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed

Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo

Yu. Advances in network simulation. Computer, 33(5):59–67, 2000.

8. Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling internet

topology. IEEE Communications Magazine, 35(6):160–163, 1997.

9. Thomas T. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to algorithms. MIT Press, Cambridge, MA, USA, 1990.

102

10. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law re-

lationships of the internet topology. In SIGCOMM ’99: Proceedings of the con-

ference on Applications, technologies, architectures, and protocols for computer

communication, pages 251–262. ACM Press, 1999.

11. C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In DAC ’82: Proceedings of the 19th conference on Design

automation, pages 175–181, Piscataway, NJ, USA, 1982. IEEE Press.

12. FreeBSD. www.freebsd.org.

13. Richard M. Fujimoto, Kalyan Perumalla, Alfred Park, Hao Wu, Mostafa H.

Ammar, and George F. Riley. Large-scale network simulation: How big? how

fast? mascots, 00:116, 2003.

14. Jean Dollimore George Coulouris and Tim Kindberg. Distributed systems: con-

cepts and design. Addison-Wesley, 2005.

15. Shashi Guruprasad, Robert Ricci, and Jay Lepreau. Integrated network ex-

perimentation using simulation and emulation. In TRIDENTCOM ’05: Pro-

ceedings of the First International Conference on Testbeds and Research In-

frastructures for the DEvelopment of NeTworks and COMmunities (TRIDENT-

COM’05), pages 204–212, Washington, DC, USA, 2005. IEEE Computer Society.

16. IANA Internet Assigned Numbers Authority. www.iana.org.

17. Xuxian Jiang and Dongyan Xu. vbet: a vm-based emulation testbed. In MoMe-

Tools ’03: Proceedings of the ACM SIGCOMM workshop on Models, methods

and tools for reproducible network research, pages 95–104. ACM Press, 2003.

103

18. P. Jr and F. Lamour. On the validity of a front-oriented approach to partitioning

large sparse graphs with a connectivity constraint. In Technical Report 94-37,

University of California at Los Angeles, December 1994., 1994.

19. George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–

392, 1998.

20. Samson Lee, John Leaney, Tim O’Neill, and Mark Hunter. Performance bench-

mark of a parallel and distributed network simulator. In PADS ’05: Proceedings

of the 19th Workshop on Principles of Advanced and Distributed Simulation,

pages 101–108, Washington, DC, USA, 2005. IEEE Computer Society.

21. X. Liu, H. Xia, and A. Chien. Network emulation tools for modeling grid behav-

iors, 2003.

22. Damien Magoni. nem: A software for network topology analysis and modeling.

10th International Workshop on Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems (MASCOTS 2002), pages 364–, 2002.

23. Harpal Maini, Kishan Mehrotra, Chilukuri Mohan, and Sanjay Ranka. Genetic

algorithms for graph partitioning and incremental graph partitioning. In Super-

computing ’94: Proceedings of the 1994 ACM/IEEE conference on Supercomput-

ing, pages 449–457, New York, NY, USA, 1994. ACM Press.

24. METIS. glaros.dtc.umn.edu/gkhome/metis/metis/overview.

25. M. E. J. Newman. The structure and function of complex networks. SIAM

Review, 45:167–256, 2003.

26. L. Ni and P. Zheng. Empower: A network emulator for wireline and wireless

networks, 2003.

104

27. ns2 network simulatior. http://www.isi.edu/nsnam/ns/.

28. Christoper R. Palmer and J. Gregory Steffan. Generating network topologies that

obey power laws. Global Telecommunications Conference, 2000. GLOBECOM

’00. IEEE, pages 434–438, 2000.

29. Rubn Mondjar Jordi Pujol Helio Tejedor Pedro Garca, Carles Pairot and Robert

Rallo. Planetsim: A new overlay network simulation framework. Lecture Notes

in Computer Science, 3437:123–136, 2005.

30. Larry L. Peterson and Bruce S. Davie. Computer Networks: A System Approach.

Morgan Kaufmann Publishers, 2003.

31. Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse matrices

with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990.

32. Zrinka Puljiz and Miljenko Mikuc. Clustering network simulation: Graph parti-

tioning approach. ConTEL 2005, 2005.

33. Zrinka Puljiz and Miljenko Mikuc. Distributed network emulator based on

imunes. SoftCOM 2006, 2006.

34. Zrinka Puljiz and Miljenko Mikuc. Design issues in building a scalable network

simulation/emulation middleware. SoftCOM 2007, 2007.

35. Zrinka Puljiz and Miljenko Mikuc. A hierarchical approach to generating power

law internet-like topologies. SoftCOM 2007, 2007.

36. quagga. www.quagga.net.

37. Robert Ricci, Chris Alfeld, and Jay Lepreau. A solver for the network testbed

mapping problem. SIGCOMM Comput. Commun. Rev., 33(2):65–81, 2003.

105

38. Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Middleware ’01:

Proceedings of the IFIP/ACM International Conference on Distributed Systems

Platforms Heidelberg, pages 329–350. Springer-Verlag, 2001.

39. Hawoong Jeong Soon-Hyung Yook and Albert-László Barabási. Modeling the

internet’s large-scale topology. Proceedings of National Academy of Science,

99:13382–13386, 2002.

40. W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-

Wesley Professional, 1994.

41. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.

In Proceedings of the ACM SIGCOMM ’01 Conference, San Diego, California,

August 2001.

42. VMware. www.vmware.com.

43. S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang, C. C. Chiou, and

C. C. Lin. The design and implementation of the nctuns 1.0 network simulator.

Comput. Networks, 42(2):175–197, 2003.

44. Xiao Fan Wang and Guanrong Chen. Complex networks: small-world, scale-free

and beyond. IEEE Circuits and Systems Magazine, 3:6–20, 2003.

45. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small-world”

networks. Nature, 393:440–442, 1998.

46. Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on

Selected Areas in Communications, 6:1617–1622, 1988.

106

47. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated exper-

imental environment for distributed systems and networks. SIGOPS Oper. Syst.

Rev., 36(SI):255–270, 2002.

48. Jared Winick and Sugih Jamin. Inet-3.0: Internet topology generator.

49. xorp. www.xorp.org.

50. Ken Yocum, Ethan Eade, Julius Degesys, David Becker, Jeff Chase, and Amin

Vahdat. Toward scaling network emulation using topology partitioning. mascots,

00:242, 2003.

51. Ken Yocum, Kevin Walsh, Amin Vahdat, Priya Mahadevan, Dejan Kostic, Jeff

Chase, and David Becker. Scalability and accuracy in a large-scale network

emulator. SIGCOMM Comput. Commun. Rev., 32(3):28–28, 2002.

52. M. Zec and M. Mikuc. Operating system support for integrated network em-

ulation in imunes. Proceedings of the 1st OASIS workshop (held along with

ASPLOS-XI), 2004.

53. Marko Zec and Miljenko Mikuc. Real-time ip network simulation at gigabit data

rates. ConTEL, 2003.

107

ABSTRACT

IMUNES network emulator is an excellent replacement for general purpose testbed,
since it decreases the cost of equipment and management while increasing the
scalability. However, IMUNES works on only one machine, so it has a limit in
scalability, disallowing large-scale networks to be emulated. To circumvent this
problem in this thesis we describe a distributed network simulator based on
IMUNES. The distributed simulator is based on decentralized architecture, and thus
avoiding the bottleneck. In addition, a novel algorithm for creating Internet-like
topologies was designed, and the usability of two different graph partitioning
algorithms was tested. The whole system was designed, implemented and evaluated.
The results show that a decentralized version of distributed IMUNES is feasible.
Moreover, the resulting system can be built in a scalable, transparent and secure
manner while keeping the benefits of IMUNES.

Keywords:
network simulator, network emulator, IMUNES, distributed system, decentralized
architecture, network performance, Internet, scalability, transparency, security,
network topology, Internet-like networks, scale-free networks, graph partitioning

SAŽETAK

Mrežni emulator IMUNES predstavlja izvrsnu zamjenu za testne mreže opće
namjene. On reducira troškove opreme i upravljana mrežom, a povećava skalabilnost
sustava. IMUNES radi samo na jednom računalu, što znači da za emulaciju velikih
mreža nema dovoljno resursa. Kao rješenje tog problema u ovome radu opisan je
distribuirana inačica IMUNES-a. Distribuirana inačica temelji se na decentraliziranoj
arhitekturi izbjegavajući centralni element koji bi bio usko grlo sustava. Osim
distribuirane inačice IMUNES-a u radu je opisan novi algoritam za stvaranja
topologije Internet tipa, te su uspoređene performanse dva algoritma za
particioniranje grafova. Cijeli sustav je dizajniran, implementiran te evaluiran.
Rezultati pokazuju da je decentralizirana inačica IMUNES-a izvediva, te da je ona
skalabilna, transparentna i sigurna dok čuva pozitivne karakteristike IMUNES-a.

Ključne riječi:
Mrežni simulator, mrežni emulator, IMUNES, distribuirani sustav, decentralizirana
arhitektura, mrežne performanse, Internet, skalabilnost, transparentnost, sigurnost,
mrežna topologija, Internet tip topologije, scale-free mreže, particioniranje grafova

Resume

I finished the high school Lucijan Vranjanin in Zagreb by the year 1999. After enrolling
in an undergraduate Faculty of electrical engineering and computing, University of
Zagreb, I chose the field of Telecommunications and Informatics and I graduated from
this field in 2004. During my undergraduate degree I received the national stipend. In
2004 I got enrolled into a graduate studies (Masters Studies) in the filed of electrical
engineering, as well as into another undergraduate study in the field of computing.
received the diploma from Computing studies in 2005 year. By the end of 2006 through
and exchange program I visited Carnegie Mellon University, Pittsburgh, PA, USA, for
four months while working in the area of wireless communications. During my masters
studies the focus of my research was in the area of distributed network simulators and in
that area I published four conference papers published on IEEE conferences.

Životopis

Završila sam srednju školu Lucijan Vranjanin u Zagrebu 1999 godine. Nakon upisa na
Fakultet Elektrotehnike i Računarstva, Sveučilišta u Zagrebu, odabrala sam smjer
Telekomunikacije i Informatika na kome sam diplomirala 2004. godine. Tokom 5 godina
studiranja primala sam državnu stipendiju. 2004. godine upisala sam poslijediplomski
studij, usmjerenja Elektrotehnika, te dodiplomski smjer Računarstvo na istom fakultetu,
te ga završila 2005 godine. Krajem 2006. godine otišla sam na 4 mjeseca međunarodnog
usavršavanja na Sveučilište Carnegie Mellon u Pittsburgu, PA, SAD. Tokom
magistarskog studija fokus mojih istraživanja bio je u području distribuiranih mrežnih
simulatora u kojem sam objavila 4 rada na IEEE konferencijama, te u području bežičnih
mreža.

