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QUANTUM TREATMENT OF

LARGE AMPLITUDE MOTION IN

HYDROGEN BONDED SYSTEMS

Doctoral Thesis

submitted to the Department of Chemistry,

Faculty of Science, University of Zagreb,

for the academic degree of

Doctor of Natural Sciences (Chemistry)

Zagreb

2007.
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The large amplitude internal motion (LAM) of the bridging hydrogen represents the key

feature of H-atom transfer systems. Several methodes are employed in order to gain

new insight into H-atom transfer (HAT) dynamics in acetylacetone (ACAC) and formic

acid dimer (FAD), molecules that serve as prototype systems for single and multiple

HAT reactions. The IR spectra related to the OH· · ·O fragment of ACAC and FAD were

first analyzed using a combination of a second order perturbative treatment and direct

solution of the nuclear Schrödinger equation in reduced dimensionality. While capable

of describing general features of IR spectra, normal mode based methodes are unsuited

to account for the double minimum nature of the potential surface, and thus unable to

reproduce the results of high resolution ro-vibrational spectroscopy. Further, three quan-

tum methodes capable of quantitatively describing the LAM dynamics are discussed.

The first method is based on localized internal coordinates and in the other two methods

collective LA coordinates are constructed using the minimum energy path geometries.

In the two last cases, the remaining orthogonal degrees of freedom are linearized and

the FAD dynamics is treated within the reaction surface Hamiltonian approach. Results

for the ground and excited state tunneling splittings are confronted with the results of

the experimental high resolution spectrum.
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U teorijskom smislu gibanje velike amplitude predstavlja ključni korak u razumijevanju

dinamike sustava s vodikovom vezom. Teza se bavi razvojem teorijskih metoda za opis

gibanja velike amplitude te njihovom primjenom na dvije modelne reakcije, jednostruki

intramolekularni prijenos vodika u acetilacetonu (ACAC) i dvostruki intermolekularni

prijenos vodika u dimeru mravlje kiseline (FAD). Infracrveni spektar OH· · ·O fragmenta

u ACAC i FAD-u analiziran je početno perturbacijskom teorijom i direktnim rješavan-

jem Schrödingerove jednadžbe za jezgre u reduciranoj dimenzionalnosti. Nad̄eno je da

ove metode, temeljene na opisu u normalnim koordinatama, na zadovoljavajući način

opisuju opće značajke IR spektra, ali nisu pogodne ukoliko se želi reproducirati poten-

cijal dvostruke jame karakterističan za sustave s vodikovom vezom, pa stoga ne mogu

objasniti cijepanja ro-vibracijskih nivoa u IR spektrima visokoga razlučivanja. Za ob-

jašnjenje cijepanja ro-vibracijskih nivoa primjenjene su tri kvantne metode. Prva metoda

temelji se na opisu u lokaliziranim internim koordinatama, dok se druge dvije metode

temelje na definiranju ortogonalnih kolektivnih koordinata velike amplitude pomoću

geometrija sustava na putu minimalne energije. U posljednja dva slučaja preostali, or-

togonalni stupnjevi slobode uključeni su kroz harmoničku aproksimaciju i dinamika

FAD-a tretirana je koristeći Hamiltonian reakcijske plohe. Dobivena cijepanja u os-

novnom i pobud̄enim vibracijskim stanjima uspored̄ena su sa vrijednostima dobivenim

iz ro-vibracijskih spektara visokog razlučivanja.

(129 stranica, 41 slika, 21 tablica, 118 literaturnih navoda, engleski jezik)
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Istraživanja formiranja i dinamike vodikovih veza od presudne su važnosti za razumi-

jevanje brojnih kemijskih i bioloških procesa. Vodikove veze odred̄uju strukturu i svo-

jstva vrlo različitih molekula, od molekule vode do proteina i DNA. Cilj teze je razu-

mijevanje ovih važnih interakcija na fundamentalnoj osnovi, prvenstveno vibracijske

spektroskopije ovih sustava.

Poznato je da stvaranje vodikove veze A-H· · ·B izmed̄u donora vodikova atoma (A)

i akceptorske grupe (B) uzrokuje specifičan otisak u vibracijskom spektru molekule.

Stvaranjem vodikove veze, vrpca A-H istezanja postaje šira te se, u odnosu na slobodnu

A-H vezu, pomiče prema crvenom dijelu spektra. Ove osobine, uzrokovane anhar-

moničkim sprezanjem visoko-frekventnog moda A-H istezanja i nisko-frekventnih mod-

ova molekulskog kostura, upućuju na višedimenzionalnu prirodu Born-Oppenheimerova

potencijala sustava s vodikovom vezom. S druge strane, gibanje vodikova atoma izmed̄u

donorske (A) i akceptorske (B) grupe predstavlja gibanje velike amplitude pa razumi-

jevanje vibracijskih spektara sustava u kojima se dešava prijenos vodikova atoma zahti-

jeva primjenu posebnih teorijskih opisa. Jedno od najvažnijih pitanja vezano uz infracr-

venu spektroskopiju ovakvih sustava je cijepanje vibracijskih nivoa molekule uzroko-

van potencijalom dvostruke jame. Danas postoje razne metode kojima se cijepanje os-

novnog stanja može izračunati s velikom točnošću. No, proračun cijepanja u pobud̄enim

vibracijskim stanjima predstavlja nerješen problem. Rješavanje navedenih problema

omogućilo bi izravno zaključivanje o utjecaju pobud̄enja pojedinih vibracijskih modova

na dinamiku prijenosa vodikova atoma, odnosno o utjecaju prijenosa vodikova atoma na

vibracijske modove sustava.

Razvijeni teorijski pristupi iskorišteni su za opis reakcija prijenosa vodikova atoma

u acetilacetonu (ACAC) i dimeru mravlje kiseline (FAD), dviju molekula koje pred-

stavljaju modelne sustave za reakcije jednostrukog i dvostrukog prijenosa vodikova

atoma. Male molekule kao ove predstavljaju idealne sustave za proučavanje prob-

lematike vezane uz strukturu i dinamiku sustava s vodikovom vezom. Istovremeno,

x
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mnoštvo dostupnih eksperimentalnih podataka omogućuju testiranje uspješnosti teorija.

Upravo razvoj i testiranje pouzdanih teorijskih metoda na jednostavnim, modelnim moleku-

lama predstavlja ključni korak prema kvantitativnom opisu reakcija prijenosa vodika u

velikim sustavima od biološke važnosti.

Iako se već nekoliko desetljeća pentan-2,4-dion, poznat kao i acetilaceton, istražuje

upotrebom mnogih eksperimentalnih i teorijskih metoda, još uvijek se malo zna o meh-

anizmu prijenosa vodikova atoma u toj molekuli. Teorijski opis ovog sustava otežan je

sprezanjem reakcije prijenosa vodikova atoma s internom rotacijom metilnih skupina. S

druge strane, veliki broj eksperimentalnih podataka, od kojih je za ovaj rad najvažniji IR

spektar u plinskoj fazi, omogućuje usporedbu teorijskih predvid̄anja i eksperimentalnih

rezultata.

Nadalje, veliki broj teorijskih radova odnosi se na reakciju prijenosa vodikova atoma

u dimeru mravlje kiseline jer ova molekula predstavlja najjednostavniji dimer iz skupine

karboksilnih kiselina te predstavlja prototip rekacije višestrukog prijenosa vodikova

atoma. Teorijski interes je dodatno pojačan nedavno snimljenim vibracijsko-rotacijsko-

tunelirajućim (VRT) spektrom visoke rezolucije. Izmjereno je cijepanje u osnovnom

vibracijskom stanju molekule (DCOOH)2 kao i cijepanje u modu antisimetričnog C-O

istezanja. Iako postoje odred̄ene nejasnoće vezane uz intenzitete pojedinih prijelaza,

autori su zaključili da pobud̄enje ovoga vibracijskog moda ubrzava reakciju prijenosa

vodika i odredili cijepanje u osnovnom nivou kao 0.00286(25) cm−1 a u pobud̄enom

vibracijskom stanju kao 0.00999(21) cm−1 . Ipak, upozoreno je na mogućnost alterna-

tivne asignacije po kojoj bi mod antisimetričnog C-O istezanja bio mod koji usporava

reakciju prijenosa vodika (cijepanje u osnovnom novou tada bi iznosilo 0.0125 cm−1 a

u pobud̄enom vibracijskom nivou 0.00313 cm−1 ). Većina teorijskih radova odnosila se

na račun cijepanja u osnovnom vibracijskom nivou molekule, a gotovo su svi rezultati

potvrdili originalnu asignaciju. Do sada postoji samo jedan teorijski rad koji je u pro-

račun uključio mod C-O istezanja, a autori su potvrdili alternativnu asignaciju. Ipak,

kako se radi o računu aproksimativnom instanton teorijom čija je primjena u frekvenci-

jskom području C-O istezanja diskutabilna, nejasnoće vezane uz asignaciju VRT spektra

ostaju.

Računi elektronske strukture

Šest stacionarnih točaka na plohi potencijalne energije acetilacetona značajnih za

reakciju intramolekulskog prijenosa vodika te rotacije metilnih skupina analizirano je

koristeći ab initio metode, teoriju funkcionala gustoće (DFT) s raznim osnovnim skupovima.

Bariera za prijenos vodika procijenjena je na 3.03 kcal mol−1 na CCSD(T)/cc-pVTZ//-

MP2(FC)/cc-pVTZ razini teorije. Numerički rezultati slične kvalitete mogu se dobiti

xi



PROŠIRENI SAŽETAK

upotrebom računski isplativije DFT/B1LYP metode. Račun puta najmanje energije

i analiza normalnih modova u točkama na putu najmanje energije utvrdile su da je

reakcija prijenosa vodika spregnuta s rotacijom distalne metilne skupine ali se dva

procesa ne dešavaju istovremeno: krečući od minimuma, prijenos vodika se dešava tek

nakon što se metilne skupine u ACAC-u postave u zasjenjenu konformaciju. Barijera

za rotaciju distalne metilne skupine procijenjena je na 0.27 kcal mol−1 na CCSD(T)/cc-

pVTZ//MP2(FC)/cc-pVTZ razini teorije.

U slučaju dimera mravlje kiseline, stukture značajne za reakciju prijenosa vodika u

FAD-u proučavane su upotrebom ab initio MP2 metoda, DFT/B3LYP metode, te teorije

spregnutih grozdova. Barijera za prijenos vodika procijenjena je na 7.89 kcal mol−1 na

CCSD(T)/aug-pVTZ//MP2(FC)/aug-pVTZ razini teorije. Pozornost je usmjerena na

proučavanje učinkovitosti B3LYP/6-31+G(d) te B3LYP/6-311++G(3df,3pd) metoda u

opisu energetike te strukturnih svojstava dimera jer se radi o metodama vezanim uz

dosadašnje račune dinamike vodikove veze. Nad̄eno je da B3LYP/6-31+G(d) daje rezul-

tate slične referentnim vrijednostima dobivenim upotrebom teorije spregnutih grozdova.

Ipak, nakon što je kod metoda proučen utjecaj greške zbog superpozicije osnovnog

skupa, upozoreno je da se kod B3LYP/6-31+G(d) metode radi o mogućem povoljnom

poništavanju pogrešaka.

Koordinate male amplitude

Područje IR spektara koje odgovara O-H· · ·O fragmentu u ACAC i FAD-u proučeno

je teorijom perturbacije drugog reda te direktnim rješavanjem Schrödingerove jednadžbe

u reduciranoj dimenzionalnosti. Pokušalo se zaključiti o interakcijama i efektima koje

odred̄uju položaj, oblik i širinu vrpce koja odgovara OH istezanju. IR spektar ACAC

proučen je korištenjem četverodimenzijskog modela razapetog modom OH istezanja

(νOH), OH savijanja u ravnini (δOH) te dvama niskofrekventim modovima νOH···O i νOO.

U slučaju FAD-a različiti dvodimenzijski i trodimenzijski potencijali razapeti su IR ak-

tivnim modom antisimetričnog O-H istezanja (νOH) te jednim od sljedećih modova: IR

neaktivnim simetričnim O-H istezanjem (νOH), simetričnim i antisimetričnim C=O i C-O

istezanjima (νC=O i νC−O) te simetričnim i antisimetričnim savijanjima OH veze u ravnini

(δOH). U nisko frekvencijskom području uzeti su u obzir istezanje dimera te simetrično i

antisimetrično njihanje u ravnini. U ovom pristupu vibracijski Hamiltonian ima sljedeći

oblik:

Ĥv = −
h̄2

2

ñ∑

i=1

[
1
µi

∂2

∂Q2
i

]
+V (Q1, · · · ,Qñ)

gdje ñ označava dimenziju problema, a µi reduciranu masu normalnog moda Qi. Vlastite

vrijednosti i vlastite funkcije vibracijskog Hamiltoniana dobivene su korištenjem Fourier

xii
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grid Hamiltonian metode uz Lanczosovu diagonalizaciju. Iz izračunatih vibracijskih

spektara zaključeno je da je za širinu vrpce OH istezanja u ACAC-u zaslužno posto-

janje dviju enolnih formi acetilacetona jer su prijelazi s najvećim intenzitetom u dvije

konformacije (s metilima u zasjenjenoj i s metilima u antiperiplanarnoj konformaciji)

razmaknuti za više od 500 cm−1 . Vrpca takod̄er pokazuje efekte kao što su snažno

sprezanje s niskofrekventnim vibracijama te ne postojanje osnovnog prijelaza OH is-

tezanja. Ove karakteristike mogu se smatrati općim značajkama vibracijske dinamike

intramolekulskih vodikovih veza. Vezano uz FAD, zaključeno je da je crveni pomak

antisimetričnog OH istezanja isključivo uzrokovan Davydovim sprezanjem sa IR neak-

tivnim modom simetričnog OH istezanja. Anharmonička sprezanja s niskofrekventnim

modovima te Fermijeve rezonancije s modovima iz središnjeg IR područja doprinose

širini i obliku, ali ne i položaju vrpce OH istezanja u FADu.

Koordinate velike amplitude

Hamiltonian u internim koordinatama

U ovoj metodi prijenos vodikova atoma u ACAC-u i FAD-u opisan je simetrijski pri-

lagod̄enim internim koordinatama. Pri konstrukciji plohe potencijalne energije odabrani,

interni stupnjevi slobode tretiraju se egzaktno dok se energija sustava minimizira s

obzirom na preostale stupnjeve slobode. Za račun vibracijskih nivoa potrebno je riješiti

vibracijsku Schrödingerovu jednadžbu čiji operator kinetičke energije ima oblik

T̂v ' −
h̄2

2

ñ∑

r=1

ñ∑

s=1

∂

∂ρr

[
Grs ∂

∂ρs

]

Izraz sadrži koordinatno ovisnu G-matricu definiranu kao

Grs =
3N∑

i=1

1
mi

∂ρr

∂xi

∂ρs

∂xi

koja ima ulogu koordinatno ovisnih reduciranih masa te približno uzima u obzir sprezanje

izmed̄u egzaktno tretiranih internih i preostalih stupnjeva slobode molekule. Različitim

aproksimacijama u kinetičkom dijelu Hamiltoniana može se zaključivati o važnosti u-

ključivanja kinematičkog sprezanja. U slučaju acetilacetona ploha potencijalne energije

razapeta je trima internim koordinatama ρ1 = r1 + r2, ρ2 = r1 − r2 i ρ3 = θ gdje r1 opisuje

udaljenost vodikova atoma od kisikova atoma, donora vodikova atoma, r2 udaljenost

vodikova atoma od kisikova atoma akceptora vodika, a kut θ predstavlja kut izmed̄u

kisika, atoma donora vodikova atoma i kisika akceptora i uzima u obzir udaljenost

izmed̄u atoma donora i akceptora vodikova atoma. U slučaju FAD-a, upotrebljene su

dvije analogne interne koordinate koje uzimaju o obzir simetrični, sinkroni prijenos
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vodikovih atoma te udaljenost izmed̄u monomera u dimeru. Nakon rješavanja vibraci-

jskog problema za ACAC upotrebom Fourier Grid Hamiltonian metode u internim ko-

ordinatama, odred̄eno je cijepanje u osnovnom stanju ACAC-a kao 116 cm−1 , a u modu

OH istezanja kao 850 cm−1 koristeći B1LYP/6-311G(d) metodu za konstrukciju poten-

cijala. Takod̄er se zaključilo da bi zanimljiva i dosad ne objašnjena struktura vrpce C=O

istezanja s tri maksimuma mogla biti posljedica cijepanja u vrpci OH istezanja uzroko-

vano reakcijom prijenosa vodika. Za FAD odred̄eno je cijepanje u osnovnom vibraci-

jskom nivou kao 0.011 cm−1 na B3LYP/6-311++G(3df,3pd) nivou teorije. U oba slučaja

je višedimenzionalna priroda reakcije prijenosa H atoma dovela do snažne koordinatne

ovisnosti elemenata G-matrice pa je za dobivanje kvantitativnih rezultata bilo presudno

na točan način uključiti kinematička sprezanja.

Metode Kartezijske reakcijske plohe i Opća aproksimacija reakcijskog puta

Ove metode temelje se na ideji separacije koordinatnog prostora u prostor reakcijske

plohe (sustav) i prostor harmoničkih pomaka od plohe (okolina). Konstrukcija koordi-

nata koje razapinju prostor reakcijske plohe temelje se u oba slučaja na putu najmanje

energije koji povezuje prijelazno stanje i reaktant (produkt). Istražene su dvije opcije za

opis koordinate prijenosa vodikova atoma:

(i) korištenje skupa ortogonalnih delokaliziranih koordinata koje se nizom kinematičkih

rotacija reduciraju na manji broj koordinata koje mogu uspješno reproducirati put

najmanje energije (Opća aproksimacija reakcijskog puta)

(ii) korištenje relevantnih geometrija na putu najmanje energi je i konstrukcija kolek-

tivnih koordinata linearnom kombinacijom kartezijevih koordinata relevantnih ge-

ometrija (Metoda Kartezijske reakcijske plohe)

U oba slučaja preostali, ortogonalni stupnjevi slobode (okolina) tretiraju se kao har-

monički pomaci oko reakcijske plohe razapete koordinatama pod (i) i (ii). U slučaju

FAD-a uz koordinate velike amplitude (ovdje označene kao d1,d2,d3) u konstrukciji

plohe uključena su dva dodatna stupnja slobode (qa,qs) čija kombinacija reproducira

mod antisimetričnog C-O istezanja čije je cijepanje odred̄eno u VRT spektru visoke

rezolucije. Vibracijski Hamiltonian oblika

Ĥv = −
1
2

3∑

i=1

∂2

∂d2
i

−
1
2

2∑

k=1

∂2

∂q2
k

+V (d1,d2,d3,q = 0) +
2∑

k=1

∂V (d1,d2,d3,q)
∂qk

∣∣∣∣∣
q=0

qk

+
1
2

2∑

k,l=1

∂2V (d1,d2,d3,q)
∂qk∂ql

∣∣∣∣∣
q=0

qkql
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riješen je korištenjem reprezentacije Hamiltoniana na mreži (Fourier grid Hamiltonian

metoda) te korištenjem Lanczos diagonalizacije. Odred̄eno je cijepanje u osnovnom

vibracijskom nivou FAD-a kao 0.155 cm−1 , a u modu antisimetričnog C-O istezanja

kao 0.0655 cm−1 na B3LYP/6-311++G(3df,3pd) nivou teorije, te 0.0012 cm−1 i 0.0032

cm−1 na B3LYP/6-31+G(d) nivou. Ovi rezultati upućuju na alternativnu asignaciju VRT

spektra iz 2002. po kojoj bi mod C-O istezanja bio mod čije pobud̄enje usporava reakciju

prenosa vodika. Rezultati su u slaganju s najnovijim VRT spektrom (HCOOH)2 sniml-

jenim 2007. prema kojemu je cijepanje u osnovnom nivou odred̄eno kao 0.0158 cm−1 a

u vibracijski pobud̄enom nivou kao 0.0100 cm−1 . Pogreška u apsolutnim vrijednostima

za cijepanja pripisana je nemogućnošću metoda kvantne kemije da točno procijene vis-

inu barijere za reakciju prijenosa vodika. Ipak, relativne vrijednosti cijepanja gotovo su

kvantitativno reproducirane.

Za razliku od internih koordinata koje mogu opisati gibanja velike amplitude ali daju

komplicirani oblik vibracijskog Hamiltoniana, koordinate opisane u okvirima metode

Reakcijske plohe i Opće aproksimacije reakcijskog puta predstavljaju kolektivne koordi-

nate koje daju diagonalan oblik operatora za kinetičku energiju. Uključivanje proizvoljnih

vibracijskih modova u račun je jednostavno, pa se ove dvije metode mogu smatrati

metodom izbora kod tretiranja dinamike u pobud̄enim vibracijskim stanjima.

xv



Chapter 1

Introduction

Hydrogen bonds (HB) and hydrogen atom transfer (HAT)1 reactions represent important

concepts in life sciences [3]. A hydrogen bond represents a special type of attractive in-

teraction, stronger than van der Waals but weaker than a covalent bond, usually existing

between an electronegative atom and a hydrogen atom bonded to another electronega-

tive atom. The most fundamental example of hydrogen bonds is found between water

molecules where they determine its unique and essential for life properties (for example

temperature of maximum density or its specific heat capacity). Furthermore, hydrogen

bonds play an important role in determining the three-dimensional structures of pro-

teins and nucleic basis and consequently influence their physiological or biochemical

functions. For instance, much of the binding selectivity of some proteins comes from

the hydrogen bond formation between the protein and its substrate [4]. A wide range of

enzyme reactions and pumping mechanisms of transmembrane proteins also include hy-

drogen atom or proton exchange between the donor and an acceptor group [5, 6]. HAT

reactions also occur in DNA base pairs such as adenine-thymine and have even been

hypothesised as a possible cause of spontaneous point mutations in DNA [7].

Although the term hydrogen bond emerged after 1930 (Pauling, Huggins) the idea

of a weak interactions involving hydrides dates from the end of 19th century. Since

then a vast number of studies on different aspects of hydrogen bonded interactions and

1In general one distinguishes hydride, hydrogen atom and proton transfer depending on the degree

of charge transfer. In principle, the former two cases can be viewed as types of proton-coupled electron

transfer reactions, since they involve the coupled transfer of protons and electrons [1]. On the other hand

the transfer of proton can be coupled to simultaneous transfer of the negative charge along different path-

ways, for instance through conjugated systems [2]. There exists an inconsistency in literature concerning

the distinction of the hydrogen and proton transfer processes, much due to the fact that for certain systems

it is very difficult to determine whether a proton transfer of hydrogen atom transfer occurs. In this thesis

the electrostatic aspects of the problem will not be the issue and the processes will be always refered as

hydrogen atom transfer reactions.
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Chapter 1. Introduction

hydrogen atom transfer reactions were reported. This is reflected in a great number

of papers, review articles and books covering this phenomena. But even today, with

significant advances in theoretical and computational methodology, the description and

the understanding of hydrogen bonded systems still presents a significant challenge to

theory. Much of the difficulty is due to the specific nature of the transferring hydro-

gen, which is, being the lightest element, especially prone to quantum effects such as

delocalization, tunnelling phenomena and large amplitude motion (LAM). Moreover,

the formation of the hydrogen bond A-H· · ·B between a hydrogen donor (A) and hy-

drogen acceptor group (B) produces anharmonic couplings between the hydrogen atom

motion and the motion of the molecular frame of the system. Thus, for a quantitative

understanding of such processes, an accurate treatment of the HB dynamics on multidi-

mensional potential energy surfaces (PESs) is required [8].

From the experimental side, vibrational spectroscopy, both in in the frequency and

time domains, has proven to be a valuable tool for investigating HB systems [3, 9]. The

formation of a hydrogen bond leaves a characteristic imprint in the vibrational spectra

of the molecule. Upon hydrogen bonding the A-H stretching band is red-shifted and

broadened compared to the free A-H stretch [10]. These features allow us to correlate

the A-H band profile to the strength of the HBs and to the shape of the underlying

potential [11]. Already early theoretical works showed that the potential energy curves

for the motion of hydrogen strongly depend on a distance between the hydrogen donor

(A) and hydrogen acceptor group (B) [8]. Accordingly, upon decreasing the donor-

acceptor distance, the nature of the potential changes drastically, i.e., the double minima

shape of the potential changes to a single minima potential.

According to the strength hydrogen bonds can be classified into weak (1-4 kcal

mol−1 ), medium strong (4-15 kcal mol−1 ) and strong hydrogen bonds (15-40 kcal mol−1 ).

Figure 1.1: Potential energy curves for (a) week symmetric (b) moderate asymmetric (c)

strong symmetric HBs. Figure courtesy of K. Giese et al., Physics Reports 430 (2006)

211.
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Chapter 1. Introduction

Weak HB systems (Figure 1.1a) are characterized with A-B distances that exceed 2.8-

3.2 Å and spectroscopically with the A-H stretching band in the infrared (IR) spectrum

which is located between the 3330 and 3500 cm−1 . The PES of weak HB systems exhibit

a double minimum structure with a relatively large barrier height for HAT reaction. The

hydrogen atom transfer reaction between the two minima can occur as a thermally acti-

vated process (over the reaction barrier) or as a tunneling process (through the barrier)

depending on the height and width of the barrier and on the position of the zero-point

energy. This gives rise to a splitting of each rotational-vibrational state of the molecule

into two states which are separated by the energy

∆E = hνtunneling

where νtunneling is the tunneling frequency. The period of the tunneling is related to

the tunneling splitting by τ = 1/ν tunneling. Medium strong HBs have much lower HAT

barriers as a consequence of a shorter A-B distance ranging between 2.5 Å and 3.2

Å. In this case, the A-H stretching band is located between the 2600-3300 cm−1 . The

case of an asymmetric (A-H· · ·B) medium strong HB is shown in Figure 1.1b. Strong

HBs, usually called "low-barrier hydrogen bonds", are characterized with HB distances

less than 2.5 Å. The barrier between the two minima is much smaller and the zero

point energy often exceeds the barrier height (Figure 1.1c). Nevertheless, the double-

well shape of the potential still has a strong influence on the vibrational spectra of the

molecule and will lead to the doubling of rovibrational states. A further shortening of

the HB distance would lead to the single-well potential but such bonds are thought to

exist only in [FHF]− and [HO-HOH]− ions with the F-F and O-O distances of 2.26 Å

and 2.29 Å.

The effect of hydrogen bond formation on IR and Raman spectra had been realized

in the thirties [12] and has been later extensively studied, both experimentally and theo-

retically. A contribution by D. Hadži and coworkers on this subject has been especially

valuable [10, 13]. As a result of the development in laser technology in the eighties,

new experimental techniques provided valuable insights into HB systems and triggered

new theoretical investigations. Due to the high resolution obtained in IR spectroscopy,

the transitions between the rovibration levels of the molecule, split due to the hydrogen

atom transfer, could be measured and compared to the theoretical predictions. In the

past twenty years the splitting of the ground vibrational level in small model molecules

(like malonaldehyde, formic acid dimer or tropolone) has been a subject of extensive

experimental [14, 15] and theoretical studies [16, 17, 18, 19]. Consequently, a signif-

icant methodological advances in both electronic structure and dynamical treatments

have been obtained [20, 21, 22] and nowadays the ground state tunnelling splitting can

3



Chapter 1. Introduction

be calculated with remarkable accuracy. For instance, in malonaldehyde the ground

state tunneling splitting of 25.7±0.3 cm−1 was obtained using the exact diffusion Monte

Carlo and the projection operator imaginary time spectral evolution methods [23]. The

computed tunneling splitting is slightly higher than the experimental value of 21.58

cm−1 [24]. However, the understanding of splittings in the excited vibrational states

and the modelling of vibrational spectra of intramolecular HAT systems in general, still

presents a significant challenge to theory [25, 26].

The present work will focusses on the vibrational spectroscopy of the small model

molecules, which can serve as prototype systems for the understanding of hydrogen

bonded systems and single and multiple HAT reactions. First we consider the enol form

of pentane-2,4-dione, known as acetylacetone (ACAC) (Figure 2.1). This system has

been extensively studied both experimentally [27, 28, 29] and theoretically [30, 31, 32],

but the pathways of the HAT reaction in ACAC are still not well understood. Compared

to its simpler analogue malonaldehyde (MA), the theoretical description in ACAC is

complicated by the coupling of the transferring hydrogen atom to the internal rotation

of the two methyl groups [33]. On the other hand, spectroscopic information about the

OH stretching region of the IR spectra in MA are scant due to the very low intensity

of the OH stretch band thus preventing the direct comparison between the theoretical

description and experiment [34, 35]. The situation is rather different in ACAC where

the IR spectra is dominated by a broad OH stretching band located between 1800 and

3400 cm−1 [28, 29].

The second model system is the formic acid dimer (FAD), a prototype example ex-

hibiting double hydrogen bonds (Figure 2.4). Due to the importance of the double HAT

reactions in nature a great number of theoretical studies of FAD have been reported thus

far [17, 18, 36, 37, 38]. A large number of them emerged recently, triggered by the

high resolution vibration-rotation-tunneling (VRT) spectrum of (DCOOH)2 in the gas

phase reported by F. Madeja and M. Havenith in 2002 [14]. They reported the ground

state tunnelling splitting of 0.00286(25) cm−1 and the splitting in the antisymmetric C-O

stretching mode as 0.00999(2) cm−1 . Despite the lack of precise intensity measurement

for weak a-type transitions between the rovibration levels of FAD, they assumed that

the HAT is accelerated upon the vibrational excitation of the molecule. Their conclu-

sion was based on the earlier theoretical work on the ground state tunneling splitting

in FAD where, based on a three-dimensional reaction surface model, a ground state

splitting of 0.004 cm−1 was predicted [39]. Their second argument was the enhance-

ment of hydrogen atom tunneling upon the excitation of an O-O stretching vibration in

malonaldehyde [17, 40]. Nevertheless the authors also pointed out the possibility of an

alternative assignment for the observed splittings (ground state: 0.125(3) cm−1 , excited
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state: 0.0031(3) cm−1 ), in which the CO stretching mode is a mode which suppresses

the tunnelling. Despite the large number of theoretical papers on the ground state tun-

neling splitting [17, 18, 36, 39, 41, 42, 43], apart from the work presented in this thesis,

only Z. Smedarchina and coworkers included the CO stretching mode directly in the

their computation [43, 44]. All the results on the ground state tunneling splitting sup-

ported the original assignment of the (DCOOH)2 spectra. Surprisingly, the work of Z.

Smedarchina et al. supported the alternative assignment. However, the computation

was performed by using the approximate instanton theory whose validity in treating the

excited vibrational states is questionable [42] and part of the controversy remained un-

solved. Independently of the theoretical work presented here, high resolution spectrum

of (HCOOH)2 in the region of the antisymmetric C-O stretch vibration was recorded

and analyzed by M. Ortlieb and M. Havenith in 2007 [45]. The ground state tunneling

splitting in (HCOOH)2 was determined as 0.0158(4) cm−1 which is close to the value

of 0.0123(3) cm−1 for (DCOOH)2 for the reversed assignment. According to the au-

thors this strongly supports the alternative assignment for the (DCOOH)2 classifying

the antisymmetric C-O stretching mode as a tunneling suppressing mode. This nicely

exemplifies the complexity of the multidimensional tunneling dynamics and embraces a

number of interesting issues. One of the most important being the physical reason under

which a vibrational excitation promotes or suppresses the tunneling.

In summary, this work is oriented towards the understanding of the HAT reactions

in simple benchmark systems which will:

• help to clarify the pathways and time-scales of hydrogen dynamics

• clarify the ways in which the vibrational excitation of the system influences the

tunnelling rates as well as the ways in which the HAT dynamics affects the vibra-

tional modes of the system

and most importantly

• provide and test a reliable theoretical method capable of describing quantitatively

the large amplitude motion of the transferring hydrogen and of the explaining

experimental observations, particularly the mode specific tunnelling dynamics.

Outline of the work

The thesis is organized as follows.

Chapter 2 gives a short literature overview of the most important theoretical and

experimental results concerning the molecules that are contained in this work as model

systems for single and double HAT reactions.

5
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Chapter 3 is concerned with fundamentals of vibrational spectroscopy. First, the

basics of molecular symmetry and the selection rules used in the assignment of the

rovibrational transitions resolved in high resolution spectra of HB systems are given.

Further, the theoretical background is introduced. Special attention is payed to the nature

of the coordinates used to describe small and large amplitude motion. The quantum-

dynamical methods based on the introduced coordinates that are essential for this work

are detailed.

Chapter 4, which contains the results are discussion, is further divided into three sec-

tions. In section 4.1 the results of electronic structure calculations on model molecules

are presented. This is crucial for providing a reliable and computationally efficient quan-

tum chemical method for the construction of the PESs needed for further calculations.

Section 4.2 presents the results of the normal mode based methods, i.e., the IR spectra

related to the OH· · ·O fragment of ACAC and FAD is analyzed using a combination of a

second order perturbative treatment and direct solution of the nuclear Schrödinger equa-

tion in reduced dimensionality. However, normal mode coordinates model the motion

in the vicinity of the most stable conformation, while capable of describing the general

features of infrared spectra, are unsuited to account for the double minimum topology

of the potential surface. As a result, normal mode based methods are unsuitable for re-

producing the results of high resolution VRT spectroscopy. Section 4.3 introduces three

large amplitude approaches in order to quantitatively describe the large amplitude inter-

nal motion of the transferring hydrogen in FAD. They are a internal coordinate approach,

the Reaction Surface Hamiltonian (RSH) method and the Generalized approximation to

the reaction path method (GARP). Comparison between the methods will be provided

on the PESs of the same quantum-chemical quality.

Finally, the main conclusions of the work are summarized in Chapter 5.

6



Chapter 2

Model systems

2.1 Intramolecular hydrogen bonding in acetylacetone

Pentane-2,4-dione, also known as acetylacetone (ACAC) can exist in two tautomeric

forms: the keto and enol form. The tautomeric equilibrium depends on both tempera-

ture and solvent [28]. In the solution, the percentage of the enol form increases as the

polarity of the solvent decreases and in the gaseous phase, the percentage of the enol

form increases as the temperature decreases. The enol form is characterized by an in-

tramolecular hydrogen bond and is known to be the most stable form in the gas phase

at room temperature. It contains a donor and an acceptor oxygen atom connected by a

system of conjugated double bonds (Figure 2.1). The hydrogen may transfer between

these two equivalent Cs structures via the C2v structure in which two C-O and C=O bonds

become equal to each other, the O· · ·O distance becomes shorter and the hydrogen atom

l l

Figure 2.1: Hydrogen atom transfer in enolic acetylacetone. Left and right: two equiv-

alent Cs structures, in the middle: C2v structure. Red - oxygen, yellow - carbon, white -

hydrogen atoms

7
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lies between the two oxygens (Figure 2.1). As a prototypical enolone1 acetylacetone

has been the subject of numerous experimental [46, 47, 48, 49, 50, 51] and theoretical

studies [30, 31, 32, 52]. Still, a number of issues concerning the nature of hydrogen

bond in ACAC is not very well understood.

The first issue to be considered is the geometry of the lowest energy form of ACAC.

The gas-phase electron diffraction experiments presented two conflicting enol struc-

tures. In the seventies a symmetric (C2v) structure with symmetric, linear HB was pre-

dicted [53, 54] while more recent experiments predict an asymmetric (Cs) structure with

an asymmetric bent HB [46, 47]. Surprisingly, experiments reporting symmetric struc-

ture gave very different values for the O· · ·O distance (2.381 Å [53] and 2.514 Å [54]).

Experiments reporting an asymmetric structure gave the values 2.512 Å at room temper-

ature [46] and 2.592 Å at 428.15 K [47]. On the other hand, X-ray crystallography gave

a value of 2.535 Å for O· · ·O distance [48]. The last two electron diffraction studies,

along with the neutron scattering in crystals [33], liquid phase NMR [49] and gas phase

vibrational spectroscopy [50] are consistent with an asymmetric structure. However, a

high resolution rotational spectrum of ACAC was reported confirming the symmetric

C2v structure as the lowest energy enolic form of ACAC [51].

Furthermore, the orientation of the methyl groups in ACAC depends sensitively on

the position of the hydrogen atom. It was the work of Horsewill et al. that established

the presence of two energetically inequivalent methyl groups in ACAC with hindering

potentials of 180 and 590 K (equivalent to 0.35 and 1.17 kcal mol−1 ) [27] but direct ev-

idence of the coupling between the HAT motion and internal rotation of the two methyl

groups came from inelastic neutron scattering measurements [33]. Namely, it has been

shown that two methyl tunneling peaks shift upon deuteration of the non-methyl hydro-

gen atoms.

Experimental spectroscopic studies of the ACAC hydrogen bond date back to the

investigation of the IR absorption bands associated with the chelate ring in a number of

β-diketones by S. Bratož et al. in early fifties [13]. This was later continued in an IR and

Raman studies of the enol form of ACAC and its deuterated analogs by S. F. Tayyari et

al. [29, 50], Ogoshi et al. [28] and Chiavassa et al. [55]. In the eighties B. Cohen and S.

Weiss reported the only temperature dependent IR spectra of ACAC and its deuterated

analogue in the region of the C=C and C=O stretches [56].

The IR spectrum of ACAC is dominated by an extremely broadened OH-stretch

band located between 1800 and 3400 cm−1 with a maximum at 2800 cm−1 [28, 29]. Such

a broad band reflects strong anharmonic mixing between the OH-stretch and low fre-

quency modes of ACAC [26]. Moreover, the band shape is further complicated by

1the enol tautomers of β-diketons
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Figure 2.2: Experimental gas phase IR spectrum of ACAC. Courtesy of J. Mavri and J.

Grdadolnik, J. Phys. Chem. A, 105 (2001) 2049.

Figure 2.3: The 1500-1800 cm−1 region of the IR spectra of ACAC. Taken form B.

Cohen and S. Weiss, J. Phys. Chem. 88 (1984) 3160

Fermi-type resonances [57] and Franck-Condon type vibrational progressions which

are expected to arise from combination transitions involving stretching of the hydrogen

bond [34, 58]. Upon deuteration of the enolic hydrogen, the O-D stretch appears as a

band centered at ∼ 2000 cm−1 with a bandwidth of ∼ 200 cm−1 .

The 1700-1000 cm−1 region of the spectra of ACAC displays some intriguing features.

This is the region of enol ring modes, the C=O, C-O, C=C and C-C stretching and the

9
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O-H bending. In the C=O region of the room temperature gas phase ACAC spectrum,

only a single band is reported at ∼ 1620 cm−1 . However, in the work of B. Cohen and

S. Weiss the low temperature IR spectrum of ACAC shows three distinct bands at ∼
1635, 1600 and 1575 cm−1 [56] (Figure 2.3). It was found that only the intensity of

the middle component increases with temperature. In the spectrum of the deuterated

component (nonmethyl hydrogen deuterated) only two components can be found at all

temperatures. Although authors have considered hydrogen tunneling, they attributed the

three-maxima structure of the band to two different forms of enol-ACAC: the ground

state and a low-lying vibrationally excited state. On the other hand, Tayyari et al. ex-

plained the structure of a C=O band on the basis of the coexistence of two conformers

of ACAC, exhibiting eclipsed and staggered methyl groups [29].

The region between 1500 and 1200 cm−1 belongs to the C-O stretching, the O-H· · ·O in

plane bending and two CH3 deformation modes. There are two bands in this region that

deserve further attention. One band at ≈ 1300 cm−1 is strong in Raman and weak in IR,

and the other at 1250 cm−1 is weak in Raman but strong in IR. Ogoshi et al. did not con-

sidered the former in their normal mode analysis [28], but two different assignments are

given by Chiavassa et al. [55] and Tayyari et al. [29]. The strong IR band at 1250 cm−1 is

assigned by Ogoshi et al. to the C-C stretching coupled with C=C stretching mode [28].

According to Tayyari et al. on the basis of harmonic normal mode calculation, this band

has a more complicate character, i.e., it consists of a symmetric C-C=C, a symmetric

C-CH3 stretch and an O-H bend [29].

In the region below 1000 cm−1 the most interesting bands are the bands at 945 cm−1 and

908 cm−1 corresponding to the OH out-of-plane bendings and two bands at 515 cm−1 and

397 cm−1 which are assigned to the in-plane ring deformations. The lowest frequency

observed is at 230 cm−1 . This band is due to the stretching of the hydrogen bond.

Concerning theoretical investigations there exists the same controversy concerning

the relative energies of C2v and Cs structures. Early work of J. Dannenberg and R. Rios

with MP2/D95∗∗ level of theory and zero-point vibrational correction placed the C2v

structure below the Cs structure [30]. J. Mavri and J. Grdadolnik using various levels of

theory (Hartree Fock (HF), Moller-Plesset (MP2) and Density Functional theory (DFT))

placed the C2v structure above the Cs structure [31]. Their best estimate of the barrier

hight on MP2/6-311+G(2d,2p) level of theory is 2.669 kcal mol−1 . The same authors

simulated the IR spectrum of ACAC in the gas phase and in a chloroform solution by us-

ing mixed quantum-classical dynamics [32]. They have found that the simulated bands

corresponding to asymmetric OH (OD) stretching match the experimental position and

shape. However, they could not explain the fine structure of the bands. The importance

of intramolecular coupling in acetylacetone was also discussed although the influence
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of the methyl internal rotation in ACAC was not treated explicitly. A thorough ab initio

study of the enol forms of ACAC was performed by Sliznev et al. [52]. They employed

various levels of theory, Moller-Plesset perturbation theory (MP2, MP3, MP4) and the

configuration interaction methods (CISD, CISD + Q) to calculate the relative stability

of ACAC stationary points important for the intramolecular HAT reaction and internal

methyl rotation. Yet, the geometry optimization were performed on a Hartree-Fock (HF)

level of theory and it still remains to be investigated how the HF approximation affects

the energetics.

Before this work, the most accurate ab initio harmonic vibrational frequencies have

been reported together with the experimental IR and Raman spectra by Tayyari et al.

[29]. An investigation beyond the harmonic approximation is however needed in order

to explain the nature of the vibrational modes coupling that leads to anharmonicities in

the ACAC spectrum. Also, the double well shape of the potential is expected to leave a

characteristic imprint in the IR spectrum. Till now no such features were observed, but

this could be due to the fact that the infrared spectrum of ACAC has been studied only

at low resolution. Furthermore, none of the simulations aimed at explaining the shape

and the position of the bands in the IR spectra of ACAC did take into account tunneling

effects.
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2.2 Intermolecular hydrogen bonding in the formic acid

dimer

Double hydrogen bonded systems play a crucial role in understanding multiple HAT

reactions in biological systems. For instance, they are highly relevant for understand-

ing fundamental aspects of DNA base pair dynamics. The formic acid dimer (FAD) is

the smallest molecule exhibiting multiple intermolecular hydrogen bonds, therefore it

is a perfect prototype for studying multiple HAT reactions. Due to its moderate size

FAD allows for highly accurate theoretical treatments. The formic acid (FA) monomers

dimerize like all carboxylic acid dimers with two hydrogen bonds forming a planar

eight-membered ring (Figure 2.4). The HAT is occurring between two equivalent C2h

global minima. During hydrogen transfer, monomers move closer together, ending in

the transition state structure of D2h symmetry. Most of the authors agree on a syn-

chronous concerted mechanism of HAT [17, 59, 60]. On the other hand, the classical

molecular dynamics study of H. Ushiyama and K. Takatsuka suggested an asynchronous

mechanism with the time delay of 8 fs between two HA transfers [61].

l l

Figure 2.4: Double hydrogen atom transfer reaction in the formic acid dimer. Left and

right: two equivalent minima C2h structures, in the middle: D2h structure. Red - oxygen,

yellow - carbon, white - hydrogen atoms.

Electronic structure calculations on FAD are numerous. The computed geometries of

the dimer [62, 59] are consistent with the experimental structures. Namely, the rotational

constants determined in the VRT spectrum [14] indicated that the rotationally averaged

structure of the minima corresponds to a C2h geometry which is in agreement with previ-

ous electron diffraction experiments [63]. However, the reported barrier heights for the

HAT reaction differ considerably and range between 7.8 and 11.4 kcal mol−1 for MP2

calculations [59, 17, 41] and between 1.2 and 6.4 kcal mol−1 for various DFT functionals

[38, 62, 64]. The stabilisation energy of FAD has been calculated using more sophis-

ticated treatments. For example, Tsuzuki at al. constructed the stabilization energy of

FAD as the sum of the stabilization energy at MP2 basis set limit and a correction term

12
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covering the higher correlation energy contributions (which was calculated as a dif-

ference between the interaction energies at the CCSD(T)/cc-pVTZ and MP2/cc-pVTZ

level of theory) [64]. They obtained the value of ∆E = -13.54 kcal mol−1 for the stabi-

lization energy of FAD. On the other hand, P. Jurečka and P. Hobza in their work on the

convergence of a correlation correction term reported a stabilization energy for the FAD

formation of ∆E = -17.28 kcal mol−1 at the CCSD(T)/cc-pVTZ level of theory [37].

The double minima shape of the potential in FAD gives rise to splittings of each

rovibrational state into two states (upper (u) and lower (l)) state. In 2002 F. Madeja and

H. Havenith reported the first high resolution spectroscopic measurement of FAD in the

gas phase with fully resolved rotational-vibrational-tunneling transitions [14]. The re-

gion of the antisymmetric C-O stretch 1241.7 - 1250.7 cm−1 was recorded and analyzed

for (DCOOH)2. The simultaneous observation of a-type transitions ((u) ← (u) and (l)

← (l)) and b-type transitions ((l)← (u) and (u)← (l)) in the C-O stretch region allowed

the determination of the ground state tunneling splitting as 0.00286(25) cm−1 (DEg in

Figure 2.5) and the splitting in the vibrationally excited state as 0.00999(21) cm−1 (DEe

in Figure 2.5). This would correspond to the HAT times of 5.8 and 1.7 ns, respec-

tively. This implies that the HA transfer is accelerated upon the vibrational excitation

of the antisymmetric C-O stretching mode. However, due to a lack of precise intensity

measurements for the weaker a-type transitions, the authors allowed for an alternative

assignment. In this case the transition (u)← (u) has to be switched to (l)← (l) and vice

Figure 2.5: Sketch of a-type and b-type transitions observed in the formic acid dimer

VRT spectrum [45].
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versa (Figure 2.5) and this would give the following tunneling splittings: the ground

state 0.0125 cm−1 and excited state 0.0031(3) cm−1 . In other words, the C-O stretch-

ing mode is a mode which suppress the tunneling. This ambiguity nicely exemplifies

the complexity of the multidimensional tunneling and embraces a number of interesting

questions which yet have to be answered. One of them being the question whether the

vibrational excitation suppresses or promotes the tunneling. Very recent investigation

of (HCOOH)2 in the region of the antisymmetric CO stretch vibration by M. Ortlieb

and M. Havenith allowed for an unambiguous determination of a ground state tunnel-

ing splitting of 0.0158(4) cm−1 together with the vibrationally excited state splitting of

0.0100(3) cm−1 [45]. The ground state splitting of 0.0158(4) cm−1 in (HCOOH)2 is in

close agreement with the value of 0.0123(3) cm−1 for (DCOOH)2 strongly supporting

the alternative assignment for (DCOOH)2 as well.

There has been a great number of theoretical attempts to predict the ground state

tunneling splitting in FAD using various dynamical models and various levels of the-

ory. The first estimate of 0.3 cm−1 was given in 1987 by Chang et al. [36]. In 1991 N.

Shida et al. on the basis of a three-dimensional reaction surface model and using MPCF

(modified couple pair functionals) predicted a ground state tunneling splitting of 0.004

cm−1 [17]. Further, a three dimensional reduced dimensionality model was applied on

FAD by Vener et al. focusing on the effect of the tunneling on the OH-stretch region of

the spectra [41]. This study obtained a ground state splitting of 0.3 cm−1 and predicted

a ∼ 300 cm−1 splitting of the symmetric OH-stretch as well as a ∼ 70 cm−1 splitting in

the antisymmetric (IR-active) OH-stretch. The original assignment of F. Madeja and

H. Havenith was recently supported by a systematic study of reduced dimensionality

models by D. Luckhaus [18]. The ground state tunneling splitting of 0.0013 cm−1 was

obtained based on the B3LYP/6-31+G∗ five dimensional surface with a barrier height

of 2930 cm−1 . However, this model as all previous did not include the C-O stretching

vibration. Additionally, Tautermann at al. [38] used their approximate version of instan-

ton theory, based one the Wentzel-Kramers-Brillouin (WKB) theory [65] and reported

the ground state splitting of 0.0021 cm−1 . The calculation was based on an approxima-

tive tunneling path between the two minima structures generated as a linear combination

of the minimum energy path (MEP) and the large curvature tunneling (LCT) path (the

straight line short cut between the minima). In spite of the moderate B3LYP/6-31+G(d)

level of theory used to calculate the tunneling path, the reported value agrees remark-

ably well with the experimental result of 0.00286(25) cm−1 . Finally, the ground state

tunneling splitting of 0.0038 cm−1 was obtained by full-dimensional numerically exact

instanton theory by G. V. Mil’nikov et al. [42]. The instanton trajectory was found on

a B3LYP/6-311++G(3df,3pd) potential accounting for the CCSD(T) energy correction

14
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which gave the effective potential barrier of 2837 cm−1 . Due to the fact that the calcu-

lation of the splitting in the vibrationally excited states still represents serious challenge

for the theory, besides this work there has been only one theoretical work that reported

the splitting in the C-O stretching mode. Z. Smedarchina et al. in their dynamic cal-

culations based on instanton techniques obtained the ground state splitting of 0.0147

cm−1 and a C-O excited state splitting of 0.004 cm−1 for (DCOOH)2 and 0.0149 cm−1 and

0.0031 cm−1 for (HCOOH)2, respectively [43, 44]. These calculations were performed

on a potential evaluated at MCG3//MCQCISD/3 level. That was the first work which

supported the alternative assignment of F. Madeja and M. Havenith. However, their

simulation was based on approximate instanton theory whose validity in treating the

vibrationally excited states is questionable. For instance, the work of G. V. Mil’nikov

et al. has shown that in the case of FAD the semiclassical instanton solution for the

excitations above 1000 cm−1 is unstable, indicating the breakdown of the theory [42].
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Chapter 3

Fundamentals of vibrational

spectroscopy

3.1 Vibration rotation tunneling spectroscopy

High resolution vibration rotation tunneling (VRT) spectroscopy can fully resolve each

ro-vibrational transition in the molecule and can thereby provide the values for the hy-

drogen atom tunneling induced splittings in the ground and vibrationally excited states

of IR active transitions. However, due to the high density of fully resolved rotational-

vibrational-tunneling transitions, often no definite assignment is possible [14]. In order

to understand experimental VRT spectra this section focuses on some basic issues con-

cerning symmetry and selection rules used in the VRT assignment. As an example the

VRT spectra of FAD is used which will in the same time allow for a better insight into

the experimental results reported by F. Madeja and M. Havenith [14] and M. Ortlieb and

M. Havenith [45].

The minimum energy structure of the FAD has C2h symmetry. At the transition state

the structure changes to D2h symmetry. The usual decomposition of the 3N − 6 vibra-

tional modes in FAD would lead to either 9 Ag ⊕ 4 Au ⊕ 3 Bg ⊕ 8 Bu for the C2h structure

or 5 Ag ⊕ 4 B3g ⊕ 1 Au ⊕ 3 B3u ⊕ 2 B2g ⊕ 1 B1g ⊕ 4 B2u ⊕ 4 B1u for the D2h one. To

describe the symmetry of the system in the case of hydrogen atom transfer between two

equivalent molecular structures via the transition state of different symmetry (Figure

2.4) the notion of permutation inversion groups are used. If a synchronous hydrogen

atom transfer in FAD is assumed the molecular symmetry group is the permutation-

inversion group G8 which is isomorphic to D2h. The use of the permutation inversion

group G8 avoids the dilemma posed by considering the limiting C2h and D2h structures

of FAD. In general, the elements of permutation inversion group include:

16
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• identity operation, labelled as E.

• permutation of equivalent nuclei. There are two kind of permutations. Permuta-

tions labelled as (12), (23) or (13) are called transpositions or interchanges while

the permutations labelled (123) or (132) are called cycles. If the coordinates of

the nuclei 1 and 2 are initially given by (x1,y1,z1) and (x2,y2,z2) after applying the

operation of permuting nuclei 1 and 2 they become (x2,y2,z2) and (x1,y1,z1) or

(12)[x1,y1,z1,x2,y2,z2, . . .] = [x2,y2,z2,x1,y1,z1, . . .]

The cycle permutation denoted as (abc · · ·d) is a permutation operation that re-

places a by b, b by c, . . ., d by a etc.

(123)[x1,y1,z1,x2,y2,z2,x3,y3,z3 . . .] = [x2,y2,z2,x3,y3,z3,x1,y1,z1 . . .]

• inversion operation, E∗ changes the sign of the Cartesian coordinates of all the

particles in the molecule:

E∗[xi,yi,zi] = [−xi,−yi,−zi]

• permutation operations combined with inversion. For instance, effect of (12)∗

operation on a Cartesian coordinates of the nuclei is given as

(12)∗[x1,y1,z1,x2,y2,z2,x3,y3,z3 . . .] = [−x2,−y2,−z2,−x1,−y1,−z1,−x3,−y3,−z3 . . .]

Adopting the nuclear labels shown in Fig. 3.1 the elements of the group G8 for FAD

would be: the identity element E, permutation of equivalent nuclei through the molecu-

lar center of mass E∗, permutation of equivalent nuclei about the a axes P:(910)(64)(35),

−→−
→

a

b

�
c

C1C2

H7H8

O3O6

H8

O5O4 H10

H9

Figure 3.1: Principal inertial axes of the FAD D2h structure.
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Table 3.1: Character table of G8 and the isomorphic group D2h. The symmetry elements

are: E, P:(910)(64)(35), P2: (910)(87)(21)(65)(43), PP2: (87)(12)(63)(45), E∗ P∗
2 , P∗

and PP∗
2

G8 (D2h) E P2 P PP2 E∗ P∗
2 P∗ PP∗

2

A′
1 (Ag) 1 1 1 1 1 1 1 1

A′′
1 (B3g) 1 1 -1 -1 1 1 -1 -1

A′
2 (Au) 1 1 1 1 -1 -1 -1 -1

A′′
2 (B3u) 1 1 -1 -1 -1 -1 1 1

B′
1 (B2g) 1 -1 -1 1 -1 1 1 -1

B′′
1 (B1g) 1 -1 1 -1 -1 1 -1 1

B′
2 (B2u) 1 -1 -1 1 1 -1 -1 1

B′′
2 (B1u) 1 -1 1 -1 1 -1 1 -1

Table 3.2: Character table of C2h group. The symmetry elements are: E, C2c (P2:

(910)(87)(21)(65)(43)), σab (E∗) and i (P∗
2 ). The corresponding elements of D2h group

are given in brackets.

C2h E C2c σab i
E P2 E∗ P∗

2

Ag 1 1 1 1
Au 1 1 -1 -1
Bg 1 -1 -1 1
Bu 1 -1 1 -1

Table 3.3: Correlation between C2h and G8 group

C2h G8 D2h

Ag A′
1⊕A′′

1 Ag⊕B3g

Au A′
2⊕A′′

2 Au⊕B3u

Bg B′
1⊕B′′

1 B2g⊕B1g

Bu B′
2⊕B′′

2 B2u⊕B1u
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permutation of equivalent nuclei about the c axes P2: (910)(87)(21)(65)(43), permu-

tation of equivalent nuclei about b axes PP2: (87)(12)(63)(45) and the permutation-

inversion, P∗
2 , P∗ and PP∗

2 . The character table of G8 is given in Table 3.1. The formal

decomposition of the vibrational modes of FAD in G8 would be 5 A′
1 ⊕ 3 A′′

1 ⊕ 1 A′
2 ⊕

3 A′′
2 ⊕ 2 B′

1 ⊕ 1 B′′
1 ⊕ 4 B′

2 ⊕ 4 B′′
2 ⊕ A′′

1 (tunneling coordinate) and this is identical to

the previous D2h decomposition (Table 3.1).

For understanding the symmetry of the vibrational levels split due to tunneling the

definition of the correlation between the group and its subgroups is introduced. The

correlation rule shows how the irreducible representations of a group (G) correlates to

these of the subgroup (A and B) where

G = A⊗B

If the energy levels of the molecule are labelled according to the irreducible representa-

tions of a subgroup (A) then the symmetry labels using the irreducible representations

of a group (G) can be deduced if the correlation of the irreducible representations of a

group (G) to those of a subgroup (A) is known1. In the case of FAD, 309 lines in the

frequency range from 1221.0 to 1226.7 cm−1 corresponding to the C-O antisymmetric

stretch vibration has been assigned [45]. The C-O antisymmetric stretch corresponds to

the Bu irreducible representation of the C2h group. This is schematically represented on

the right side in Figure 3.2. The ground state is labelled as Ag and excited vibrational

state as a Bu state. Due to the HA transfer reaction each of these two levels split into

two levels whose symmetry is labelled according to the correlation of the irreducible

representations of a D2h(G8) group to those of C2h subgroup (Table 3.3). Accordingly,

Bu level splits into two levels with symmetry corresponding to the irreducible represen-

tations of the D2h group as B1u and B2u and the Ag level splits into Ag and B3g levels.

This means, that if there would be no rotation, the fundamental transition corresponding

to the C-O antisymmetric excitation would split into four components corresponding to

the B1u← Ag, B2u← Ag, B1u← B3g and B2u← B3g transitions.

For each vibrational level one has also to consider the rotational levels. As FAD is

an asymmetric rotor, the rotational levels are described by their quantum numbers Ka

and Kc. In Figure 3.2 the rotational levels described by the quantum numbers Ka = 0 and

1Consider that the group G of order g has elements {G1,G2, . . . ,Gg} and its subgroup A of order
a < g has elements {A1,A2, . . . ,Ag}. Also, suppose that A1 = G1, A2 = G2,. . .,Aa = Ga. Any irreducible
matrix representation of G will provide the matrix representation of A by considering only the matrices
corresponding the elements G1,G2, . . . ,Ga of G. For instance, to determine the correlation table of the G8

(D2h) group with the C2h group one has to consider only the elements E, P2 , E∗ and P∗

2 (see Table 3.2).
The representations A′

1 and A′′

1 have characters 1 under each of this four operations and hence correlate
with the representation Ag of C2h. The representations A′

2 and A′′

2 have characters 1 under operations E
and P2 and -1 under operations E∗ and P∗

2 and hence correlate with the representation Au of C2h etc.
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Figure 3.2: Energy scheme for the vibrational rotational tunneling states of FAD in D2h

and G8 symmetry.

Ka = 1 for each of the four vibrational levels are shown in the middle of the scheme. In

the middle of the right side of the scheme the overall symmetry of the levels is denoted

according to the D2h group i.e. as Ag/B1g, B3g/B2g etc. The overall symmetry of each

level in the symmetry group D2h is a product of the vibrational, rotational and tunneling

symmetry.

The symmetry of the rotational state depends on the evenness or oddness of Ka and Kc

(which is in the scheme 3.2 denoted as Ag/B1g ). The symmetry of the rotational levels

in the case of a D2h group are presented in Table 3.42. For instance, for the vibrational

state with the B1u symmetry two rotational levels are shown: one for Ka = 0 and the

other for Ka = 1. In the case when Ka = 0 (Ka even) and Kc even then the rotational

2For the asymmetric top one can use the asymmetric top symmetry rule which states that the ee func-
tion will transform as the totally symmetric representation. The eo function as the representation having
+1 for Rπ

a (and -1 for Rπ
b and Rπ

c ), the eo function as the representation having +1 for Rπ
c (and -1 for

Rπ
a and Rπ

b ), and the oo function as the representation having +1 under Rπ
b (and -1 for Rπ

a and Rπ
c ). Rπ

a
corresponds to the rotation of the asymmetric top molecule through π radians about the a axes and in the
case of the D2h symmetry group it corresponds to the C2a element. These correlations are usually given
in the character table of the group.
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Table 3.4: Symmetry of the JKaKc rotational levels of the D2h group

KaKc Γrot(D2h)
ee Ag

eo B1g

oe B3g

oo B2g

Table 3.5: Symmetry of the JKaKc rotational levels of the C2h group

KaKc Γrot(C2h)
ee Ag

eo Bg

oe Ag

oo Bg

state should have an Ag symmetry (Table 3.4). As a vibrational state is of B1u symmetry

the overall symmetry of the level is Ag×B1u = B1u. In the case when Ka = 0 (Ka even)

and Kc odd then the rotational state should have a B1g symmetry. As this rotational state

corresponds again to the vibrational state of B1u symmetry, overall symmetry of the state

is B1g×B1u = Au. This is denoted as a B1u/Au (ee/eo) state. The same can be done for a

Ka = 1 (Ka odd) and Kc even (oe) level, the overall symmetry of the state is B2u = B3g×B1u

or Ka odd and Kc odd (oo), the overall symmetry is B3u = B2g×B1u. The same procedure

can be used to explain the symmetry of the states by using the C2h group on the left

side of the Figure 3.2. Starting from the left the symmetry of the vibrational states is

given (Ag and Bu). In the middle, the symmetry of rovibrational states is labeled (for

the symmetry of rotational states see Table 3.5). And then the splittings of rovibrational

states due to the tunneling is included. The symmetry of the states is denoted according

to the correlation table between the C2h and G8 group (Table 3.3).

The electric dipole moment in FAD has a A′
2 symmetry which implies that the A′

1↔
A′

2, A′′
1 ↔ A′′

2 , B′
1↔ B′

2 and B′′
1 ↔ B′′

2 transitions are allowed because the products A′
1×

A′
2×A′

2, A′′
1×A′

2×A′′
2 , B′

1×A′
2×B′

2 and B′′
1×A′

2×B′′
2 give totally symmetric irreducible

representation of D2h group. These selection rules imply that for FAD the HA transfer

tunneling splittings in the ground and vibrationally excited states can be determined by

measuring two types of transitions: a type (∆Ka = 0) and b type (∆Ka = 1) transitions.

For b type transitions the selection rules require a change of the tunneling state upon

the vibrational excitation: the vibrational transition will go from the lower tunneling

component (l) to the upper tunneling component (u) or vice versa. For a type transitions
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tunneling state changes from (u) to (u) or (l) to (l). By measuring both a and b type

transitions the sum and the difference of the tunneling splittings in the vibrational ground

and excited state can be obtained as shown in Figure 2.5. However, it is very difficult

to further decide which level shows larger splitting. For instance, in Figure 3.2 for the

excited vibrational state and Ka even the upper tunneling state denoted as B′
2/A′′

2 lies

above the lower tunneling state denoted as B′′
2 /A′

2. But the symmetry notation doesn’t

have to imply the energy ordering. In the case when the energy differences between the

two tunneling states are small, a coupling to the nearby state of the same symmetry can

switch the energy ordering. This also reverses the assignment of splittings in the ground

and excited vibrational state [14, 45].
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3.2 Small amplitude treatment

As this thesis is concerned with the vibrational spectroscopy of hydrogen bonded sys-

tems and specifically with the choice of the proper coordinates for the treatment of large

amplitude motion, this section compiles some basic notion of molecular vibrations. The

validity of the Born-Oppenheimer approximation is assumed and hereafter the focus

will be on different forms of the vibrational Hamiltonian describing the nuclear motion.

3.2.1 Normal coordinates

Let X ,Y,Z define the space fixed axis system (Figure 3.3). The position O denotes the

center of mass of the molecule in the (X ,Y,Z) axis system and is given by vector R. The

position of an ith particle in the (x,y,z) axis system is given by the vector ri, while its

equilibrium position is given by r0
i . The displacement vector ρρρi is defined as

ρρρi = ri − r0
i

with the components ∆xi = xi − x0
i , ∆yi = yi − y0

i and ∆zi = zi − z0
i . The total velocity of

the ith particle in space is then

Vi = Ṙ +ωωω× ri + vi

where ωωω is the angular velocity of the rotating coordinate system and the vector vi has

components ẋi, ẏi and żi. The kinetic energy of the whole molecule is:

2T =
∑

i

mi(Ṙ +ωωω× ri + vi)
2

= Ṙ2
∑

i

mi +
∑

i

mi(ωωω× ri) · (ωωω× ri) +
∑

i

miv2
i

+2Ṙ ·ωωω×
∑

i

miri + 2Ṙ ·
∑

i

mivi + 2ωωω
∑

i

mi(ri×vi) (3.1)

Figure 3.3: Space fixed (XYZ) axes (laboratory coordinate system) and the molecule

fixed (xyz) axes (rotating coordinate system).
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Since the O is the center of mass of the whole molecule, at every instant it must be

∑

i

miri = 0 (3.2)

It follows then that also ∑

i

mivi = 0

must be satisfied3. By replacing ri with ρρρi + r0
i Eq. (3.1) becomes

2T = Ṙ2
∑

i

mi +
∑

i

mi(ωωω× ri) · (ωωω× ri) +
∑

i

miv2
i

+2ωωω ·
∑

i

mi(ρρρi×vi) + 2ωωω ·
∑

i

mi(r0
i ×vi) (3.3)

The first term in Eq. (3.3) is the translational energy of the molecule, the second is

the rotational energy, the third the vibrational energy and the fourth and fifth represent

the coupling between rotation and vibration. However, for every displacement ρρρi in a

molecular vibration, the molecule fixed axes (x,y,z) can be rotated to a new system of

axes (x′,y′,z′) in order to satisfy the equations (for details see the Appendix A)

∑

i

mir0
i ×vi = 0 (3.4)

In this case, the fifth term in Eq. (3.3) vanishes. The remaining fourth term, called the

Coriolis energy, (2ωωω ·∑i mi(ρρρi× vi)) can be neglected since it small compared to the

pure vibrational term. The Coriolis energy term depends both on the displacement co-

ordinates and the angular velocity which are small compared to the vibrational velocity.

Usually, Eq. (3.4) is modified and the condition

∑

i

mir0
i × ri = 0 (3.5)

is used since the condition (3.5) implies the condition (3.4)4. The three components of

the last equation are

∑

i

mi(x
0
i yi − y0

i xi) = 0

3If
∑

i miri = 0, then
∑

i miṙi =
∑

i mi[(ωωω× ri + vi)] = ωωω×
∑

i miri +
∑

i mivi =
∑

i mivi = 0
4On differentiating (3.5) it follows

0 =
∑

i

mi
˙r0
i × ri +

∑

i

mir0
i × ṙi

=
∑

i

mi(ωωω× r0
i )× ri +

∑

i

mir0
i × (ωωω× ri) +

∑

i

mir0
i ×vi

=
∑

i

mir0
i ×vi
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∑

i

mi(y
0
i zi − z0

i yi) = 0

∑

i

mi(z
0
i xi − x0

i zi) = 0

and represent the so called Eckart conditions [66].

Introduction of normal coordinates

At this stage a new set of coordinates X1, . . . ,X3Nat , known as mass-weighted coordinates

is introduced to replace the coordinates ρρρi(∆xi,∆yi,∆zi):

X1 =
√

m1∆x1, X2 =
√

m1∆y1, X3 =
√

m1∆z1, X4 =
√

m2∆x2, etc.

The classical kinetic energy in these coordinates is:

2T =
3Nat∑

i=1

Ẋ 2
i (3.6)

For small displacements the potential energy V may be expressed as a Taylor expansion

in the displacement of Xi:

2V = 2V0 + 2
3Nat∑

i=1

(
∂V
∂Xi

)

0

Xi +
3Nat∑

i, j=1

(
∂2V
∂Xi∂X j

)

0

XiX j + higher terms

= 2V0 + 2
3Nat∑

i=1

KiXi +
3Nat∑

i, j=1

Ki jXiX j + higher terms (3.7)

The zero of energy can be chosen in such a way that the energy of the equilibrium

geometry is zero (V0 = 0). Moreover, as the equilibrium geometry represents a stationary

point on a potential energy surface, the first derivative of the potential is also zero i.e.

Ki = 0. For small amplitudes of vibration the higher terms in the expansion can be

neglected and the potential is expressed as:

2V =
3Nat∑

i, j=1

Ki jXiX j (3.8)

The 3Nat×3Nat matrix K whose elements are denoted as Ki j is called the force constant

matrix or the Hessian matrix. Newton’s equations of motion5 for a vibrating molecule

can now be written as

Ẍ j +
3Nat∑

i=1

Ki jXi = 0, j = 1, . . . ,3Nat (3.9)

5Newton’s equations of motion in Lagrangian form are:

∂

∂t
∂T

∂Ẋ j
+

∂V
∂X j

= 0 j = 1, . . . ,3Nat
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This represents a set of 3Nat simultaneous second-order linear differential equations

whose solutions can be written as

Xi = li cos(
√
λt +φ) (3.10)

where li represents the amplitude of the vibrational motion,
√
λ is its frequency and φ

is the phase. If the expression (3.10) is substituted into Eq. (3.9), a set of simultaneous

linear algebraic equations is obtained:

3Nat∑

i=1

(Ki j − δi jλ)li = 0 j = 1, . . . ,3Nat (3.11)

in which δi j is the Kronecker delta symbol that equals unity if i = j, and is zero otherwise.

In general, there are 3Nat values λk that satisfy the 3Nat simultaneous equations (3.11)

and there are 3Nat corresponding vectors lki. The set of equations (3.11) have a solution

only if the determinant of the coefficients is zero. This determinant is just |K −λ1 | and

the values λk and lki may be found from the solution of the secular equation

| Ki j − δi jλ |= 0 (3.12)

In fact, the λk represent the eigenvalues and lki represent the eigenvectors of the eigen-

value equation:

Kl = λl (3.13)

where the matrix K is the force constant matrix whose elements Ki j are defined in Eq.

(3.7). The quantities Lki derivated from the values lki as

Lki =
lki

[
∑3Nat

i (lki)2

]1/2 (3.14)

define a new set of coordinates Qk, k = 1,2, . . . ,3Nat called the normal coordinates6

Qk =
3Nat∑

i

LkiXi k = 1,2, . . . ,3Nat (3.15)

In the output of quantum chemistry programs (Gaussian [67] and Gamess [68]) nor-

mal coordinates are defined as displacements along the non-mass weighted Cartesian

coordinates using the quantities L′
ki

L′
ki =

lkim
−1/2
i[

∑3Nat
i

(
lkim

−1/2
i

)2
]1/2 (3.16)

6note the orthogonality
∑

i LkiLli = δkl
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where the square of the normalization factor in the denominator is given as a reduced

mass µk for the vibrational mode Qk.

When the secular equation (3.12) is solved for a stationary point, six values of λ

should be exactly zero for a nonlinear molecule, corresponding to the translational and

rotational modes. In real calculations using quantum chemistry packages, these modes

are never exactly zero but very close to zero (rotational modes even have frequencies

as large as 10-50 cm−1 ) due to the fact that the geometry cannot be optimized to a

gradient of exactly zero. In quantum chemical packages like Gaussian [67] the geometry

optimization is considered converged if the root mean square (RMS) gradient is less than

≈ 10−4 − 10−5 a.u. (the later corresponding to tight option) corresponding to the energy

being converged to ≈ 10−6 a.u. The residual gradient shows up as frequencies for the

rotation of the above magnitude.

However, if a system posses real vibrational frequencies of the same magnitude as

the residual rotational frequencies, mixing can occur and result in inaccurate values

for the true vibrations. It is thus necessary to project the directions corresponding to

infinitesimal rotations and translations from the force constant matrix K by using the

projector P [69, 70]. The projector P is a 3Nat×3Nat matrix defined as7

Piγ,i′γ′ =

√
mim′

i

M2
δγγ′ +

∑

αβα′β′

εαβγXiβ[I−1]αα′εα′β′γ′Xi′β′ (3.18)

where X≡ {Xiγ} represents a 3Nat dimensional vector, a mass weighted geometry on a

potential energy surface, and the 3× 3 matrix I is the moments of inertia tensor at the

corresponding point on the surface. It is defined as

Iβγ =
∑

i

[(∑

α

X 2
iα

)
δβγ − XiβXiγ

]
(3.19)

Note also that here composite indexes iγ are used where i = 1, . . . ,Nat, γ = x,y,z.

The normal modes are in this case defined by diagonalizing the projected value of the

force constant matrix KP

KP = (1 −P) ·K · (1 −P) (3.20)

Quantum chemical softwares [67, 68] normally remove translational and rotational di-

rections from the force constant matrix before obtaining the normal modes.

7the definition of εαβγ

εαβγ =





0 if any of two indices are equal.
1 if α, β, γ are an ’even’ permutations of 1,2,3.

−1 if α, β, γ are an ’odd’ permutations of 1,2,3.
(3.17)
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The Quantum-mechanical Hamiltonian for a Molecule

The form of the quantum-mechanical ro-vibrational Hamiltonian for a molecule is de-

duced from the classical expression for the kinetic energy given in Eq. (3.3) after sepa-

rating the kinetic energy of translation. For the derivation the reader is referred to Ref.

[71]. Expressed in normal coordinates it has a general form

Ĥn =
1
2

∑

αβ

(Ĵα − π̂α)(I−1)′αβ(Ĵβ − π̂β) −
h̄2

8

∑

α

(I−1)′αα +
1
2

N∑

k

P̂2
k +V (Q1, . . . ,QN) (3.21)

where Ĵ = (Ĵx, Ĵy, Ĵz) is the angular momentum operator:

Ĵ =
h̄
i
(r×∇) (3.22)

and

P̂k =
h̄
i

(
∂

∂Qk

)
(3.23)

is the momentum operator conjugate to the normal coordinate Qk. π̂α is the so called

vibrational angular momentum defined as

π̂α =
∑

lk

ζα
lkQlP̂k (3.24)

and ζα
lk are the Coriolis coupling constants of the form

ζα
lk =

∑

i

∑

βγ

εαβγLiβ,lLiγ,k (3.25)

Further, the quantities εαβγ and Liβ,l are defined in Eq. (3.17) and Eq. (3.14). The (I−1)′

is the inverse of the effective moments of inertia tensor I ′ which is, compared to the one

defined in Eq. (3.19), dependent on the Coriolis coupling constants8.

The separation of rotational and vibrational motion

As seen previously, the Eckart conditions minimize the coupling between the rotational

and vibrational motion. Hence, the separation of the ro-vibrational Hamiltonian into a

pure vibrational and pure rotational Hamiltonian is possible if the Coriolis energy is ne-

glected. To this degree of approximation, the total nuclear wave function Ψn, eigenfunc-

tion of the Hamiltonian (3.21) can be written as a product of a vibrational and rotational

wave functions:

Ψn
∼= ΨvΨr

8The moments of inertia tensor is here given as

I′βγ =
∑

i

[(∑

α

X2
iα −

∑

lk

(ζα
lk Ql)

2

)
δβγ −

(
XiβXiγ −

∑

lk

ζβ
lkζ

γ
lkQ2

l

)]
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The function Ψr is obtained as a solution of the rotational wave equation. It is a function

of three Eulerian angles θ,φ and χ describing the orientation of the rotating coordinate

system in space (Appendix A). Here, we will be interested in a special case of zero total

angular momentum and will neglect the rotational-vibrational coupling. The rotational

problem will not be further discussed.

The vibrational wave function Ψv, is obtained as a solution of the vibrational Schrödinger

equation. In normal coordinates the classical kinetic energy (3.6) is retained in its orig-

inal diagonal form

2T =
3Nat∑

i

Ẋ 2
i =

∑

i,k,l

LikLilQ̇kQ̇l =
∑

k

Q̇2
k (3.26)

and the harmonic potential energy (3.8) involves no cross products9

2V =
3Nat∑

k

λkQ
2
k . (3.27)

Consequently, the vibrational Schrödinger equation has the form

−
h̄2

2

N∑

k=1

∂2
Ψv

∂Q2
k

+
1
2

N∑

k=1

λkQ
2
kΨv = EvΨv (3.28)

where Ev is the vibrational energy and N is the number of vibrational modes and equals

3Nat −6 for a nonlinear and 3Nat −5 for a linear molecule. This N dimensional Schrödinger

equations is separable into N equations, one for each normal coordinate. If

Ev = E(1) + E(2) + · · ·+ E(N)

and

Ψv = ψ(Q1)ψ(Q2) · · ·ψ(QN)

then Eq. (3.28) is satisfied if E(k) and ψ(Qk) satisfy

−
h̄2

2
∂2ψ(Qk)
∂Q2

k

+
1
2
λkQ

2
kψ(Qk) = E(k)ψ(Qk) (3.29)

Each of these equations correspond to a one-dimensional Schrödinger equation for a

linear harmonic oscillator of unit mass in the normal coordinate Qk. As the energy levels

of a linear harmonic oscillator are given as Ev = (v + 1
2 )hν, v = 0,1,2, . . . the vibrational

energy of the molecule is thus

Ev =
N∑

k

(
vk +

1
2

)
hνk (3.30)

where vk are a quantum numbers and νk are frequencies associated with normal modes

Qk.
9note the orthogonality of the transformation between the mass weighted coordinates Xi and normal

coordinates Qk: L−1
ki = Lik
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3.2.2 Treating anharmonicity

The harmonic approximation in which all terms beyond the second order in Taylor ex-

pansion of a molecular potential are neglected is a good approximation only for a small

displacements from the equilibrium. In real molecules the neglected terms, also called

anharmonic terms of the form

higher terms =
1
3

∑

i, j,k

(
∂3V

∂Xi∂X j∂Xk

)

0

XiX jXk +
1

12

∑

i, j,k,l

(
∂4V

∂Xi∂X j∂Xk∂Xl

)

0

XiX jXkXl + etc

=
1
3

∑

i, j,k

Ki jkXiX jXk +
1

12

∑

i, j,k,l

Ki jklXiX jXkXl + etc (3.31)

are important, particularly for molecules with inter- or intra-molecular hydrogen bonds.

For instance, the stretching mode of a X-H donor group exhibits strong anharmonic-

ity due to coupling to low-frequency modes. Furthermore, the higher terms in Taylor

expansion have strong effects on the position of the overtones and combination levels

which can mix leading to Fermi resonances. Hence, treating anharmonicity represents

one of the central issues of the vibrational spectroscopy of hydrogen bonded molecules.

To obtain an anharmonic vibrational spectrum for a system of interest, the vibrational

Schrödinger equation of the form
[

−
1
2

N∑

k=1

∂2

∂Q2
k

+V (Q1, . . . ,QN)

]
Ψv(Q1, . . . ,QN) = EvΨv(Q1, . . . ,QN) (3.32)

with the full potential V (Q1, . . . ,QN) has to be solved. Obtaining the full potential en-

ergy surface (i.e. Born-Oppenheimer electronic energy) of a polyatomic molecule by

quantum chemistry methods represents a formidable task. The number of the quantum

chemistry calculations needed to represent the potential would be of order n(3Nat−6) where

n is the number of grid point on the surface per degree of freedom. Obviously, for the

systems with Nat > 4 construction of the full potential becomes a demanding task. To

obtain anharmonic vibrational spectra, approximative methods are used.

Presently, some of the packages for electronic structure calculation [67, 68, 72]

include methods for the computation of anharmonic frequencies. They are based on

the vibrational self-consistent field (VSCF) method and/or on second-order perturbation

theory (PT2) [73, 74, 75, 76].

The vibrational self-consistent field method

In the basic VSCF approach nuclear wave functions are obtained in a self-consistent

field approach, termed Vibrational Self-Consistent Field (VSCF), starting from a product

nuclear wave functions:

Ψv(Q1, · · · ,QN) =
N∏

k=1

ψ(v)
k (Qk) (3.33)
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In other words, the VSCF approach is based on an approximation in which nuclear

wave function Ψv(Q1, · · · ,QN), solution of the vibrational Schrödinger equation of the

system, is written as a product of a single-mod wave functions ψ (v)
k (Qk). Inserting the

last equation into the vibrational Schrödinger equation of the system (Eq. (3.32)) results

in a single-mod vibrational equation of the form
[

−
1
2
∂2

∂Q2
k

+V
(v)
k (Qk)

]
ψ(v)

k = ε(v)
k ψ

(v)
k (3.34)

where the effective potential for the normal mode Qk is given by

V
(v)
k (Qk) =

〈
N∏

l 6=k

ψ(v)
l (Ql)

∣∣∣∣∣V (Q1, · · · ,QN)

∣∣∣∣∣

N∏

l 6=k

ψ(v)
l (Ql)

〉
(3.35)

Equations (3.33)-(3.35) for the single-mode wave functions, the energies and effective

potentials are solved self-consistently. The total energy is given by

Ev =
N∑

k−1

ε(v)
k − (N − 1)

〈
N∏

k=1

ψ(v)
k (Qk)

∣∣∣∣∣V (Q1, · · · ,QN)

∣∣∣∣∣

N∏

k=1

ψ(v)
k (Qk) (3.36)

The greatest computational difficulty for large systems represents evaluation of the mul-

tidimensional integrals in Eq. (3.35). One possible approach to solve this issue is the

pairwise mode-mode coupling approximation in which the full potential is written in the

form

V (Q1, · · · ,QN) =
N∑

k

V diag
k (Qk) +

∑

k

∑

l>k

V coup
kl (Qk,Ql) (3.37)

where the diagonal potential functions V diag
k (Qk) represents the anharmonic potential

along the normal coordinate Qk

V diag
k (Qk) = V (0, . . . ,Qk, . . . ,0) (3.38)

and the pairwise mode-mode coupling functions V coup
kl (Qk,Ql) are given as two-dimensional

potentials

V coup
kl (Qk,Ql) = V (0, . . . ,Qk, . . . ,Qk, . . . ,0) (3.39)

In this case VSCF potential V
(v)
k (Qk) involves only one-dimensional integrals

V
(v)
k (Qk) = V diag

k (Qk) +
∑

k 6=l

〈ψk(Qk)|V coup
lk (Ql,Qk)|ψk(Qk)〉 (3.40)

which can be computed using a grid representation for the potentials. However, the

pairwise mode-mode coupling approximation can fail for large systems and for more

highly excited states of the system.
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The extensions of the basic approach are also used in order to correct the main de-

ficiency of the basic VSCF approach, the neglect of the correlation between different

normal modes. There are several ways to introduce vibrational correction, through con-

figuration interaction (CI)(VSCF CI or VCI method), coupled-cluster (VCC method)

or through a perturbation theory termed correlation corrected self-consistent field (CC

VSCF method). Although it can be computationally expensive for medium and large

size molecules, the VCI in combination with the local approach has proven to be a pow-

erful tool for a prediction of anharmonic vibrational spectra [77]. In a case of a strong

couplings between the vibrations, partially separable VSCF method (PS SCF) is also

used [78].

The perturbative approach

Second-order perturbation treatment of V. Barone and coworkers [74, 75, 76] imple-

mented in the Gaussian code is used in this thesis for the investigation of the anhar-

monic spectra of the acetylacetone and the formic acid dimer. Within this approach the

anharmonic terms in the Taylor expansion are treated as a perturbation acting on the

harmonic-normal mode Hamiltonian. The vibrational energy characterized by a set of

quantum numbers {vi} is given in the form

E
hc

=
∑

i

ωi

(
vi +

1
2

)
+
∑

i

∑

j<i

χi j

(
vi +

1
2

)(
v j +

1
2

)
, (3.41)

where ω = λ1/2
i are the harmonic frequencies of the normal modes, and χ is the matrix

of anharmonic constants whose diagonal and off-diagonal elements are obtained from

χii =
1

16
Kiiii −

1
16

∑

j

K2
ii j

8ω2
i − 3ω2

j

ω j(4ω2
i −ω2

j )
,

χi j =
1
4

Kii j j −
1
4

∑

k

KiikKk j j

ω j
−

1
2

∑

j

K2
i jkωk(ω2

k −ω2
i −ω2

j )

∆i jk

and

∆i jk = (ωi +ω j +ωk)(ωi −ω j −ωk)(−ωi +ω j −ωk)(−ωi −ω j +ωk)

The symbols Ki jk, Kiiii and Kii j j stand for mixed third, diagonal and semidiagonal fourth

derivatives of the potential energy with respect to the normal modes. The third energy

derivatives Ki jk are calculated numerically from the finite differences of analytical force

constant matrices evaluated at positive and negative displacements δQi of each normal

mode:

Ki jk =
1
3

[
K jk(δQi) − K jk(−δQi)

2δQi
+

Kki(δQ j) − Kki(−δQ j)
2δQ j

+
Ki j(δQk) − Ki j(−δQk)

2δQk

]
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The numerical calculation of fourth derivatives Ki jkl , requires, in principle, simultaneous

displacements along two normal coordinates, which is computationally quite expensive.

However, displacements of a single normal mode at a time are sufficient to evaluate

terms with at most three distinct indices, which include all the derivatives required to

compute vibrational energies using the second order perturbation theory (PT2)

Ki jkk =
Ki j(δQk) + Ki j(−δQk) − 2Ki j(Q0)

δQ2
k

Kii j j =
1
2

[
Kii(δQ j) + Kii(−δQ j) − 2Kii(Q0)

δQ2
j

+
K j j(δQi) + K j j(−δQi) − 2K j j(Q0)

δQ2
i

]

The treatment is easily available through the Gaussian03 software and can be rou-

tinely applied for the investigation of molecules including up to 15 atoms. Also, it has

been found that for several systems the computed anharmonic corrections are not very

sensitive to the choice of the quantum chemistry method or the size of the basis set

which means that the high-level computations may be performed to obtain harmonic

frequencies while cheaper methods can be used for the calculation of the anharmonic

corrections. Nevertheless, when applying the method it is not a priori clear whether the

two assumptions on which the whole procedure rests are valid. Firstly, in the vicinity

of a minimum the potential is approximated with the Taylor expansion which is trun-

cated after the fourth order but often some of the two or three dimensional sections of

the full molecular potential display more complicated dependence on the normal coor-

dinates [79]. Secondly, the vibrational energy levels are obtained by using second order

perturbation theory which can fail in the case of large anharmonic effects.

Anharmonic spectra in reduced dimensionality

In the case of large anharmonic effects and strong couplings between the vibrational

modes a deeper insight into different coupling mechanisms shaping the vibrational bands

can be obtained by the reduced dimensionality approach. In this method the vibrational

problem is directly solved for a potential spanned by a smaller number of suitably cho-

sen normal modes and evaluated on a grid of points. For example, the IR spectrum of

the O-H· · ·O fragment of malonaldehyde was investigated on the basis of a fully coupled

4D PES containing the O-H stretching, in-plane and out-of-plane OH bending and one

low frequency mode O· · ·O [34]. The normal mode representation of the Hamiltonian

Ĥ = −
h̄2

2

ñ∑

k=1

[
1
µk

∂2

∂Q2
k

]
+V (Q1, · · · ,Qñ) (3.42)
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was used where ñ represents the dimensionality of the problem and µk is the reduced

mass for the vibrational mode Qk defined as10

µk =
∑

i

l−2
ki mi (3.43)

A number of methods for solving the vibrational Schrödinger equation with the

Hamiltonian given in Eq. (3.42) is known in the literature [80, 81, 82, 83]. In this

work we implemented the Fourier grid Hamiltonian (FGH) method developed by C. C.

Marston and G. G. Balint-Kurti [83]. The method represents a stable, fast and robust

way for solving the vibrational Hamiltonian. It is combined with iterative diagonal-

ization techniques to evaluate a limited number of the lowest eigenvalues. Briefly, the

overall Hamiltonian is the sum of the kinetic energy and the potential energy term eval-

uated on an equidistant grid. The diagonalization of the resulting Hamiltonian matrix

yields the eigenvalues and the eigenvectors which give the amplitudes of the vibrational

wave functions on the grid points. The fundamental frequencies are then calculated as

a differences of ground state and excited state energies. The FGH method is detailed in

Appendix B.

An attractive feature of the normal mode approach is the assignment in terms of

uncoupled normal modes (see Ref. [34]), the so called zero-order states

Ĥ0 = −
h̄2

2

ñ∑

k

[
1
µk

∂2

∂Q2
k

+V (Qk,{Ql 6=k = 0})
]

(3.44)

The contribution of a particular eigenstate ψ0
k of Ĥ0 to the eigenstate of the full Hamil-

tonian Ĥ in (3.42) can be inspected by analyzing the coefficients clk

ψl =
∑

k

clkψ
0
k (3.45)

The computationally limiting part, however, is the evaluation of a ñ-dimensional poten-

tial at the selected grid points since the potential is evaluated pointwise by using one of

available quantum-chemistry methods.

10compare to Eq. (3.14)
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3.3 Large amplitude treatment

None of the available methods for treating anharmonicity based on the normal mode

coordinates is successful when treating the dynamics far away from the equilibrium

position. In addition, normal mode coordinates appear to be unsuitable for reproducing

the double minima shape of the potential energy surface. Consequently, the next section

focuses on the LAM coordinates and gives an overview of the most important theoretical

methods suitable for treating the large amplitude motion.

3.3.1 Internal coordinates

Internal coordinates (interatomic distances, valence and torsional angles) can serve as

the coordinates that perform large amplitude motion. Typically, the remaining degrees

of freedom (DOF) of the system are optimized in such a way to minimize the energy for

a given internal coordinate.

For a set of ñ internal coordinates ρρρ the kinetic energy operator has a form [84]

T̂ρ = −
h̄2

2

ñ∑

r=1

ñ∑

s=1

[
j−1/2 ∂

∂ρr

[
j ·Grs ∂

∂ρs
[ j−1/2]

]]
(3.46)

where j is the determinant of the Jacobi transformation matrix j = det |Ji j|, Ji j = ∂xi /∂ρ j

and Grs is an element of the Wilson kinetic energy G-matrix [71]:

Grs =
3N∑

i=1

1
mi

∂ρr

∂xi

∂ρs

∂xi
(3.47)

The G matrix is symmetric, i.e., Grs = Gsr and can be regarded as corresponding to

reciprocal reduced masses. It is, like the terms j and j−1/2, coordinate dependent. It is

usually assumed that the coordinate dependence of the Jacobian j is much smaller than

the dependence of the individual Grs element and in that case Eq. (3.46) acquires a much

simpler form:

T̂ρ ' −
h̄2

2

ñ∑

r=1

ñ∑

s=1

∂

∂ρr

[
Grs ∂

∂ρs

]
(3.48)

By neglecting the kinetic energy coupling term Eq. (3.48) simplifies to

T̂ρ ' −
h̄2

2

ñ∑

r=1

∂

∂ρr

[
Grr ∂

∂ρr

]
(3.49)

while the assumption of a constant G-matrix leads to the expression

T̂ρ ' −
h̄2

2

ñ∑

r=1

ñ∑

s=1

Grs ∂2

∂ρs∂ρr
(3.50)
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Finally, both the "no kinetic coupling" (3.49) and "constant G-matrix" (3.50) approxi-

mations can be combined giving an expression equal to the expression for the kinetic

energy operator of orthogonal coordinates:

T̂ρ ' −
h̄2

2

ñ∑

r=1

Grr ∂
2

∂ρ2
r

(3.51)

The eigenvalues and eigenfunctions of the vibrational problems can be obtained by di-

agonalizing the grid representation of the vibrational Hamiltonians Eq. (3.46) - (3.51).

The derivation of the Fourier grid Hamiltonian method (FGH) in internal coordinates

was given by J. Stare and G. G. Balint-Kurti in 2003 [85] as a generalization of an al-

ready mentioned Fourier grid Hamiltonian method [83]. The procedure for solving the

vibrational problem in internal coordinates by using the FGH method is explained in

Appendix B.

The Reaction surface Hamiltonian approach (RSH)

Internal coordinates are often used as large amplitude coordinates that span the reaction

surface in the Reaction surface Hamiltonian (RSH) approach. The method was devel-

oped by T. Carrington and W. Miller and was first applied to the dynamics of HAT in

malonaldehyde [40]. It is based on the separation of the coordinate space into the re-

action surface space of dimensionality ñ (the ’system’) and the space of the harmonic

displacement from the surface (the ’bath’). Consequently, the potential is just the poten-

tial energy on the surface V0 of dimensionality ñ plus the vibrationally adiabatic energy

of the (3N − 6 − ñ) modes:

V (r) = V0(r) +
h̄
2

3N−6−ñ∑

i=1

ω2
i (r)Q2

i (3.52)

The whole Hamiltonian has a form:

Ĥ(r,Pr,Q,PQ) =
h̄
2

(Pr,PQ)


 Grr GrQ

GQr GQQ




 Pr

PQ


+V0(r) +

h̄
2

3N−6−ñ∑

i=1

ω2
i (r)Q2

i (3.53)

where r and Q denote the reaction surface and the local normal mode coordinates, Pr

and PQ their conjugate momenta and ωi is the frequency of the corresponding nor-

mal mode Qi. In addition, G denotes the G-matrix elements which can be treated as

coordinate dependent reduced masses. Here the G-matrix is partitioned into Grr ma-

trix of dimensions ñ× ñ, GrQ matrix of dimensions ñ× (3N − ñ) and GQQ matrix of

dimensions(3N − ñ)× (3N − ñ) to emphasize the kinetic couplings between the reaction

space coordinates (on-surface degrees of freedom (DOF)) through Grr, the couplings
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between the on-surface and off-surface DOF (GrQ), and the couplings between the off-

surface DOF (GQQ). If only the reaction space coordinates are strongly involved in

the studied process then the coupling between the on-surface and off-surface DOF are

neglected (GrQ = 0) and the Hamiltonian has a simpler form

Ĥ(r,Pr,Q,PQ) = Ĥr(r,Pr) + ĤQ(Q,PQ;r) (3.54)

Here ĤQ(Q,PQ;r) is only parametrically dependent on the reaction surface coordinates

r. Several Hamiltonians related to the Eq. (3.54) exists in the literature [17, 39, 86],

however only the formulation relevant for this thesis will be given in next section when

discussing collective large amplitude coordinates.

For treating the HAT dynamics in malonaldehyde using the RSH approach, T. Car-

rington and W. Miller [40] have chosen two O-H bond lengths (the bond being broken

and the bond being formed) as two large amplitude reaction surface coordinates. On

a potential characterized by barrier height of 4.3 kcal mol−1 they obtained the value of

60 cm−1 for the tunneling splitting in malonaldehyde (experimental value being 21.58

cm−1 [24, 87]). Three years later N. Shida, P. F. Barbara and J. E. Almöf [39] used the

same approach to treat the HAT in malonaldehyde but on a three dimensional reaction

surface spanned by the two O-H distances, and the O-O distance. On a potential with

a barrier hight of 7.1 kcal mol−1 they obtained the ground state tunneling splitting of 9

cm−1 . More importantly, the same group of authors applied the RSH method in their

investigation of the double HAT reaction in the formic acid dimer [17]. To span the 3D

reaction surface they used six internal coordinates r1,r2,r3,r4,R1 and R2 (Figure 3.4) to

form three symmetry adapted coordinates

ρ1 = (r1 − r3) + (r2 − r4)

ρ2 = R1 + R2

ρ3 = (r1 − r3) − (r2 − r4) (3.55)

In this way, the symmetric synchronous hydrogen atom movement (ρ1), the asymmet-

Figure 3.4: Formic acid dimer

37



Chapter 3. Fundamentals of vibrational spectroscopy 3.3. Large amplitude treatment

ric (asynchronous) hydrogen atom movement (ρ3 ) and the relative motion of the two

monomers (ρ2) have been explicitly included in the calculation. On a PES with the

barrier height of 11.8 kcal mol−1 the ground state tunneling splitting of 0.004 cm−1 was

predicted (the experimental value being 0.0125 cm−1 [14]).

3.3.2 Minimum energy path based methods

A class of methods for treating LAM is based on the notion of the reaction path. The

Intrinsic Reaction Path (IRP) [88] is the most widely used reaction path. It represents

the steepest descent path in the mass weighted Cartesian coordinates connecting the

saddle point and the minima on the PES. The IRP is obtained by solving the differential

equation
dX(s)

ds
= −
∇V
|∇V | (3.56)

starting from a geometry slightly displaced from the saddle point along the normal mode

with the imaginary frequency. In Eq. (3.56) X(s) is the mass-weighted geometry, s

is the path length and ∇V is a gradient of a full-dimensional potential. Nowadays,

efficient algorithms for following the reaction path have been developed [89, 90] and

implemented in the quantum chemistry packages [67, 68].

The Reaction path Hamiltonian approach

Additional quantum chemistry calculations are required in order to generate the Hamil-

tonian on basis of the minimum energy path (Reaction path Hamiltonian [91]). At a

sequence of points along the reaction path the vibrational analysis is performed. Hence,

at each point on the reaction path (Xiγ(s)) one defines vibrational modes by diagonaliz-

ing the force constant matrix KP(s) (Eq. 3.20) from which rotation, translation and the

vector that points along the reaction path have been projected out. Here, the projector P
differs from the one defined in Eq. (3.18) by an additional term which projects out the

reaction path direction, i.e., the projector P has a form

Piγ,i′γ′ =

√
mim′

i

M2
δγγ′ +

∑

αβα′β′

εαβγXiβ[I−1
0 ]αα′εα′β′γ′Xi′β′ + vt

iγ(s)vi′γ′(s)

The eigenvectors {Liγ,k}, k = 1, . . . ,3N − 7 of the projected force constant matrix KP

have frequencies {ω2
k} and, as described previously, define the normal coordinates or-

thogonal to the IRP.

The potential is approximated as the reaction path energy (V0(s)) plus a harmonic

expansion with respect to the orthogonal degrees of freedom (Qk) about the reaction
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path:

V (s,Q1, . . . ,Q3N−7) = V0(s) +
3N−7∑

k=1

ωk(s)2Q2
k

The kinetic energy of the system in terms of the coordinate set (s,Q1, . . . ,Q3N−7) and

their conjugate momenta (ps,P1, . . . ,P3N−7) has a rather complicated form. The classical

Hamiltonian is

H(ps,s,{Pk,Qk}) =
∑

k

(1
2

P2
k +

1
2
ωk(s)2Q2

k

)
+V0(s) +

1
2

[ps −
∑

k,l QkPlBk,l(s)]2

[1 +
∑

k QkBk,3N−6(s)]2
(3.57)

Central to this Hamiltonian are the coupling elements Bk,l in the numerator defined by

Bk,l(s) =
∑

i

∂Li,k(s)
∂s

Li,l(s)

which describe the coupling of the different (3N − 7) vibrational modes Qk along the

reaction path. The Bk,3N−6 elements in the denominator of Eq. (3.57) describe the direct

coupling of the reaction coordinate s and the (3N − 7) vibrational modes. These terms

also define the curvature of the reaction path κ(s) as

κ(s) =
[∑

k

Bk,3N−6(s)2
]

(3.58)

so one sees that the curvature is "portioned" among different vibrational modes. If the

frequency of the normal modes greatly depend on the reaction coordinate s, it is an

indication that the nature of the mode changes significantly along the reaction path.

In that case strong coupling between these modes and the path mode is expected and

this will manifest itself in the large contribution of these modes to the Bk,3N−6 and Bk,l

elements.

Although the RPH method has been used in the investigations of the vibrational

spectra of HAT systems [69, 92], the form of kinetic energy operator in Eq. 3.57 com-

plicates its application. Furthermore, it relays on one-dimensional dynamical model

where the motion along the reaction path determines the large amplitude motion. Often,

the IRP path is not a good representation of the actual reaction path and the dynamical

motion can deviate strongly from the IRP. The alternative approach for treating the HAT

systems would be the reaction surface Hamiltonian described in the previous section

where the reaction surface allows for dynamics and tunneling far away and beyond the

IRP.

3.3.3 Collective large amplitude coordinates

The collective large amplitude coordinates used here were first introduced by S. Takada

and H. Nakamura [93] and were later used in the work of K. Yagi et al. [16] to span the
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2D reaction surface (reaction plane) of malonaldehyde. They used the reaction plane as

a starting point for the construction of a full-dimensional potential of malonaldehyde.

The vectors that span the reaction plane are constructed on the basis of the known mass-

weighted geometries of the stationary points on PES corresponding to the right-hand

minimum (XR), the transition state (XTS) and the left-hand minimum (XL). For a system

with Nat atoms, two 3Nat dimensional vectors defined as

d1 =
XR − XL

|XR − XL|
(3.59)

d2 =
XC − XTS

|XC − XTS|
(3.60)

correspond to two large amplitude coordinates, with XC being the center geometry

XC =
1
2

(XR + XL) (3.61)

Given a molecular symmetry transformation i.e. permutation of atoms and rotation with

the property

T XR = XL (3.62)

the reaction plane vectors will transform as

T d1 = −d1, T d2 = d2 (3.63)

The All-Cartesian Reaction Plane (CRP) Hamiltonian

The all-Cartesian reaction surface Hamiltonian formulation has been originally intro-

duced by Ruf and Miller [86]. They have selected the Cartesian coordinates of the

reactive atom as reaction coordinates which span the reaction surface. All the other

DOF are expanded in a Taylor series up to second order around this surface. However, a

strong coupling between the resulting reactive coordinate and the DOF that describe the

motion of the heavy atoms in the case of HAT processes indicates that such a separation

might not give the simplest PES representation of the studied process [19]. K. Giese and

O. Kühn were first to introduce the reaction plane coordinates into the formalism of the

all-Cartesian reaction surface Hamiltonian and used it to describe the HAT reaction in

tropolone [19]. In their method the reactive DOF are given by the reaction plane spanned

by the vectors d1 and d2 and the remaining DOF {Q} are harmonically approximated

for each value of the d1 and d2. The full potential is approximated with the potential

V (d1,d2,Q) = V (d1,d2,0) +
N−2∑

i=1

∂V (d1,d2,Q)
∂Qi

∣∣∣∣∣
Q=0

Qi

+
1
2

N−2∑

i, j=1

∂2V (d1,d2,Q)
∂Qi∂Q j

∣∣∣∣∣
Q=0

QiQ j (3.64)
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The validity of the expansion given in Eq. (3.64) depends on the choice of Q = 0, but it

relies primarily on the fact that the reaction plane should span the relevant configuration

space. A reasonable assumption would be that in this case IRP should lie approximately

in the reaction plane. The root mean squared (RMS) difference between the IRP geome-

tries and the projection of the IRP on the reaction plane is given by

σ(2)(s) =
1√
Nat

∣∣∣∣∣M
−1/2(1 −

2∑

i=1

didt
i)(X(s) − XTS)

∣∣∣∣∣ (3.65)

If the RMS difference, σ(2)(s), between the IRP geometries and the geometries projected

onto the reaction plane is small, the IRP is incorporated in the reaction plane and the

reaction plane can serve as a good starting point for the construction of the full dimen-

sional PES as given in Eq. (3.64).

The choice of the Q modes

As emphasized in Ref. [19] the {Q} modes should be decoupled, thus chosen in

such a way that the off-diagonal elements in the third term of Eq. (3.64) are small. One

possible way of achieving this would be to use the eigenvectors of the Hessian at some

special geometry, for instance at the transition state geometry XTS:

KP = (1 −P)K(f)(XTS)(1 −P) (3.66)

where P is a projector onto the 8-dimensional space spanned by the d1, d2 and the three

rotational and the three translational directions. In this case the projector P differs from

the one defined in Eq. (3.18) by an additional term which projects out the reaction

directions. Here, the projector P has a form

Piγ,i′γ′ =

√
mim′

i

M2
δγγ′ +

∑

αβα′β′

εαβγXiβ[I−1
0 ]αα′εα′β′γ′Xi′β′ +

2∑

i=1

dt
i di (3.67)

(3N −8) eigenvectors Q j of the projected force constant matrix KP have non-zero eigen-

values. Selecting the transition state geometry as the reference geometry the eigenvec-

tors Q j classify as symmetric (+) or antisymmetric (-) with respect to the symmetry

transformation T .

Definition of the model coordinates

The potential V (d1,d2,Q1, . . . ,Q3N−8) is still full dimensional. In order to make the

HAT reactions in polyatomic molecules feasible, a smaller number ñ of relevant modes
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should be selected. In general, every linear combination of modes Q j, j = 1, . . . ,3N − 8

can be used as a relevant mode

qk =
N−8∑

j=1

ck jQ j, k = 1, · · · ,N − 8 (3.68)

The assembly of vectors (d1,d2,q1, . . . ,qñ) is called model coordinates [19] and the re-

maining (3N − 8 − ñ) DOF are called spectator modes. In the new coordinates the CRP

Hamiltonian is

Ĥ = −
1
2

2∑

i=1

∂2

∂d2
i

−
1
2

ñ∑

k=1

∂2

∂q2
k

+V (d1,d2,0) +
ñ∑

i=1

∂V (d1,d2,q)
∂qi

∣∣∣∣∣
q=0

qi

+
1
2

ñ∑

i, j=1

∂2V (d1,d2,d3,q)
∂qi∂q j

∣∣∣∣∣
q=0

qiq j +
1
2

3N−8−ñ∑

k=1

h̄ωk(d1,d2) (3.69)

and the spectator modes contribute to the potential only via their (d1,d2) dependent zero

point energies. The set of model coordinates is orthogonal thus resulting in a diagonal

form of a kinetic energy operator.

If the dynamical treatment is directed towards a specific frequency range, the rel-

evant model coordinates q are chosen in such a way to reproduce the motion along

targeted vibrational modes. As the vibrational assignment in the experimental spectra

are done in term of the minimum energy structure, a practical choice of relevant direc-

tions q would thus be to analyze the overlaps between the Q j modes and the normal

modes at one of the minima (Y(f)
k )

pk j = Y(f)
k ·Q j (3.70)

If an absolute value pk j is large, the corresponding Q j mode is relevant and should

be included as a model coordinate. In passing note that the vectors corresponding to

model coordinates have to be either symmetric or antisymmetric with respect to the

transformation T and therefore the full normal modes of the minima (Y(f)
k ) can not be

chosen directly as modes q since they don’t have the required symmetry properties. For

instance, the normal modes of the right minima (Y(f)
k,R )will transform as

T Y(f)
k,R = −Y(f)

k,L or T Y(f)
k,R = Y(f)

k,L

According to the Ref. [19] for a normal mode Y(f)
k the model coordinate qk should be

defined as qk = Q j for that Q j with the largest overlap |pk j|. In the case when a certain

mode Y(f)
k has large overlaps with more than one Q j mode, a linear combinations of these

modes should be made according to Eq. (3.68).

It should be also emphasized that the modes qk are arbitrary in a sense that any

linear combination of qk modes of the same symmetry is equivalent and must give the
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same physical results. However, the so-called reduced normal modes represent a unique

set of coordinates. They are defined as eigenvectors of the Hessian at the minimum or

transition state geometry projected onto the (ñ + 2) space spanned by the d1, d2 and ñ qk

vectors (model coordinates):11

R K(f)(XMIN)R (3.71)

where K(f) is a full force constant matrix at the minima geometry. The reduced normal

coordinates will be denoted as Y([̃n+2]D)
k where (ñ+2) is the dimensionality of the reduced

space. According to Ref. [19] for setting the Hamiltonian, it is most convenient to

use model coordinates for they retain the required symmetry properties with respect to

the symmetry transformation T . All physically relevant quantities, however, should be

related to the reduced normal modes.

The reduced normal modes (Y([̃n+2]D)
k ) can be further investigated by analyzing their

connection with the full normal modes of the minima (Y(f)
j ) by inspecting their overlaps

p̃ jk:

p̃ jk =
(

Y(f)
j

)T

BY([̃n+2]D)
k (3.72)

where B is a 3Nat×(ñ+2) matrix that transforms from the reduced space (d1,d2,q1, · · · ,qñ)

to the full 3Nat dimensional space (d1,d2,Q):

B = (d1 d2 q1 · · ·qñ) (3.73)

and vectors d1,d2,q1, . . . ,qñ that span the reduced space constitute its columns. The

relation between the reduced and full normal modes of the minima are necessary in

order to establish the connection to the experimental assignment in the full-dimensional

space.

"Mobile" coordinates

The second set of collective large amplitude coordinates treated in this thesis and yield-

ing the kinetic energy in a diagonal form is due to Hirschfelder and co-workers [94, 95,

96]. This set of coordinates is based on the "mobile model".

The mobile is constructed as follows: The coordinate SN is a vector joining the center

of mass of the system to the origin of the space fixed system:

SN = M−1/2
N∑

j=1

m jR j (3.74)

where R j is a position of the particle in a space fixed system, m j is a mass of the j-th

particle and M is the mass of the molecule M =
∑Nat

j=1 m j. The other (Nat − 1) coordinates

11the projector has a formR =
∑2

i=1 dt
i di +

∑ñ
k=1 qt

iqi
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Figure 3.5: One possible mobile for a three and four particle system. The solid circles

are particles, and open circles are center of mass for a group of particles.

are vectors joining together the center of mass of groups of particles. For instance, if

Rc(A) is a center of mass and MA is the mass of the particles in a group A

Ma =
∑

α⊂A

mα, Rc(A) =
∑

α⊂A

mαRα/MA (3.75)

then the coordinate joining the group A to group B will be

Si = (MAMB/(MA + MB))1/2[Rc(A) − Rc(B)] (3.76)

If the group A consists of a single particle, then MA and Rc(A) are just the mass and the

coordinate of the particle A. One of many possible mobiles for a three and a four particle

system is presented in Figure 3.5.

The coordinates Si yield the kinetic energy operator in the diagonal form. Accord-

ing to Ref. [96] new sets of coordinates (S′
1, . . . ,S

′
(N−1),S

′
N) can be generated by unitary

transformations (rotations, reflections) of a given set of coordinates (S1, . . . ,S(N−1),SN)

obtained from the mobile. The derivation of tailored coordinates for treating HAT reac-

tions will be given in section 4.3.3.
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Chapter 4

Results and discussion

4.1 Electronic structure calculations

4.1.1 Acetylacetone

The potential energy surface for hydrogen atom transfer in acetylacetone was explored

by using second and fourth order Moller-Plesset perturbation theory (MP2, MP4) and

density functional theory (DFT) with the B3LYP [97] and the B1LYP [98] exchange-

correlation functionals. The geometries relevant to the HAT reaction in ACAC were

optimized and the harmonic vibrational analysis has been performed in order to clas-

sify each geometry as a minimum, a transition state or a higher order saddle point. Six

stationary points that are relevant for the HAT dynamics in ACAC are shown in Figure

4.1. The minimum energy structure of ACAC in the gas phase is confirmed to be the

syn-enol isomer of ACAC with the Cs point group symmetry (denoted as SYN) while

the TS3 structure is a first-order saddle point and represents the transition state for the

intramolecular HAT reaction between the two equivalent syn-enol isomers. The barrier

height for intramolecular HAT in ACAC (∆E1 in Table 4.1) was calculated as the energy

difference between the energies of the TS3 and SYN geometries optimized on various

levels of theory. This was done in order to critically examine various quantum chem-

ical methods and to identify the level of theory which would make the HAT dynamics

investigation in ACAC possible by offering the best compromise between the reliability

of the results and the computational time. The reference coupled cluster CCSD(T)/cc-

pVTZ//MP2(FC)/cc-pVTZ barrier height was evaluated as 3.03 kcal mol−1 . Lower lev-

els of theory predict the HAT barriers in the range between 2.15 kcal mol−1 (B3LYP/6-

311+G(2d,2p)) and 3.41 kcal mol−1 (MP4/6-311+G(2d,2p)//MP2/6-311+G(2d,2p). It

has been shown that the B3LYP functional underestimate the HAT barrier for it over-

estimates the electron correlation effects, but that the B1LYP functional with a mod-

erate 6-311G(d,p) basis set gives a barrier which is only 0.2 kcal mol−1 lower than the
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Figure 4.1: Structures relevant for the proton transfer dynamics in ACAC. Upper

panel: the global minimum structure (SYN), the local minimum of the anti-enol ACAC

(ANTI), and the transition state for the rotation of the proximal methyl group (TS1).

Lower panel: the transition states for the rotation of the distal methyl group (TS2), HAT

reaction (TS3) and syn-anti isomerization (TS4).

Table 4.1: Classical energy barriers for proton transfer (∆E1) and rotation of the distal

methyl group (∆E2) calculated on various levels of theory.

Level of theory ∆E1 / kcal mol−1
∆E2 / kcal mol−1

B3LYP/6-311+G(2d,2p) 2.15 0.08
B1LYP/6-311G(d,p) 2.79 0.13
B1LYP/6-311+G(d,p) 2.79 0.09
B1LYP/6-311++G(d,p) 2.79 0.09
B1LYP/6-311+G(2d,2p) 2.62 0.11
B1LYP/6-311++G(2d,2p) 2.63 0.12
MP2(FC)/6-311G(d,p) 2.77 0.25
MP2(FC)/6-311+G(d,p) 2.64 0.26
MP4(FC)/6-311+G(d,p) 3.01 0.24
MP2(FC)/6-311G(2d,2p) 3.20 0.35
MP2(FC)/6-311+G(2d,2p) 2.91 0.27
MP2(FC)/6-311++G(2d,2p) 2.91 0.27
CCSD(T)/cc-pVTZ 3.03 0.27
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CCSD(T) result. Hence, it represents the best candidate for the treatment of dynamics.

The wide range of values for the barrier height seen in the Table 4.1 is typical for the

HAT reactions and indicates how significant the proper inclusion of electron correlation

effects is when reproducing the barriers for the HAT reactions [31].

One also notices that the TS3 structure and the minimum energy structure SYN

differ in the orientation of the methyl groups relative to the chelate ring. The inter-

nal rotation of the two methyl groups was investigated and as a result two first order

saddle points on the ACAC PES (denoted as TS1 and TS2) were located and identi-

fied as transition states for the rotation of the proximal and of the distal methyl group.

The TS2 structure is central for further investigations for it exhibits the same orienta-

tion of the methyl groups as the TS3 transition state for the HAT reaction. The en-

ergies of the structure TS2 relative to the minima structure SYN (barrier height for

the rotation of the distal methyl group) at various level of theory are given in Table

4.1 as ∆E2. At the CCSD(T)/cc-pVTZ//MP2(FC)/cc-pVTZ level of theory the barrier

height of 0.27 cm−1 was evaluated, while lower levels of theory give values in the range

between 0.08 kcal mol−1 (B3LYP/6-311+G(2d,2p)) and 0.27 kcal mol−1 (MP4(FC)/6-

311+G(2d,2p)//MP2(FC)/6-311+G(2d,2p)). The TS1 structure represents the transition

state for the rotation of the proximal methyl group. The barrier height for the rotation

of the proximal methyl group is found to be 0.25 kcal mol−1 at MP2(FC)/6-311G(d,p)

level of theory. These results are consistent with the NMR spin lattice relaxation time

measurements where the existence of two energetically distinct methyl groups with hin-

dering potentials of the order of 180 and 590 K (equivalent to 0.35 and 1.17 kcal mol−1 )

was established [33].

Table 4.2 confronts the structural parameters for the most relevant structures (con-

formations SYN, TS1 and TS2) obtained at the MP2/6-311G(d,p) level of theory with

the available X-ray [48] and electron diffraction data [46]. The difference in the experi-

mental structures complicates the comparison with the theory. Yet, it can be concluded

that the experimental minima structures resemble more the TS2 than the SYN struc-

ture. For instance, the experimental oxygen-oxygen distance is 0.012 Å shorter than

the same distance calculated for the SYN structure, but only 0.004 Å longer than the

TS2 oxygen-oxygen distance. Geometrical parameters for the SYN structure and TS3

structure calculated on various levels of theory are confronted in Table 4.3. All methods

predict the shortening of the O-O donor acceptor distance, the shortening of the C-O

donor distance and the elongation of the C-O acceptor distance during the HAT reaction

(transition from a SYN structure to TS3 structure). When compared to the experimen-

tal structures in Table 4.2 one notices that the largest deviation from the experimental

values occurs for the geometrical parameters of the O-H· · ·O fragment. While the MP2
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Table 4.2: Geometrical parameters of the enol-ACAC calculated at the MP2(FC)/6-

311G(d,p) level of theory in comparison with experimental geometries [48, 46]. The

distances are given in Å, and the angles are given in degrees.

Bond/Angle SYN TS2 TS1 X-ray ED
O7-O8 2.548 2.531 2.535 2.535 2.512
O8-H11 0.996 1.000 1.000 1.030 1.049
C1-C2 1.451 1.447 1.448 1.412 1.430
C1-C3 1.370 1.372 1.372 1.338 1.382
C2-C5 1.511 1.513 1.512 1.478 1.493
C3-C6 1.495 1.495 1.502 1.554 1.525
C2-O7 1.244 1.246 1.246 1.238 1.243
C3-O8 1.328 1.325 1.323 1.331 1.319
C2-C1-C3 120.21 119.90 120.05 122.2 119.7
C1-C2-O7 121.90 121.86 121.91 120.5 123.0
C1-C3-O8 122.44 122.25 122.18 122.8 121.0
C1-C2-C5 117.98 119.21 123.56 118.1
C1-C3-C6 124.00 123.98 123.56 124.1
O7-H11-O8 151.14 151.77 151.75
C3-O8-H11 104.47 104.32 104.36
energy /kcal mol−1 0 0.25 1.45

Table 4.3: The geometrical parameters of the minimum (asym) and of the transition

structure TS3 (sym). All the distance are given in Å.

Level of theory OOasym OHasym CODasym COAasym OOsym COsym

B3LYP/6-311+G(2d,2p) 2.534 1.004 1.325 1.246 2.362 1.284
B1LYP/6-311G(d,p) 2.553 0.997 1.325 1.241 2.359 1.281
B1LYP/6-311+G(d,p) 2.556 0.997 1.326 1.242 2.358 1.283
B1LYP/6-311++G(d,p) 2.556 0.998 1.326 1.242 2.358 1.283
B1LYP/6-311+G(2d,2p) 2.545 0.998 1.325 1.242 2.359 1.282
B1LYP/6-311++G(2d,2p) 2.545 0.998 1.325 1.242 2.359 1.282
MP2(FC)/6-311G(d,p) 2.548 0.996 1.328 1.244 2.354 1.283
MP2(FC)/6-311+G(d,p) 2.547 0.998 1.330 1.247 2.354 1.285
MP2(FC)/6-311G(2d,2p) 2.553 0.995 1.330 1.246 2.361 1.285
MP2(FC)/6-311+G(2d,2p) 2.548 0.998 1.331 1.249 2.361 1.287
MP2(FC)/6-311++G(2d,2p) 2.548 0.998 1.331 1.249 2.361 1.287
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and B1LYP structures are consistent, the B3LYP structure differs considerably and pre-

dicts an enol geometry closer to the solid state experimental value. Taking into account

that the computations have been performed on isolated molecules and that the MP2 ge-

ometries are usually in good agreement with the gas phase experimental results, it is

reasonable to consider the B3LYP results as less reliable.

During the geometrical optimization for large oxygen-oxygen distances the bridg-

ing hydrogen atoms moves out of the chelate ring plane and the syn-enol structure

transforms into the anti-enol structure shown in Figure 4.1. The anti-enol isomer also

has a planar structure with Cs point-group symmetry. The structure was determinated

at the MP2(FC)/6-311+G(d,p), MP4(FC)/6-311+G(d,p)//MP2(FC)/6-311+G(d,p) and at

the B1LYP/6-311+G(d,p) levels of theory. The energy of an anti-enol structure relative

to the syn-enol structure was evaluated to be 14.78 kcal mol−1 , 14.35 kcal mol−1 and

16.21 kcal mol−1 at the three levels of theory, respectively. The transition state for

the syn-anti isomerization (TS4) with one imaginary frequency was determined at the

same levels of theory. The structure was found to be a non-planar structure with C1

point-group symmetry and a large isomerization barrier of 18.35, 17.71 and 20.57 kcal

mol−1 at the MP2(FC)/6-311+G(d,p), MP4(FC)/6-311+G(d,p)//MP2(FC)/6-311+G(d,p)

and at the B1LYP/6-311+G(d,p) levels of theory was found. In the Cs symmetry sub-

space a second order saddle-point (SOSP) with two imaginary frequencies was located;

one is an in plane A′ mode (1324i cm−1 ) while the other is out-of-plane A′′ mode (1129i

cm−1 ). The result proves the non existence of a true transition state for syn-anti isomer-

ization in the Cs symmetry subspace. The energy of the SOSP structure relative to the

SYN structure is calculated as 44.82 kcal mol−1 at the MP2(FC)/6-311G(d,p) level of

theory.

The results presented here uncover the complexity of the PES of the ACAC. The

full-dimensional PES of the enol-form is characterized by 18 equivalent but permuta-

tionaly distinct global minima, SYN (for each of the two hydrogen H11 positions there

are 9 cyclic permutation of the methyl group atoms), 36 ANTI structures, 18 TS2 first

order saddle points and 9 TS3 saddle points.

Intrinsic reaction path calculations

Next, we consider the minimum energy paths in mass-weighted Cartesian coordinates

(Intrinsic Reaction Path (IRP)) for the syn-anti isomerization, for the methyl rotation

and for the intramolecular HAT reaction. They were found at the MP2(FC)/6-311G(d,p)

level of theory using the Gonzales-Schlegel second order algorithm [90] as implemented

in Gamess package [68]. The calculations are repeated by using DFT theory with the

B1LYP and B3LYP functionals and consistent results were obtained.
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The IRP for the syn-anti isomerization connects the syn-enol isomer (SYN) and

the anti-enol isomer (ANTI) via the TS4 structure as schematically illustrated in Fig-

ure 4.2. Two major geometrical changes occurring during the IRP involve the change

of the H11O8C3C1 and O7C2C3O8 dihedral angles. During the IRP the dihedral angle

H11O8C3C1 changes it value from 0◦ at the syn-enol structure via 106◦ at TS4 to 180◦ at

the anti-enol structure. The dihedral angle O7C2C3O8 changes its value from 0◦ at the

minimum to 29.7◦ at TS4 .

The IRP for the internal rotation of the distal methyl group connects two equivalent

SYN structures of Cs symmetry (SYN1 and SYN1’ in Figure 4.3) over a first order

saddle point TS2 of Cs symmetry. All other non-stationary points on the IRP have C1

symmetry. During the internal rotation the internuclear distances and bond angles in the

enol cycle change no more than 0.017 Å (O7O8 distance) and 0.63◦ (O7H1108 angle). It

should also be stressed that as a result of a local C3v symmetry of the methyl group, there

are three equivalent minima on the methyl rotation reaction path and three corresponding

transition structures [52].

The IRP for the hydrogen atom transfer reaction in ACAC connects the SYN1 and

SYN2 structures as shown in Figure 4.2. Compared to the two previous cases it rep-

resents a much more complicated path. The IRP search always starts from a geometry

slightly displaced form the transition state along the normal coordinate with imaginary

frequency. In the case of ACAC the transition state for HAT (TS3) has a C2v symmetry

and the normal mode containing the imaginary frequency has a B2 symmetry. Due to

symmetry conservation [99, 100] the IRP starting from TS3 in a direction parallel to the

ANTI

TS4

SYN1 SYN2

TS3

14.4

17.7

0.0 0.0

3.0

Figure 4.2: A schematic representation of reaction paths for the intramolecular HAT

and sin-anti isomerization in ACAC. The relative energies are calculated at MP4/6-

311+G(d,p)//MP2/6-311+G(d,p) level of theory.
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B2 mode ends in another transition state TS2, the one for the rotation of the distal methyl

group (Figure 4.3). At TS2 there is a branching possibility for the IRP giving two equiv-

alent Cs structures (SYN1 and SYN1’) (see solid line path in Figure 4.3). However, since

the force constant corresponding to the methyl rotation has a positive sign at TS3 and a

negative sign at TS2 there must be a point on IRP between the TS3 and TS2 where the

sign change occurs. This point is called the valley-ridge inflection (VRI) point [101] and

represents a point where an IRP changes its geometrical character on PES from a valley

to a ridge (see Figure 4.3). Due to the presence of the VRI point the concept of the IRP

breaks down and is substituted by the so-called ”bifurcating reaction path” connecting

the VRI and the SYN1 and SYN1’ structures [102, 103]. To trace the bifurcating reac-

tion path the approach of Taketsugu et al. [100] was followed. The Gonzales-Schlegel

algorithm as implemented in Gamess package was used with a step size of 0.01 bohr

amu −1/2 and a cut-off for the norm of the mass weighted gradient tangent of 0.00005

Eh bohr−1 amu 1/2. All other parameters were kept at their default values [68]. To lo-

cate the VRI point, the normal mode analysis along the IRP was performed. Prior to

the frequency calculation all the structures were rotated in order to fulfil the Eckart

conditions with respect to the reference C2v structure. The VRI point was identified as a

point where the eigenvalue of the Hessian orthogonal to the gradient direction has a zero

eigenvalue and was located at q2 = 1.34 a0 amu−1/2 (TS2 structure being at q2 = 1.5 a0

amu−1/2). The geometrical parameters of a VRI structure are presented in Table 4.4. By

comparing them to the geometrical parameters of the TS2 structure it can be concluded

Figure 4.3: A sketch of the difference between the bifurcating reaction path (doted line)

and the IRP (solid line). The IRP calculation proceeds from TS3 to TS2 and from TS2

to SYN1. The valley-ridge inflection point (VRI) is the point at which the two paths

diverge.
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Table 4.4: Geometrical parameters of the valley-ridge inflection point (VRI) calculated

at the MP2(FC)/6-311G(d,p) level of theory. The distances are given in Å, and the angles

are given in degrees. The energy difference, ∆E, is given with respect to the minimum

syn-enol structure

Bond/Angle VRI Bond/Angle VRI Bond/Angle VRI
O7-O8 2.512 O8-H11 1.003 C1-C2 1.446
C1-C3 1.373 C2-C5 1.512 C3-C6 1.495
C2-O7 1.247 C3-O8 1.324 C2-C1-C3 119.5
C1-C2-O7 121.80 C1-C3-O8 122.11 C1-C2-C5 119.61
C1-C3-C6 124.27 O7-H11-O8 152.45 C3-O8-H11 104.12
Energy/ Eh -344.9394671 ∆ E/kcal mol−1 0.28

that these two structures are geometrically very close. At this stage the H-atom transfer

has been completed (the O-H distance of VRI is 1.004 Å and at the minimum structure

0.996 Å ) and the only difference is a shorter oxygen-oxygen distance in VRI (2.506 Å

compared to 2.531 Å in TS2). The VRI and TS2 structure are also energetically very

close, the energy difference being only 0.06 kcal mol−1 . These finding indicate that the

bifurcating path (doted line in Figure 4.3) rapidly converges to the IRP for the rotation

of the distal methyl group which connects the TS2 and one of the SYN structures. Also,

our analysis suggests that although the HAT reaction and the distal methyl rotation are

coupled they are not synchronised. The HAT reaction is triggered only after the methyl

groups have reached an eclipsed conformation.

The HAT reaction involves a large flow of electron density in the chelate ring, but the

electron density on the methyl groups remains almost unchanged. In Figure 4.4 a con-

tour plot of the correlated electron density in the SYN and TS2 structures is presented.

����� � ���

Figure 4.4: The electron density distributions in SYN and TS2 conformers of ACAC at

an isosurface value of 0.3 e Å−3. Calculated at the MP2/6-311G(d,p) level of theory.
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During the rotation of the methyl groups, the charge density in the O-H· · ·O region has

been changed in a very limited extent. This is also consistent with the non-synchronous

mechanism, while the synchronised mechanism would imply a large change of electron

density in the HAT moiety. This findings allow to conclude that the HAT reaction in

ACAC can be treated by fixing the methyl groups in one of the eclipsed conformations

which in turn provides a remarkable simplification when treating the hydrogen atom

tunneling dynamics.
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4.1.2 The formic acid dimer

As in a case of ACAC, a number of quantum chemistry methods have been used for the

description of electronic structure of FAD. These include second order Möller-Plesset

perturbation theory (MP2), coupled cluster theory (CC) and density functional theory

(DFT) with the B3LYP exchange-correlation functional [97]. These methods have been

used to optimize the geometries of the FAD stationary points. It was confirmed that

the structure of the global minima of FAD corresponds to a C2h geometry while the

transition state for the HAT in FAD has a D2h symmetry [62, 59]. Table 4.5 compiles

the geometrical parameters for the C2h structure together with the barrier height for the

HAT calculated as an energy difference between the D2h and C2h structures. The refer-

ence barrier was estimated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level of

theory as 7.89 kcal mol−1 . At the MP2/aug-cc-pVXZ, X=2,3,4 level of theory one no-

tices that the O· · ·O and O-H distances at the minimum structure are shorter than the

experimental values. Therefore, at these levels of theory, the strength of the H-bond

has been overestimated which results in a barriers lower than the reference couple clus-

ter value. In the second part of Table 4.5 the DFT results with the B3LYP functional

and various basis sets are compiled. In particular, the performance of two basis sets,

the B3LYP/6-31+G(d) and B3LYP/6-311++G(3df,3pd), were interesting since both sets

have been used in previous quantum dynamical computations of the ground state tunnel-

ing splitting in FAD [18, 42]. There exists a large difference in the optimized geometries

between these two sets. For instance, the two geometries differ in the O· · ·O distance for

0.052 Å and the corresponding barrier heights differ by more than 1.8 kcal mol−1 , being

8.37 and 6.51 kcal mol−1 at the B3LYP/6-31+G(d) and B3LYP/6-311++G(3df,3pd) lev-

els of theory. Interestingly, the B3LYP/6-31+G(d) value is very close to the reference

coupled cluster barrier of 7.89 kcal mol−1 . However, taking into account the modest size

of the basis set and an incomplete treatment of the electron correlation effects through

the DFT functional such a good agreement with the coupled cluster result is most prob-

able due to favourable cancellation of errors. The influence of a basis set superposition

error (BSSE) on the DFT barriers and geometries was investigated by using the Boys

and Bernardi counterpoise method [104, 105] as implemented in Gaussian package [67].

The values are presented in Table 4.5 and marked with an asterisk. Large basis set su-

perposition errors (BSSE) have been found and shown to lower the energy barrier for

4.03, 1.23, 0.8 and 0.57 kcal/mol at the B3LYP/6-31G(d), 6-31+G(d), 6-31G(d,p) and

6-311++G(3df,3pd) levels, respectively. As expected the errors are larger in the case

of small basis sets, and get smaller by using larger basis sets. Also, the corrected in-

tramolecular distances (for instance O· · ·O and O· · ·H distances) are always longer than

the corresponding uncorrected values. Once more, the difference is larger for small basis

54



4.1.
E

lectronic
structure

calculations
C

hapter
4.

R
esults

and
discussion

Table 4.5: Comparison of calculated geometrical parameters (Å and degrees ) for FAD in the gas phase obtained at various levels of

theory with experimental data [106, 107]. Energy barriers to HAT are given in kcal mol−1. The values marked with an asterisk are the

BSSE corrected values for the geometrical parameters and HAT barriers.

level of theory O· · ·O C-Od C-Oa O-H O· · ·H O-C-O C-O-H O-H-O ∆E

MP2/

cc-pVDZ 2.677 1.318 1.228 1.001 1.676 126.8 108.4 179.9 7.38

cc-pVTZ 2.652 1.311 1.222 0.999 1.652 126.5 109.4 179.5 6.61

cc-pVQZ 2.659 1.309 1.219 0.997 1.662 126.4 109.6 179.9 6.94

aug-cc-pVDZ 2.685 1.326 1.233 1.001 1.683 126.3 109.2 179.7 7.76

aug-cc-pVTZ 2.660 1.313 1.224 1.000 1.660 126.3 109.5 179.9 6.71

aug-cc-pVQZ 2.660 1.310 1.220 0.998 1.662 126.3 109.6 179.6 6.88

6-311+G(d,p) 2.714 1.319 1.222 0.990 1.725 126.3 108.7 178.1 8.79

B3LYP/

6-31 G(d) 2.698 1.314 1.224 1.005 1.694 126.8 110.2 178.7 7.71
∗6-31 G(d) 2.728 1.318 1.222 1.003 1.726 126.5 109.7 179.1 3.68

6-31+G(d) 2.721 1.318 1.225 1.003 1.719 126.2 110.6 177.0 8.37
∗6-31+G(d) 2.732 1.318 1.225 1.003 1.731 126.3 110.6 177.6 7.14

6-31 G(d,p) 2.650 1.310 1.226 1.007 1.642 126.7 110.5 178.9 5.41
∗6-31 G(d,p) 2.679 1.314 1.227 1.005 1.675 126.2 110.9 177.9 4.61

6-311++G(3df,3pd) 2.669 1.308 1.217 1.001 1.668 126.3 110.9 178.4 6.51
∗6-311++G(3df,3pd) 2.675 1.308 1.217 1.001 1.675 126.3 110.9 178.3 5.94

CCSD(T)/

aug-cc-pVTZ 2.660 1.313 1.224 1.000 1.660 126.3 109.5 179.9 7.89

Exp. 2.696 1.320 1.217 1.033 1.72 126.2 108.8
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set. The intramolecular parameters are not affected by the BSSE.

Intrinsic reaction path calculation

The minimum energy path in mass-weighted Cartesian coordinates (Intrinsic Reaction

Path (IRP)) for the intramolecular HAT reaction in FAD was traced at the B3LYP/6-

31+G(d) and B3LYP/6-311++G(3df,3pd) levels of theory using the Gonzales-Schlegel

second order algorithm [90] as implemented in Gamess package [68]. A step size of

0.1 bohr amu1/2 was used. The IRP connects the two equivalent C2h structures a the D2h

structure. Figure 4.5 shows the variation of selected geometrical parameters along the

IRP calculated at the B3LYP/6-311++G(3df,3pd) level of theory. As shown in Figure

4.5 the IRP could be divided in three fragments: in the first part (-3.3 < s ≤ -0.8) the

oxygen atoms move to bring the formic acid (FA) monomers closer together; in the

second part (-0.8 ≤ s≤ 0.8) the hydrogen atoms are transfered from the oxygen donors

to oxygen acceptors. This part is also accompanied by exchange of the C-O donor to

a C=O acceptor bonds and vice versa. In the third part (0.8 ≤ s < 3.3) the formic

acid (FA) monomers move apart. Furthermore, hydrogen transfer is accompanied with

the wagging of the CO2 groups in the FA monomers. In Figure 4.5 this is shown as a

variation of an y coordinate of the FA monomer center of mass (y axis coincidence with
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Figure 4.5: Left y axis: variations in geometrical parameters (in Å ) along the IRP for

the intramolecular H atom transfer in FAD (triangles and circles). Right y axis: variation

in the center of mass of the formic acid (FA) fragments in the dimer (squares).
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the b axis in Figure 3.1). At the transition state (D2h) the y coordinate of the monomers

center of mass is zero. Yet, during hydrogen transfer the monomers slide in opposite

direction and the position of monomer center of mass changes for almost 0.05 Å . These

features of the IRP indicate that the HAT process in FAD can not be treated by a low

dimensional dynamical model.
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4.2 Normal mode based approaches

4.2.1 Acetylacetone

Perturbative approach

The harmonic frequencies of ACAC and its deuterated analogues calculated at MP2/6-

311G(d,p) and B1LYP/6-311G(d,p) level of theory are presented in Tables 4.6 - 4.8.

The anharmonic frequencies were calculated at the B1LYP/6-311G(d,p) level of theory

by using the second-order perturbative approach of V. Barone [74, 75] as implemented

in Gaussian 03 quantum chemical package [67] (see section 3.2.2). To the frequency

with the highest intensity, a intensity of 100 has been assigned and all other intensities

were expressed relative to it. To facilitate the comparison with previous studies, the

assignment of the spectra according to the work of Tayyari et al. [29] was retained.

The largest anharmonicity in the IR spectrum of the SYN-ACAC conformer is ob-

served for the OH-stretch fundamental. The harmonic frequency of the OH-stretch was

calculated as 3192 cm−1 at the MP2/6-311G(d,p) level and as 3160 cm−1 at the B1LYP/6-

311G(d,p) level of theory. The inclusion of anharmonic effects leads to a red shift of

the OH-stretch frequency of 394 cm−1 i.e. to the value of 2766 cm−1 . The value of 2766

cm−1 is in good agreement with the experimental value of 2800 cm−1 for the OH band

maximum. In the case of the ACAC deuterated analog in which the bridging hydrogen

atom was deuterated (d2-ACAC in Table 4.7), the harmonic value of the OD stretching

frequency was red shifted for 279 cm−1 to the value of 2027 cm−1 . Again, an excellent

agreement with the experimental value is found. In the case of deuterationed methyl

hydrogens (d6-ACAC in Table 4.8) the anharmonic OH-stretch fundamental is located

at 2680 cm−1 . This value is≈ 80 cm−1 above the center of the experimental band. How-

ever, it should be noted that the OH-stretch band has a bandwidth of a few hundred

wavenumbers and the experimental assignment of 2761 cm−1 is only approximative. On

average, the deviation of the calculated anharmonic spectra from experiment is 0.96 % in

the case of ACAC, 0.82 % in the case of d2-ACAC and 0.86 % in the case of d6-ACAC.

Also, the presented harmonic intensities are comparable with the experimental values,

the largest discrepancy being the one for the OH stretch fundamental in d6-ACAC.

The influence of the distal methyl group rotation on the vibrational spectra of ACAC

was inspected by calculating the anharmonic vibrational frequencies of the TS2 con-

former of ACAC. The results are compiled in Table 4.9. The anharmonic OH stretch

fundamental is red shifted from its harmonic value by more than 604 cm−1 and is located

at 2487 cm−1 . The source of such a large anharmonic shift can be detected by inspection

of the anharmonic correction matrix, χi j, (see Eq. (3.41)). Four modes mix strongly with
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Figure 4.6: Harmonic (solid line) and anharmonic (dotted line) vibrational spectra of

ACAC for various structures on the IRP for the distal methyl rotation.

the OH stretch (ν6) and contribute to the red shift of the OH stretch fundamental. These

are the C=C-C=O stretch + OH bend mode (ν9) characterized by χTS2
6,9 = −27.5 cm−1 , the

C=O stretch + OH bend mode (ν10) with χTS2
6,10 = −33.8 cm−1 , the C=O stretch + C=C-

C=O stretch + OH bend mode (ν18) with χTS2
6,18 = −52.8 cm−1 and one low frequency mode

the O· · ·O stretching (ν34) with χTS2
6,34 = −10.0 cm−1 . Compared to the corresponding an-

harmonic frequency of the SYN conformer the anharmonic OH stretch fundamental of

the TS2 conformer is red shifted by 280 cm−1 . This large difference suggests that the

extreme broadness of the OH stretching band may be caused by rotation of the distal

methyl group and the coexistence of the different conformers of ACAC in the gas phase.

In Figure 4.6 the harmonic (solid lines) and the anharmonic (doted line) fundamental

transitions of ACAC calculated for the SYN, TS2 conformers and for a number of non-

stationary points on the IRP for the rotation of the distal methyl group are shown. The

intensities corresponding to different structures are scaled according to the Boltzmann

distribution at 298.15 K. The inclusion of the anharmonic effects lead to the red shift

of the OH stretch band by more than a 500 cm−1 . More importantly, the perturbational

approach to the anharmonic spectra reproduced to a large extent the experimental band-

width of the OH stretch. At this point it must be emphasized that a great care must be

taken when interpreting the results of a perturbational approach. Namely, a large value

for an anharmonic correction matrix element indicates a strong anharmonic coupling

between a corresponding vibrational modes. In this case an approach in which a poten-

tial is approximated with the Taylor expansion which is truncated after the fourth order
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is inadequate. However, a direct solution of the vibrational Schrödinger equation on a

potential spanned by the corresponding normal modes could overcome the deficiency

of a perturbational approach. The results of a reduced dimensionality approach and

the comparison with the results of the perturbative approach will be given in the next

section.

Next, the focus is on the 1700-1000 cm−1 region of the ACAC spectrum. As men-

tioned previously, it is the region of the enol ring modes. The harmonic analysis predicts

five modes in this region made up from C=O, C-O, C=C, C-C stretchings and the OH

in plane bending. In the C=O and C=C stretch region of the IR spectra of ACAC and

d6-ACAC in the gas and liquid phase only a single band has been reported at ≈ 1620

cm−1 . However, two transitions are observed in the deconvoluted IR spectra of ACAC

and d6-ACAC which were attributed to a superposition of (i) an asymmetric C=C-C=O

stretch and OH in-plane bending at 1642 cm−1 and (ii) the C=O stretching coupled to

OH in-plane bending at 1624 cm−1 (Table 4.6). At low temperatures the infrared spec-

trum of ACAC shows three distinct bands [56] (see also Figure 2.3) while only two

components can be seen in the d2-ACAC spectrum at all temperatures. Based on their

harmonic mode analysis Tayyari at al. [29] attributed this transitions to the coexistence

of TS2 and SYN conformers of ACAC. Namely, they attributed two higher frequency

modes (at 1635 cm−1 and 1600 cm−1 ) to the asymmetric C=C-C=O stretch + OH in plane

bend of SYN and TS2 conformers of ACAC and a lower frequency component (1575

cm−1 ) to the C=O + O-H in-plane bending in both conformers. They also concluded

that upon deuteration of the bridging hydrogen atom the position of the band at ≈ 1620

cm−1 does not change considerably, while the band at around ≈ 1600 disappeared and a

stronger band appeared at ≈ 1535 cm−1 . However, our anharmonic mode calculations

reveal in this range two normal modes, the C=C-C=O stretch + OH in plane bend at

1650 cm−1 and C=O + O-H in-plane bend at 1625 cm−1 in SYN conformer, while in the

TS2 conformer the corresponding transitions have frequencies of 1644 cm−1 and 1628

cm−1 , respectively. The difference of only few wavenumbers in the corresponding tran-

sitions in two conformers is to small to explain the three maxima structure of the band.

No other modes are close to this range, and combination band are expected to be much

weaker. Furthermore, at low temperatures the TS1 conformer can also be disregarded.

The provided pieces of information are difficult to reconcile with previous assignments

and the three-maxima shape of the C=O stretch band will be further investigated using

an approach which goes beyond the normal mode analysis and takes into account the

large-amplitude motion of the transferring hydrogen.

The assignment of the frequencies in the 1200-1300 cm−1 region presents another

problem. There are two bands in this region, one at ≈ 1300 cm−1 which is strong in Ra-
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man and weak in the infrared, and the other at 1250 cm−1 which is strong in the infrared

and weak in Raman. Upon deuteration of the transferring hydrogen, the intensity of the

band at ≈ 1300 cm−1 diminishes and a new band appears in the Raman spectrum of d2-

ACAC. This band has not been observed in the liquid phase due to the overlap with one

of the keto bands and was recognized after the deconvolution as a band at 1302 cm−1 .

Also it has been observed in the rare gas matrices at 1288 cm−1 [55]. The strong Ra-

man band was omitted from the normal mode analysis of ACAC spectra by Ogoshi and

Nakamoto [28] and was assigned by Chiavassa et al. [55] to the C-O + C=O stretch and

OH in-plane bend. Tayyari et al. [29] explained the strong Raman intensity of the band

by attributing it to the symmetric O-C=C-O and C=O stretch which is strongly coupled

to the OH in-plane bending mode. Our anharmonic calculation yielded a transition at

1345 cm−1 for the SYN conformer of ACAC (ν17 in Table 4.6) and 1318 cm−1 for the

TS2 conformer (ν18 in Table 4.9) . Taking into account that transitions in the rare gas

matrices are shifted downward in the comparison with the gas phase, the strong Raman

line can be attributed to the O-C=C-O and C=O stretch + OH in-plane bend of the TS2

conformer. In d2-ACAC this band disappears and a new band with a diminished Raman

intensity appears at 1080 cm−1 . The band is attributed by Tayyari et al. [29] to the C=C

stretch and in-plane OD bending which agrees well with our anharmonic calculations.

The anharmonic frequency of the band in Table 4.6 is calculated as 1102 cm−1 .

The band at 1250 cm−1 which is very strong in the infrared but weak in Raman is as-

signed by Ogoshi and Nakamoto to the C-C + C=C stretch [28] and by Chiavassa et al.

to the C-C, C=C stretch and OH bend [55]. Our anharmonic results are in agreement

with the conclusion of Tayyari et al. [29] that the band has a complicated character

and was attributed to the symmetric C-C=C + symmetric C-CH3 stretch and OH bend.

The anharmonic frequency in both conformers is calculated as 1242 cm−1 which is in

good agreement with the experimental value. Upon deuteration of the CH3 groups the

frequency of the band is blue shifted to 1260 cm−1 .

In conclusion, the perturbative approach to the vibrational spectroscopy succeeded in

answering some of the main questions regarding the ACAC spectrum. The main features

of the OH band, the assignments in the enol ring deformation region, and the nature of

the band at 1250 cm−1 are well reproduced. What remains to be done is to understand

additional broadening mechanisms of the OH band and the nature of the intermode

couplings triggered by the hydrogen bond formation. These issues are investigated in

detail in the next section.

-
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Table 4.6: Vibrational frequencies (in cm−1 ) of the SYN-ACAC conformer at the

MP2/6-311G(d,p) and B1LYP/6-311G(d,p) levels of theory. Exp. data are taken from

Ref. [29].

Exps Int. MP2h B1LYPh Int. B1LYPa Mode
1 - - 3258 3217 2 3101 ν CHolefinic

2 2800 br 3192 3160 85 2766 ν OH
3 3017 10 3206 3151 2 2991 νa CH3

4 3017 10 3202 3144 19 2935 νa CH3

5 2976 6 3166 3101 3 2961 νa CH3

6 2976 6 3164 3098 3 2988 νa CH3

7 2941 7 3085 3048 2 2944 νs CH3

8 2941 7 3080 3043 1 2952 νs CH3

9 1642 19 1716 1700 96 1650 νa C=C-C=O + δ OH
10 1624 77 1687 1660 100 1625 ν C=O + δ OH
11 1464 10 1512 1501 14 1464 δa CH3

12 - - 1494 1485 2 1471 δa CH3

13 - - 1491 1480 3 1460 δa CH3

14 - - 1488 1479 3 1438 δa CH3

15 1427 17 1478 1468 47 1443 νa CC=CO+δ CH+δ OH+ ν C-CH3

16 - - 1416 1424 11 1380 δs CH3 + δOH
17 - - 1443 1402 29 1345 δ OH + ν C=O + νs C-C=C-O
18 1365 10 1397 1394 11 1369 δs CH3+ δ OH
19 1250 17 1292 1275 46 1243 νs C-C=C+ δ OH+ν C-CH3

20 1171 6 1198 1199 5 1183 δ CH olefinic

21 - - 1069 1072 1 1048 π CH3

22 - - 1048 1052 3 1043 π CH3

23 1025 1 1043 1041 3 1023 ρ CH3

24 1000 4 1018 1013 4 1017 ρ CH3

25 952 10 962 968 25 954 γ OH
26 - - 951 947 1 937 δ C-C=C+ ν C-C+ρ CH3

27 913 9 929 921 11 922 ν C-CH3+ν C-O
28 768 40 777 799 11 766 γ CHolefinic

29 - - 627 653 - 653 Γring

30 636 9 655 650 4 634 ∆ring

31 - - 537 556 - 566 Γring

32 508 20 509 512 4 513 ∆ring

33 397 s 393 398 1 412 ∆ring

34 362 s 365 371 2 368 ν O· · · O
35 210 w 225 230 1 238 Γring + γ C-CH3

36 - - 183 182 - 177 Γring τ CH3

37 - - 150 154 - 152 τ CH3

38 120 w 113 121 1 125 τ CH3

39 - - 51 23 - not converged τ CH3

s - gas, h - harmonic, a -anharmonic 62
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Table 4.7: B1LYP/6-311G(d,p) vibrational frequencies (in cm−1 ) of the d2-ACAC SYN

conformer.

Exps Int. B1LYPh Int. B1LYPa Mode
1 3018 w 3152 3 3015 νa CH3 (in-plane)
2 3018 3147 3 3000 νa CH3 (in-plane)
3 2970 w 3101 2 2961 νa CH3 (out-of-plane)
4 2970 3098 3 2988 νa CH3 (out-of-plane)
5 2940 w 3048 2 2943 νs CH3

6 2940 3043 1 2951 νs CH3

7 2300 w 2378 1 2299 ν CDolefinic

8 2027 2306 54 2027 ν OD
9 1633 vs 1689 63 1645 νa C=C-C=O

10 1544 vs 1582 100 1531 νs C=C-C=O + δ OD
11 1448 1488 21 1447 δa CH3 (in-plane)
12 - 1485 2 1472 δa CH3 (out-of-plane)
13 - 1479 2 1443 δa CH3 (out-of-plane)
14 1448 s 1474 9 1462 δa CH3 (in-plane)
15 1408 br 1433 9 1399 νa C-C=C-O
16 1365 s 1411 5 1383 δs CH3

17 1365 1391 13 1372 δs CH3

18 1273 vs 1308 32 1274 νs C-C=C-O
19 1082 m 1128 15 1102 δ OD + ν C=C + ρ CH3

20 - 1071 1 1047 π CH3

21 1025 m 1052 2 1043 π CH3

22 1025 1051 10 1038 ρ CH3 + δ OD
23 - 1013 2 1013 ρ CH3

24 936 m 949 6 940 ν C-CH3 + ρ CH3 + δ CDolefinic

25 880 w 893 4 891 ν C-O + δ C-C=C + ρ CH3

26 - 850 - 843 δ CDolefinic

27 707 ms 730 12 724 γ OD
28 654 - 640 Γring

29 631 m 644 3 631 ∆ring

30 - 573 5 565 γ CDolefinic

31 - 554 - 563 Γring

32 498 m 503 3 504 ∆ring

33 397 s 391 1 403 ∆ring

34 362 s 364 2 364 ν O· · · O
35 220 br 226 1 234 ν O· · · O +δ C-CH3

36 - 180 - 175 Γring

37 - 153 - 149 Γring

38 120 br 119 1 126 τ CH3

39 - 23 - not converged τ CH3
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Table 4.8: B1LYP/6-311G(d,p) vibrational frequencies (in cm−1 ) of the d6-ACAC SYN

conformer.

Exps Int. B1LYPh Int. B1LYPa Mode
1 3098 - 3217 1 3090 ν CHolefinic

2 2761 4 3156 95 2680 ν OH
3 2265 2 2337 2 2260 νa CD3 (in-plane)
4 2265 2 2332 2 2250 νa CD3 (in-plane)
5 - - 2294 2 2220 νa CD3 (out-of-plane)
6 - - 2292 2 2229 νa CD3 (out-of-plane)
7 2103 - 2192 1 2108 νs CD3

8 2103 - 2187 - 2182 νs CD3

9 1628 100 1692 100 1645 νa C=C-C=O + δ OH
10 1606 100 1654 100 1611 ν C=O + δ OH
11 1446 36 1474 48 1447 νa C=C-C=O + δ OH + δs CH
12 1294 15 1406 32 1326 νs C=C-C=O + δ OH + ν C-O
13 1265 59 1287 56 1260 νs C-CD3 + νs C-C=C + δ OH
14 1185 21 1209 14 1194 δ CHolefinic

15 1075 2 1107 2 1090 δ CHolefinic + δa CD3

16 1051 - 1086 1 1073 δa CD3

17 1051 - 1071 1 1058 δs CD3

18 - - 1068 4 1044 δa CD3

19 - - 1066 2 1047 δa CD3

20 1036 2 1059 2 1050 δa CD3

21 952 3 970 28 953 γ OH
22 931 4 959 1 946 ν C-O + δ C-C=C + δ OH
23 - - 925 1 911 ρ CD3

24 914 1 912 1 898 ρ CD3

25 904 3 889 1 875 νa C-CD3

26 812 5 828 3 817 ρ CD3

27 803 10 792 9 797 ρ CD3

28 763 3 793 4 759 γ CHolefinic

29 585 5 592 4 586 ∆ring

30 - - 573 - 574 Γring + ρ CD3

31 492 3 489 - 495 Γring + ρ CD3

32 477 10 480 4 480 ∆ring + ρ CD3

33 360 361 1 372 ∆ring + ρ CD3

34 337 350 2 341 ν O· · · O
35 212 208 1 213 ∆ring + ρ CD3

36 - 167 - 166 Γring + ρ CD3

37 - 136 - 140 Γring + ρ CD3

38 - 95 - 87 τ CD3

39 - 17 - not converged τ CD3
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Table 4.9: B1LYP/6-311G(d,p) vibrational frequencies (in cm−1 ) of the TS2-ACAC

conformer.

B1LYPh Int. B1LYPa Mode
1 3225 1 3098 ν CHolefinic

2 3148 4 2997 νa CH3

3 3137 7 2987 νa CH3

4 3112 2 2984 νa CH3

5 3101 2 2961 νa CH3

6 3091 90 2487 ν OH
7 3051 1 2951 νs CH3

8 3048 1 2943 νs CH3

9 1691 100 1644 νa C=C-C=O + δ OH
10 1656 80 1628 ν C=O + δ OH
11 1506 15 1466 δa CH3

12 1492 1 1447 δa CH3

13 1482 3 1443 δa CH3

14 1479 2 1438 δa CH3

15 1470 44 1437 νa C-C=C-O+δ CH+δ OH+ ν C-CH3

16 1421 5 1380 δs CH3 + δOH
17 1402 9 1371 δs CH3+ δ OH
18 1393 37 1318 δ OH + ν C=O + νs C-C=C-O
19 1273 43 1242 νs C-C=C+ δ OH+ν C-CH3

20 1199 7 1178 δ CH olefinic

21 1073 1 1048 π CH3

22 1053 5 1031 π CH3

23 1040 2 1022 ρ CH3

24 1026 3 1008 ρ CH3

25 987 22 965 γ OH
26 953 2 939 δ C-C=C+ ν C-C+ρ CH3

27 933 4 916 ν C-CH3+ν C-O
28 799 9 758 γ CHolefinic

29 665 - 657 Γring

30 641 4 635 ∆ring

31 562 - 561 Γring

32 510 4 511 ∆ring

33 406 1 405 ∆ring

34 373 2 363 ν O· · · O
35 235 1 224 Γring + γ C-CH3

36 182 - 176 Γring τ CH3

37 153 - 146 τ CH3

38 122 - 106 τ CH3

39 54.492i - 32.501i τ CH3
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Reduced dimensionality approach

The infrared spectrum of ACAC related to the OH· · ·O fragment was further investi-

gated by using the normal mode representation of the Hamiltonian given by Eq (3.42)

at the B1LYP/6-311G(d,p) level of theory. It was assumed that there is no total angular

momentum and the Coriolis coupling present in the Watson Hamiltonian Eq. (3.21) was

neglected. Four normal modes related to the OH· · ·O fragment of the SYN conformer

({QSYN
i }) and three corresponding normal modes of the TS2 conformer ({QTS2

i }) were

selected to span the PESs relevant for the O-H· · ·O fragment dynamics. Previous per-

turbative calculation confirmed the prediction that due to the low barrier to the distal

methyl group rotation both conformers (SYN and TS2) leave a characteristic imprint in

the IR spectrum of ACAC. For the SYN conformer the following modes were selected:

the OH stretching νSYN
OH (ν2 in Table 4.6 with the harmonic frequency of 3159 cm−1 ), the

in-plane bending mode δSYN
OH (ν17 = 1402 cm−1 ) and two low-frequency skeleton modes

νSYN
O···O (ν34 = 371 cm−1 ) and νSYN

OH···O (ν35 = 230 cm−1 ). In Figure 4.7 the displacements of
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OH Q2 = δ
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OH

Q3 = νSYN
O···O Q1 = νSYN
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Figure 4.7: Normal mode displacement vectors of the SYN conformer. The four normal

modes which span the 4D PES are: the OH stretching νSYN
OH , the in-plane bending modes

δSYN
OH , and two low-frequency skeleton modes νSYN

O···O and νSYN
OH···O.
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the selected normal modes of the SYN conformer are shown. For the TS2 conformer

three normal modes were considered: the OH stretching νTS2
OH (ν6 in Table 4.9 with the

harmonic frequency of 3091 cm−1 ), the in-plane bending mode δTS2
OH (ν18 = 1393 cm−1 )

and the low-frequency mode νTS2
O···O (ν34 = 373 cm−1 ).

The potential energy and dipole moment surfaces for the SYN and TS2 conformers

were calculated at the B1LYP/6-311G(d,p) level of theory on a Q1×Q2×Q3 grid with

the size 16× 12× 11. For the SYN conformer the range was -0.4 Å ≤ QSYN
1 ≤ 0.75 Å,

-0.7 Å≤QSYN
2 ≤ 0.7 Å and -1.6 Å≤QSYN

3 ≤ 1.6 Å. In the case of the TS2 conformer the

3D surface was calculated in the range -0.8 Å ≤ QTS2
1 ≤ 0.4 Å, -0.6 Å ≤ QTS2

2 ≤ 0.6 Å

and -1.5 Å ≤ QTS2
3 ≤ 1.3 Å. To construct the 4D surface for the SYN conformer the 3D

surface was recalculated for 15 additional values in the QSYN
4 direction. Depending on

the shape of the potential, a variable step size of 0.02 and 0.04 Å was used resulting in

a computation of 31680 symmetry unique points. The large number of computed points

allowed us to circumvent complicated analytical fits in favour of more accurate interpo-

lation schemes. The calculated potential and dipole moment surfaces were interpolated

using the weighted Shepard interpolation scheme as implemented by Renka [108] on a

16(32)×16×16×16 grid in the case of the SYN conformer and on a 32×32×32 grid

in the case of a TS2 conformer.

Figure 4.8 presents six different two-dimensional cuts of the 4D SYN and 3D TS2

PES. In both PESs the strong anharmonicity of the potential in the direction of the OH

stretching mode is visible. Also, in both cases the OH stretching mode mixes strongly

with the low frequency modes. In the TS2 conformer there is also a pronounced cou-

pling with the bending mode.

The vibrational Schrödinger equation for the fully coupled potentials was solved

using the Fourier grid Hamiltonian approach [83] combined with the implicitly restarted

Lanczos diagonalization method [109] implemented in the ARPACK suits of programs

[110, 111]. To construct the Hamiltonian in Eq. (3.42) the following reduced masses

in atomic units were used: µSYN
Q1 =0.928, µSYN

Q2 =0.540, µSYN
Q3 =0.2473, µSYN

Q4 =0.302 and

µTS2
Q1 =0.932, µTS2

Q2 =0.417, µTS2
Q3 =0.25. These values were obtained from the ab initio

calculations according to the normalization factors defined in the Eq. (3.43).

The IR absorption spectrum from an initial state Ψi to a final state Ψ f was calculated

as [112]:

Ii(ω) =
∑

α=x,y,z

∑

f

ω f i

∣∣∣∣
∫

dQΨ f (Q)dα(Q)Ψi(q)
∣∣∣∣
2

δ(ω −ω f i) , (4.1)

where ω = ω f i is the transition frequency and dα(Q) are the Cartesian components of the

dipole moment operator. The system is in the x-y plane, and the z-axis is perpendicular.
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Figure 4.8: 2D projections of the potential energy surfaces (PESs) of SYN and TS2.

The contours are spaced by 1600 cm−1 , and the most inner contour corresponds to an

energy value of 800 cm−1 above the minimum.
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Obviously, the spectrum has no contribution in the z-direction for none of the out-

of-plane modes were included.

Figure 4.9 displays the spectra calculated using the reduced space normal mode ap-

proach on the 4D V(Q1,. . .,Q4) PES for the SYN conformer and on the 3D V(Q1,Q2,Q3)

PES for the TS2 conformer. The upper panel shows the computed spectrum of the SYN

conformer and the lower panel shows the spectrum of the TS2 conformer. The tran-

sitions from the ground state (I0) are shown in black, while hot transitions, i.e. those

starting from the vibrationally excited νOH···O and νO···O modes are shown by dashed

lines. A temperature of 297 K was assumed. The assignment of the spectra in terms of

uncoupled modes were performed according to the Eq. (3.45). The frequencies of the

transitions together with the coefficients for the decomposition in terms of zero-order

states are compiled in Table 4.10.

By inspecting the coefficients of the zero order states in Table 4.10, one can conclude

that the lines at 227 and 363 cm−1 correspond to the νSYN
OH···O and νSYN

O···O modes. Both

fundamentals are in very good agreement with the observed in-plane ring deformation

modes at 230 and 364 cm−1 . The calculated νTS2
O···O frequency is 349 cm−1 , but compared
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Figure 4.9: IR stick spectra of ACAC SYN (upper panel) and TS2 (lower panel) con-

formers at T=297 K. Transitions from the ground state are shown in black, hot transitions

from νOH···O and νO···O are shown in grey.
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Table 4.10: Coefficients of the zero order states (Eq. (3.45)) of those states correspond-

ing to the strongest transitions in the OH-stretch bands of the SYN and TS2 ACAC. The

results are obtained in the normal mode representation.

SYN TS2
f ω/cm−1 NQ1 NQ2 NQ3 NQ4 ci f f ω/cm−1 NQ1 NQ2 NQ3 ci f

1 228 0 0 0 1 0.947 1 349 0 0 1 -0.867
2 364 0 0 1 0 0.959 4 1240 0 1 0 0.632

16 1375 0 1 0 0 -0.958 0 0 3 0.328
0 1 0 1 0.213 0 1 1 0.292

63 2742 0 2 0 0 -0.914 5 1360 0 1 0 -0.433
0 2 0 1 0.260 0 0 3 0.559

70 2920 1 0 0 0 0.614 0 0 4 0.399
1 0 0 1 -0.412 0 0 5 0.299
1 0 0 2 0.216 6 1451 0 1 0 -0.549
0 2 0 0 0.275 0 0 4 -0.453
0 2 0 1 0.275 0 0 5 -0.262
1 0 1 0 -0.249 9 1920 0 0 5 0.403

74 2977 0 2 0 0 -0.207 0 1 2 -0.314
0 2 0 1 -0.792 0 1 3 -0.252
0 2 0 2 0.304 12 2357 1 0 0 0.539
1 0 0 0 0.356 1 0 1 0.418

83 3149 1 0 0 0 -0.431 1 0 2 0.230
1 0 0 1 -0.355 16 2776 0 2 0 0.680
1 0 0 2 0.419 0 2 1 0.290
1 0 0 3 -0.252
0 2 0 1 -0.216
0 2 0 2 -0.253

89 3210 0 2 0 1 -0.300
0 2 0 2 -0.720
0 2 0 3 0.294
1 0 0 0 0.205
1 0 0 1 0.289
1 0 0 2 -0.212

91 3281 0 2 1 0 -0.241
0 2 1 1 -0.251
1 0 0 0 -0.321
1 0 1 0 -0.485
1 0 1 1 0.344
1 0 2 0 0.307
1 0 2 1 -0.206
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to νSYN
O···O it has a negligible intensity1.

The fundamental transition of the in-plane bending mode of the SYN conformer,

δSYN
OH , is located at 1375 cm−1 . The value is red shifted from the harmonic frequency

(1402 cm−1 ) by only 27 cm−1 . Compared to the anharmonic frequency resulting from

the perturbative approach the frequency value of 1375 cm−1 is larger than the perturba-

tive value for 30 cm−1 . The difference can be explained by inspection of the anharmonic

correction matrix elements, χi j (Eq. (3.41)). Indeed, the δSYN
OH strongly couples with

the νSYN
OH mode (χSYN

2,17 = −24.03 cm−1 ) and this coupling was included in the treatment.

But additionally, it couples with the other in-plane and out-of-plane bending modes ν9

(OH-bend + C=C-C=0 stretch), ν10 (OH bend + C=O stretch), ν18 (OH bend + CH3

bend ) and ν25 (OH out-of-plane bend) and the inclusion of these modes in the reduced

dimensionality treatment would induce further red shift of the frequency which would

result in a better agreement with the observed value. Concerning the in-plane OH bend-

ing mode of the TS2 conformer, the fundamental transition is located at 1360 cm−1 . It

can be seen that the transition gains in intensity and develops a double-maxima struc-

ture due to a resonance with the νSYN
O···O overtone. The remaining ≈ 50 cm−1 discrepancy

between the calculated and observed δOH (1298 cm−1 ) cannot be, obviously, attributed

to the couplings triggered by the hydrogen bond formation. The δTS2
OH anharmonic fre-

quency of 1318 cm−1 (see Table 4.9) calculated using the perturbative treatment is in

good agreement with the experiment and the anharmonic correction matrix (χi j) again

reveals the source of the anharmonicity shift. Again, the δTS2
OH couples strongly with the

νTS2
OH mode (χ6,18 =-52.8 cm−1 ). Furthermore, the additional red shift of the δTS2

OH mode

is due to the mixing with two other modes containing the OH bending contribution:

the OH-bend/asymmetric C=C-C=O stretch mode (ν9) characterized with χTS2
18,9 = −10.0

cm−1 and the OH-bend/symmetric C=O stretch (ν10) with χTS2
18,10 = −15.0 cm−1 . Conse-

quently, the assignation of the transition at 1298 cm−1 to the δTS2
OH mode, made on the

basis of the perturbative approach is confirmed.

In the following, the focus will be on the OH stretch region of the ACAC spectrum.

According to the Table 4.10 the most relevant transitions in the νOH stretching region, i.e.

between 2900 and 3500 cm−1 , decompose into all zero-order states for both conformers.

Therefore, it is not possible to identify any transition of the νOH band as a fundamental

transition. The fact that the νSYN
OH and νTS2

OH fundamentals are distributed in several states

of the OH-stretch band leads to well know difficulties in assignments of the OH-stretch

band. This is an important consequence of the strong anharmonic mode mixing induced

by the hydrogen bond formation. Another consequence is the break-down of the vi-

brational selection rule which implies a change of the vibrational quantum numbers by

1For the low frequency part of the experimental spectrum refer to the article of Ogoshi et al.[28].
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one. For example, a hot transition of the in plane bending mode starting from the νO···O

mode ((0,0,0,1) → (0,1,0,1)) occurs at the same frequency as the fundamental transi-

tion ((0,0,0,0) → (0,1,0,0)), but in the OH stretch region the transitions starting from

(0,0,0,1) (grey bars) are shifted by the amount of the initial excitation.

The OH stretch band in the SYN conformer is dominated by a closely spaced dou-

blet located at 2920 cm−1 and 2977 cm−1 with resonance enhanced intensities (see the

experimental spectrum in Figure 4.10). Inspecting the coefficients of the zero order

states from Table 4.10, one can conclude that the underlying dynamics is more com-

plex than what a Fermi resonance would suggest. For instance, the transition at 2977

cm−1 contains the excitation of the OH-bending and OH-stretching modes, but at the

same time a noticeable excitation in the low frequency νO···O mode. The same is valid

for the Franck-Condon type vibrational progression observed within the νSYN
OH band. Al-

though the energy differences between the transitions with the frequencies 3149 and

2920 cm−1 and between the transition with the frequencies 3281 and 2920 cm−1 (Table

4.10) match exactly the frequencies of the νSYN
OH···O and νSYN

O···O modes, the zero order states

analysis reveals a much more complicated dynamics. Consequently, an interpretation in

terms of combination transitions like δOH + NδO···O + MδOH···O is an oversimplified view

of O-H· · ·O fragment dynamics.

The strongest transition in the OH stretch region of the TS2 conformer is located at

2357 cm−1 . Compared to the corresponding transition of the SYN conformer, it is red

shifted by more than a 500 cm−1 . The transition is also red shifted by 130 cm−1 with

respect to the anharmonic value calculated by using the perturbative approach (Table

4.9). These observation confirm the previous conclusion that both enol conformers of

ACAC (SYN and TS2) contribute to the formation of the broad OH stretch band. Due to

the particular choice of normal modes which span the 3D PES, there is no evidence for

Fermi resonance interactions in the OH stretch band. Namely, for consistency reasons

the 4D and 3D PESs of the SYN and TS2 conformers were spanned by an analogous

set of modes, but in TS2 the frequency difference between δTS2
OH and νTS2

OH prevents a

resonance interaction. Instead, inspection of the Table 4.9 reveals a possible Fermi reso-

nance of the OH stretch with ν19 mode (OH bend + C-C=C stretch) at 1242 cm−1 which

will contribute to build up intensities around 2500 cm−1 .

Finally, Figure 4.10 displays the experimental gas phase IR spectrum [32] in compar-

ison with the summed up spectrum of the SYN and TS2 conformers. The IR intensities

of the calculated spectra were rescaled in order to facilitate the comparison with the

experimental spectrum [32]. By comparing the computed and the experimental spectra,

one can see that the two computed maxima coincide within few wavenumbers with the

experimental peaks. In addition the structure of the band is well reproduced. However,

72



4.2. Normal mode based approaches Chapter 4. Results and discussion

Figure 4.10: The computed IR spectrum of both conformers at T=297 K superimposed

on the experimental gas phase spectrum (courtesy of J. Mavri and J. Grdadolnik) [32].

The computed intensities have been rescaled in order to facilitate comparison with ex-

periment.

an important difference lies in the intensities and in the width of the bands. Namely, the

IR spectrum of ACAC displays a very broad νOH band starting from 1800 cm−1 while

the computed spectrum does not contain transitions of noticeable intensity below 2357

cm−1 . This could be improved by the extension of the model 4D system, for example

by including the symmetric and asymmetric C=O stretch motion which will increase the

number of transitions and, to a certain extent, will modify the band shape. However,

examination of the energies of the C=O fundamentals given in Table 4.9 indicates that

changes are expected on the high frequency side of the band, i.e., in the region where

the Fermi resonance condition is fulfilled.

The spectrum of the enol-ACAC shown in Figure 4.9 represents the best result

achieved under the single well, normal mode approximation. The overall agreement

with experiment appears to be quite satisfactory, yet the inclusion of the hydrogen atom

tunneling motion is needed since the double well hydrogen motion should leave a mark

in the IR spectrum of the molecule. Evidence of tunneling, according to the reaction

path calculations, are most likely to show up in the spectrum of TS2 conformer as the

HAT reaction takes place only after the methyl groups have reached an eclipsed confor-

mation. Therefore, a large amplitude treatment will be further employed to investigate

the spectrum of the TS2 conformer.
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4.2.2 The formic acid dimer

This subsection explores the most intriguing feature of the IR spectrum of FAD by com-

bining a perturbative treatment in full dimensionality and a non-perturbative treatment

in reduced dimensionality. The antisymmetric OH stretching band (bu) in FAD is the

dominant feature in the spectrum for it spreads over more than 500 cm−1 around its max-

imum which is located at 3110 cm−1 [113]. The band also exhibits a rich substructure

that reflects strong anharmonic couplings. Much of the earlier theoretical work was

concerned with the source of the antisymmetric OH stretch band broadening and its rich

sub-structure in carboxylic acid dimers like FAD or parent acetic acid dimer (AAD)

and benzoic acid dimer (BAD) [114, 25, 115]. Recently, Blaise et al. [114] proposed a

general theoretical approach for treating the νOH line shape and applied it to the cyclic

dimers (CD3CO2H)2 and (CD3CO2D)2 in the gas phase. In their model the adiabatic ap-

proximation which allows to separate the fast O-H motion and the slow O-H· · ·O motion

was used. Subsequently, a nonadibatic correction is introduced via a resonant exchange

between the excited states of the monomer fast modes. Using a restricted number of

fitted parameters the authors could reproduce the experimental νOH line shape. Florio

et al. [25] calculated the spectra of FAD and BAD allowing for the cubic couplings

between the interdimer stretch, antisymmetric OH stretch and symmetric and antisym-

metric OH bend. For FAD a calculation of the vibrational spectrum using the full cubic

force field was also done. While for BAD the agreement with the experiment was very

good, for FAD only a semiquantitative agreement was obtained pointing to possible dif-

ferences in the couplings that shape the OH band in the two compounds. Dreyer [115]

used the sixth order force field to explain the line shape of the O-H stretching band in

AAD. Anharmonic couplings of the OH stretch mode to low frequency modes and mid-

infrared fingerprint modes were included resulting in a eleven-dimensional model. The

results were in agreement with the experiment, but the OH stretching frequency had to

be scaled by factor 0.98 to account for the global red shift of the band. Unfortunately,

in both numerical works the interaction with the IR inactive symmetric OH stretch, i.e.,

the mode leading to the Davydov coupling put forward by Blaise et al. was not taken

into account.

Perturbative approach

The harmonic frequencies for the C2h structure of FAD were calculated using the B3LYP

functional with different basis sets. The corresponding anharmonic frequencies were

computed at the same level of theory using the second order perturbative approach

[74, 75] as implemented in the Gaussian 03 quantum chemical package [67]. The
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Table 4.11: Experimental data taken from Ref. [25] and theoretical, harmonic and anharmonic frequencies (in cm−1 ) for three basis sets.

For easier comparison the numeration of Ref. [25] is retained.

B3LYP B3LYP B3LYP

Mode Exp. 6-31G(d) 6-31+G(d) 6-31 G(d,p)
1 bu νOH 3110 3218 2925 3245 2964 3157 2777
2 ag νCH 2949 3113 2891 3118 2934 3092 2921
3 bu νCH 2957 3098 2917 3113 2931 3075 2879
4 ag νOH - 3100 2815 3153 2843 3013 2593
5 bu νC=O 1754 1814 1773 1785 1746 1807 1765
6 ag νC=O 1670 1744 1694 1721 1675 1727 1670
7 ag δOH 1415 1490 1448 1459 1417 1503 1449
8 bu δOH - 1456 1415 1441 1398 1459 1443
9 ag δCH 1375 1424 1389 1404 1370 1421 1388
10 bu δCH 1362 1417 1383 1397 1361 1417 1387
11 bu νC-O 1218 1270 1247 1255 1226 1283 1263
12 ag νC-O 1214 1271 1244 1254 1225 1284 1260
13 au γCH 1060 1098 1070 1090 1055 1110 1080
14 bg γCH 1050 1075 1054 1070 1044 1080 1058
15 au πOH 917 976 947 983 947 1004 979
16 bg πOH - 955 921 956 910 991 963
17 bu δCO2 699 718 712 703 696 728 725
18 ag δCO2 677 686 677 677 672 690 683
19 bu dimer in-plane rock 248 285 278 269 258 288 291
20 bg dimer out-of-plane rock 230 275 264 257 241 281 271
21 ag dimer stretch 190 217 204 210 199 210 201
22 au dimer out-of-plane wag 163 182 180 182 169 190 187
23 ag dimer in-plane rock 137 178 170 170 162 179 172
24 au dimer twist 68 76 72 77 73 79 75
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resulting harmonic and anharmonic normal mode frequencies are compiled in Table

4.11. The deviation of the calculated anharmonic frequencies in the middle and the

high frequency part of the spectrum from the experimental values is below 0.5 % at

the B3LYP/6-31+G(d) level of theory, 1.5 % at the B3LYP/6-31G(d) and 2 % at the

B3LYP/6-31G(d,p) level. The best agreement with the experiment is found for the 6-

31+G(d) basis set. In the middle part of the spectrum, the largest deviation from the

experimental values is found for the antisymmetric out-of-plane bending (πOH) having

a discrepancy of more than 3% in all the three cases. The harmonic πOH frequencies of

976, 983 and 1004 cm−1 obtained for the three small basis sets compare well with the

values computed with larger basis sets. For instance, at the B3LYP/aug-cc-pVTZ the

πOH fundamental is found at 1002 cm−1 and at the MP2/aug-cc-pVTZ at the 995 cm−1 .

Although it is expected that the anharmonic frequencies converge much faster than the

harmonic value, the harmonic frequencies indicate that the discrepancy between the

experimental value of 917 cm−1 and the computed anharmonic frequencies cannot be

attributed to basis set effects. Inspection of the anharmonic correction matrix reveals

coupling to four vibration modes: the dimer out-of-plane rock, χ15,20 = −7.0 cm−1 , and

the dimer stretch, χ15,21 = −9.0 cm−1 induce red-shifts of the πOH frequency, while the

two OH stretching modes coupled by χ15,1 = 17.8 cm−1 and χ15,4 = 26.8 cm−1 induce

blue-shifts of the mode frequency. An analysis beyond the second order perturbation

treatment for this modes is therefore needed in order to obtain a better insight in their

couplings and to reproduce the better agreement with the experimental value.

The jet-cooled IR spectrum reveals that the maximum of the bu antisymmetric OH

stretching band (νOH) is at 3110 cm−1 [113]. The anharmonic νOH (bu) frequency is

red shifted by 293, 281 and 380 cm−1 from its harmonic value at the B3LYP/6-31G(d),

B3LYP/6-31+G(d) and B3LYP/6-31G(d,p) levels of theory, respectively. For the OH

stretching band such large red-shift is expected, but compared to the observed band cen-

ter frequency the anharmonic results are clearly too red-shifted. One may argue that

the harmonic frequencies obtained with such small basis sets are not converged and the

MP2/aug-cc-pVTZ harmonic frequency of 3305 cm−1 supports this observation. How-

ever one should also take into account that the second order perturbative approach does

not account for the wholeness of interactions shaping the νOH (bu) band. Inspection

of the anharmonic correction matrix (χi j) reveals that the dominant contribution to the

shift of the νOH band comes from the coupling of the antisymmetric OH stretching to the

symmetric IR inactive OH stretching. The interaction is characterized by anharmonic

constants of χ1,2 = −221,−345,−407 cm−1 with the 6-31G(d), 6-31+G(d) and 6-31G(d,p)

basis sets, respectively. Diagonal anharmonic terms are smaller and range between -89

and -99 cm−1 . Couplings to low frequency modes are also small, but positive. The
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largest coupling is found for the dimer stretch, χ1,21, ranging between 34 and 54 cm−1 .

The interactions with the fingerprint modes νC=O, δOH, and νC−O are even smaller, nega-

tive for νC=O, and positive for the other four combinations.

According to Eq. (3.41) the perturbative approach approximates the potential by

a truncated Taylor expansion which takes into account the diagonal and semi-diagonal

quartic force constants. This approximation is inadequate for strong anharmonicities

[79] as it is the case with the interactions that shape the antisymmetric OH stretch band in

FAD. However, the direct solution of the vibrational Schrödinger equation on a potential

spanned by the chosen normal modes could overcome the insufficiencies posed by the

perturbative approach and allow to identify the hierarchy of interactions that shape the

OH stretch band.

Reduced dimensionality approach

The νOH stretch band of the FAD was further investigated by using two and three-

dimensional PESs spanned by combinations of several normal modes. All the con-

structed potentials included the antisymmetric O-H stretching, νOH(bu) and one or two of

the following modes: the symmetric O-H stretch, νOH(ag), the symmetric and antisym-

metric C=O and C-O stretches νC=O(ag), νC=O(bu), νC−O(ag), νC−O(bu) and two in-plane

bendings, δOH(ag) and δOH(bu). In the low frequency part of the spectrum the dimer

stretch (ag) and the symmetric and antisymmetric in-plane rocks were included. The

potential and dipole moment surfaces were calculated at the B3LYP/6-31+G(d) level of

theory on a direct product grid with spacings 0.05 Å for νOH and νC=O, 0.1 Å for δOH

and νC−O and 0.2 Å for the low frequency modes. The calculated potential and dipole

moment surfaces were further interpolated using the weighted Shepard interpolation

scheme as implemented by Renka [108] on 81× 81 and 45× 81× 81 grids. The vibra-

tional Schrödinger equation for the fully coupled potentials was solved using the Fourier

grid Hamiltonian approach [83] combined with the implicitly restarted Lanczos diago-

nalization method [109] implemented in the ARPACK suits of programs [110, 111]. The

procedure is analogue to the one described in the section 4.2.1 for ACAC. To construct

the Hamiltonian (Eq. (3.42)) reduced masses in atomic units µ as given in Table 4.12

were used. The values were obtained from the Gaussian normal mode analysis.

According to perturbation theory, the dominant contribution to the red shift of the

νOH(bu) band arises from the coupling between the antisymmetric OH-stretch (Q1) and

symmetric OH-stretch (Q2). The 2D potential spanned by the antisymmetric and sym-

metric OH-stretch were computed at the B3LYP/6-31+G(d), B3LYP/6-31G(d) and B3LYP/6-

31G(d,p) levels of theory and the corresponding time-independent equations were solved.

Figure 4.11 shows the V(Q1,Q2) potential calculated at the B3LYP/6-31+G(d) level of
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Figure 4.11: Two-dimensional potential energy surface spanned by the antisymmet-

ric (Q1) and symmetric (Q2) OH stretching vibrations of FAD computed at B3LYP/6-

31+G(d) level of theory. The contour spacing is 1000 cm−1 .

theory. The isoenergy contours are spaced by 1000 cm−1 . The triangular shape of the

potential clearly shows the strong anharmonic coupling between the antisymmetric and

symmetric OH-stretch and in the same time indicates that the stretchings of individual

O-H bonds are energetically favourable. This type of interaction is know as the Davy-

dov coupling and indicates a strong resonance interaction between two degenerate OH

stretching vibrations of the monomer units (q1,q2) that couple and split into two OH

stretching normal modes of the dimer (Q1,Q2) (see also Figure 4.12):

Q1 =
1√
2

(q1 − q2); Q2 =
1√
2

(q1 + q2)

Using the 2D potential calculated at the B3LYP/6-31+G(d) level of theory the frequen-

cies of the symmetric νOH(ag) and antisymmetric νOH(bu) modes were calculated as 3076

                           

                                        

                                

                                        

                                        

                                        

                          

                                        

                                

                                        

                                        

                                        

Q2 = νOH(ag)Q1 = νOH(bu)

Figure 4.12: Antisymmetric (Q1) and symmetric (Q2) OH stretching mode of the formic

acid dimer. Only the most relevant displacements are shown.
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cm−1 and 3090 cm−1 , resulting in a splitting of only 14 cm−1 . The calculated νOH(bu) fre-

quency is red shifted by 169 cm−1 from its harmonic value. The symmetric νOH(ag) band

is IR inactive which is reflected in the intensity of the calculated fundamental transition

that is for two orders of magnitude smaller than the intensity for the νOH(bu) funda-

mental. At the B3LYP/6-31G(d) level of theory the two corresponding transitions are

found at 3134 cm−1 and 3139 cm−1 , and at the B3LYP/6-31G(d,p) level of theory at

2957 cm−1 and 3009 cm−1 . The frequency splitting between the two OH stretch tran-

sitions are 5 cm−1 and 50 cm−1 at the B3LYP/6-31G(d) and B3LYP/6-31G(d,p) level of

theory indicating the large difference in the barrier height for the HAT at three levels of

theory. At the B3LYP/6-31G(d,p) level of theory the lowest barrier height is obtained

(∆E = 5.41 kcal mol−1 in Table 4.5) and correspondingly the largest interaction of the

two OH stretching modes is found, and the largest difference between the OH stretch-

ings is obtained.

To investigate other possible interactions that shape the νOH(bu) band, like Fermi res-

onances with fingerprint vibrations and couplings with low frequency modes, a series

of three-dimensional potentials were generated and the corresponding eigenvalue prob-

lems were solved. The results are complied in Table 4.12. From the value of the νOH(bu)

frequency in Table 4.12 it can be seen that none of the interactions with the νOH(bu)

mode alone lead to the red shift. On the contrary, the interaction of the νOH(bu) mode

with the bending OH modes δOH, C=O stretching νC=O mode or the low frequency modes

alone leads to a blue shift of the anharmonic frequency compared to the harmonic value

of 3245 cm−1 . Furthermore, because of the frequency mismatch between the overtones

of δOH(bu) + δOH(ag) at 2888 cm−1 and δOH(bu) + νC=O(ag) at 3154 cm−1 , and νOH(bu) at

3349/3352 cm−1 there is also no increase in the intensities of the bending or stretching

overtones. Hence, only upon the inclusion of the symmetric νOH(ag) mode in the model

the red shift of the antisymmetric OH stretch band appears. Fermi resonances with

the combination bands can then contribute to the shape of the νOH(bu) band. In addi-

tion, within the νOH(bu) band Frank-Condon type vibrational progression are observed.

Namely, computations performed on the potentials including the low frequency modes

indicate that the νOH(bu) fundamental transition is accompanied with additional transi-

tions whose difference with the νOH(bu) frequency matches exactly the frequencies of

the stretching and rocking modes of the dimer. In other words, once the Davydov inter-

action is taken into account, the scenery of the OH stretch band broadening encountered

in ACAC is repeated.
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Table 4.12: Two and three-dimensional vibrational analysis of the νOH(bu) band cal-

culated at the B3LYP/6-31+G(d) level of theory. Only transitions with significant IR

intensities are listed.

Dim. Coordinate µ Anharm. Intensity Assignment
a.m.u. cm−1 a.u.

2D νOH(ag) 1.074 3076 0.006
νOH(bu) 1.068 3090 0.263 νOH(bu)

3D δOH(bu) 1.177
δOH(ag) 1.293 2888 0.003 δOH(bu) + δOH(ag)
νOH(bu) 1.068 3349 0.208 νOH(bu)

δOH(bu) 1.177
νC=O(ag) 5.969 3154 0.002 δOH(bu) +νC=O(ag)
νOH(bu) 1.068 3352 0.205 νOH(bu)

dimer stretch (ag) 9.748 3315 0.214 νOH(bu)
in-plane rock (ag) 8.609

νOH(bu) 1.068

δOH(bu) 1.177 3040 0.270 νOH(bu)
νOH(ag) 1.074
νOH(bu) 1.068

dimer stretch (ag) 9.748 2995 0.280 νOH(bu)
νOH(ag) 1.074 3213 0.014 νOH(bu) +dimer stretch (ag)
νOH(bu) 1.068

in-plane rock (ag) 8.609 2997 0.270 νOH(bu)
νOH(ag) 1.074 3177 0.017 νOH(bu) +dimer rock (ag)
νOH(bu) 1.068
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4.3 Large amplitude approaches

This section is concerned with methods tailored to quantitatively describe the hydrogen

large amplitude motion (LAM) in H-bonded systems. In the first approach, the HAT

reaction in FAD and ACAC is described using internal coordinates. This approach re-

sults in a complicated form of a kinetic energy operator and one has to consider kinetic

coupling terms as well as variable, coordinate dependent reduced masses. The other

two approaches are aimed at constructing a set of LAM coordinates which diagonalize

the kinetic energy of the N particles relative motion. These approaches are used to treat

the mode specific tunneling dynamics in FAD. As already mentioned, there had been a

controversy concerning the splittings for the FAD vibrational ground and asymmetric

C-O stretch excited state observed in the VRT experiments [14, 45]. The LAM methods

will be used to calculate the observed splittings.

4.3.1 Internal coordinates

Acetylacetone

To gain new insight into the hydrogen atom tunneling dynamics in ACAC, the spectrum

of the enol form was further investigated by using a set of internal, large amplitude

coordinates. Three symmetry adapted coordinates were used to span a three dimensional

surface of ACAC (Figure 4.13):

ρ1 = r1 + r2

ρ2 = r1 − r2

ρ3 = θ (4.2)

where r1 is the distance from the bridging hydrogen atom to the donor oxygen atom,

r2 is the distance from the bridging hydrogen atom to the acceptor oxygen atom, and θ
                                        

                                        

                                        

                                        

                                        

                                        

                                                                                                                        

r1 r2

θ

Figure 4.13: Internal coordinates used in the calculation of ACAC IR spectra
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is the OHO angle. A related set of coordinates has been used by Shida and Almlöf for

treating proton tunneling in malonaldehyde (MA) [39]. To span the 3D reaction surface

of MA they used the internal coordinates r1 and r2, and in addition the distance between

the oxygen acceptor and oxygen donor, R. Almost identical coordinates to ρ1, ρ2 and

ρ3 have been recently used by Špirko et al. in a reduced dimensionality study of the

hydrogen atom transfer reaction in formimidol [116]. The symmetry adapted internal

coordinates from Eq. (4.2) are designed to capture some basic features of the O-H· · ·O
moiety in systems with hydrogen atom transfer. The coordinates ρ1 and ρ2 describe the

symmetric and asymmetric hydrogen atom motion, while ρ3 accounts for the distance

between the two oxygen atoms.

The potential and the dipole moment surfaces were calculated on a variable grid

with fixed ρ1, ρ2 and ρ3 values, while all other degrees of freedom were optimized. For

ρ3 = 107◦ the ρ1× ρ2 grid size was 15× 16, while for ρ3 = 187◦ the size was 10× 10.

Furthermore, during the optimization, the planarity of the chelate ring was enforced and

the methyl groups were fixed in the eclipsed conformation which enhances hydrogen

atom tunneling. In fact, the full optimization of the PES was attempted, but because of

the extreme floppiness of the methyl groups rotational potential the calculation turned

out to be numerically prohibitive. Nevertheless, the assumption of the ring planarity

can be justified because of the large barrier height for syn-anti isomerization (16.2 kcal

mol−1 at the B1LYP/6-311G(d,p) level of theory) and the lower barrier to hydrogen atom

transfer in ACAC compared to MA. These are indications that the in-plane motion of

ρ1/Å

ρ2/Å

ρ3/rad

Figure 4.14: Three dimensional potential for ACAC spanned by the internal coordi-

nates ρ1,ρ2 and ρ3. Isosurfaces are spaced by 800 cm−1 , and the most inner isosurface

corresponds to an energy of value 800 cm−1 above minimum.
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the bridging hydrogen atom is strongly favoured. The three dimensional potential for

ACAC is shown in Figure 4.14. The potential clearly displays a double well shape

characteristic for the HAT systems.

To deal with a pure vibrational problem all structures resulting from the δρi dis-

placements were rotated and translated in order to satisfy the center of mass and Eckart

conditions (see Appendix A). The reference geometry to which each conformation was

rotated and translated was the C2v structure of the transition state for HAT reaction

(TS3).

To construct the vibrational problem, the elements of Wilson G-matrix Grs,r = 1,3; s =

1,3 for each ρ1, ρ2 and ρ3 value were calculated. Following the work of Alexandrov et

al. [117] and J. Stare and G. Balint-Kurti [85], first the elements of the inverse of the

G-matrix, Grs elements were calculated as

Grs =
3N∑

i=1

1
mi

∂xi

∂ρr

∂xi

∂ρs
(4.3)

The evaluation of the elements ∂xi/∂ρr is essential in order to incorporate the effect

of Cartesian-internal coordinate coupling that originates from the imposed Eckart con-

straints. While evaluating the derivatives ∂ρr/∂xi, one should first variate the Cartesian

coordinate, impose the Eckart condition and then calculate the resulting change in inter-

nal coordinate. As the Eckart frame constrains affect only the Cartesian coordinates, but

leaves the internal coordinates intact, non-zero derivatives ∂ρr/∂xi would then arise only

when the definition of the internal coordinate ρr involves the Cartesian coordinate xi. On

the other hand, when calculating the ∂xi/∂ρr derivatives, in general, all the ∂xi/∂ρr ele-

ments should have non-zero values for the variation of the internal coordinate affects all

of the Cartesian coordinates through the imposed Eckart conditions. After calculating

the Grs elements for each value ρ1, ρ2 and ρ3, the Grs elements were obtained by invert-

ing the corresponding 3×3 Grs matrices. The evaluation of the Grs elements requires the

knowledge of the mutual dependence between all Cartesian and all internal coordinates.

As there are 45 Cartesian coordinates in ACAC, 45 3D surfaces which represent the

change of a particular Cartesian coordinate on the PES had to be analyzed. For exam-

ple, to evaluate the derivatives ∂xi/∂ρ1 at each grid point and for each possible value of

ρ2 and ρ3, the selected atomic Cartesian coordinate xi was 1D spline interpolated along

ρ1 and then the ∂xi/∂ρ1 value was evaluated for each value of ρ1. The same procedure

was repeated twice with interchanged roles between the ρ1, ρ2 and ρ3 to get the ∂xi/∂ρ2

and ∂xi/∂ρ3 derivatives, respectively. All together, 15 000 1D spline interpolations have

been done. Figure 4.15 displays selected results of the Grs matrix calculation. 2D cuts

(ρ3 set to 187 ◦) of G-matrix elements surfaces are presented. All G-matrix elements

display a considerable coordinate dependence but the G22 term varies at most, in the
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Figure 4.15: 2D projections of the G-matrix elements for q3 = 187◦ for the SYN con-

former of ACAC.
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range between 1.7 and 4.3 (a.m.u.)−1. For the particular choice of internal coordinates

given in Eq. (4.2) the coupling terms: −0.08≤G12 ≥ 0.08, −0.07≤G13 ≥ 0 and −0.4≤
G23 ≥ 0.04 are small when compared to the diagonal ones. The coordinate dependence

of the G-matrix elements has a great importance for in this way the coupling of the 3D

subspace of internal degrees of freedom to other degrees of freedom of the molecule is

taken into account, at least in the approximative way.

Further, the 3D potential, dipole moment surfaces and the six symmetry unique Grs

surfaces were interpolated by using the weighted Shepard interpolation scheme as im-

plemented by Renka [108] on a 25× 25× 25 direct product grid in the range 2.15

Å≤ ρ1 ≤ 4.05 Å, -2.0 Å≤ ρ2 ≤ 2.0 Å and 107◦ ≤ ρ3 ≤ 187◦. The eigenvalues El,m,n

and eigenfunctions Ψl,m,n of the vibrational Schrödinger equation
[
T̂ρ +V (ρ1,ρ2,ρ3)

]
Ψl,m,n(ρ1,ρ2,ρ3) = El,m,nΨl,m,n(ρ1,ρ2,ρ3) (4.4)

were obtained using the Fourier grid Hamiltonian method in internal coordinates [85]

(see also the Appendix B). As previously, for the diagonalization of the matrix represen-

tation of the Hamiltonian the implicitly restarted Lanczos method [109] implemented in

the ARPACK package [110, 111] was used.

Various approximations to the vibrational problem were investigated by solving the

vibrational problem with kinetic energy operators T̂ρ given in Eqs. (3.48), (3.49) and

(3.50). However, already the coordinate dependence of the G matrix elements shown in

Figure 4.15 provided important information about the strength of the coupling between

the vibrations of the O-H· · ·O moiety and the remaining degrees of freedom. Accord-

ingly, assumptions concerning the accuracy of the various approximations given in Eq.

(3.48)-(3.50) could be made. For instance, for the chosen set of internal coordinates, the

coupling terms G12, G13 and G23 are small compared to the diagonal elements, and one

could expects that Eq. (3.49) would provide a more accurate description of hydrogen

bond dynamics than Eq. (3.50).

After the vibrational eigenvalues and eigenfunctions on the V (ρ1,ρ2,ρ3) potential

were obtained, the tunneling splitting of the ground state, i.e., the vibrational transition

frequency from the symmetric, 0(+), to the asymmetric ground state, 0(-), was simply

calculated as the difference between the two lowest eigenvalues.

ω (0(+)→ 0(−)) = E100 − E000 (4.5)

By analogy the vibrational transition frequencies of the O-O stretching doublet are

ω (0(+)→ 1(−)) = E101 − E000 and ω (0(+)→ 1(−)) = E001 − E000. Since the relationship

between the OH stretching mode and the selected internal coordinates is not easy to

establish an assignment was based on the comparison between IR intensities, I0(ω), ob-

tained from the dx and dy components of the dipole moment separately (see Eq. (4.1)).
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Table 4.13: Vibrational transition frequencies and intensities for the TS2 conformer

of ACAC obtained from fully coupled calculations (Eq. (3.48)), "no kinetic coupling"

approximation (Eq. (3.49) and "constant G-matrix" approximation Eq. (3.50)).

Eq. (3.48) Eq. (3.49) Eq. (3.50)
freq/cm −1 Int. freq/cm −1 Int. freq/cm −1 Int.

ground state
0(+)→ 0(-) 116 0.1321 89 0.1480 208 0.1058

O-O mode
0(+)→ 1(-) 523 0.00075 555 0.00013 632 0.00366
0(-)→ 1(+) 224 0.0339 284 0.0308 191 0.0332

O-H stretching
0(+)→ 1(-) 2683 0.0030 2539 0.0032 2816 0.0020
0(-)→ 1(+) 1830 0.0041 1734 0.0027 1706 0.0020

Table 4.13 compiles the vibrational transition frequencies and the intensities for the

TS2 conformer obtained by employing Eq. (3.48), (3.49), (3.50). The fully coupled cal-

culation gave a ground state tunneling splitting of 116 cm−1 . By neglecting the mixed

derivative terms (equivalent to neglecting the off diagonal elements of G-matrix) one

obtains a tunneling splitting of 88 cm−1 . A different situation is encountered in the con-

stant G matrix approximation where the tunneling splitting is greatly overestimated and

a value of 207 cm−1 is obtained. These results confirm the prediction that the constant

G-matrix approximation of Eq. (3.50) is inadequate to describe the large amplitude hy-

drogen motion. Obviously, the hydrogen atom transfer induces a rearrangement of the

whole molecular frame and the corresponding geometrical changes have to be accounted

both in the potential and in the kinetic energy operator via accurate kinematic couplings.

In contrast to the normal mode description, where the line assignments in terms of

zero-order states were quite straightforward, here the assignments, based on inspection

of the wave functions plots, are more difficult. Valuable additional insight into the nature

of the transitions is obtained by considering separately the contributions from the d x

and dy vector components of the dipole moment. As the interest was in the stretching

transitions, the focus was on the component of the dipole moment that changes mostly

during the stretching motion i.e. the x component of the dipole moment. For the O-O

stretching doublet the calculation yielded the transitions on 224 cm−1 and 523 cm−1 . The

two frequencies find good correspondence to the observed modes at 220 cm−1 (νO−H···O

mode [28]) and 508 cm−1 (in plane ring deformation mode, ν32 in the Table 4.6).

Figure 4.16 displays the calculated stick spectrum in the frequency range 500-4000
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Figure 4.16: IR stick spectrum of the ACAC TS2 conformer at T=297 K in the 500-4000

cm−1 frequency range obtained in the internal coordinate representation. Transitions

from the symmetric (solid black bars) and asymmetric (open dashed bars) ground states

are shown on the same plot.

cm−1 . The transitions from the symmetric 0(+) ground state are shown in black and

these from the asymmetric state 0(-) are in grey. The peak at 2683 cm−1 is assigned to

a transition from the symmetric ground state to a vibration with an antisymmetric OH

stretch character, and the peak at the 1830 cm−1 is assigned to a transition from the an-

tisymmetric ground state to a vibration with the symmetric OH stretch character. As a

result, the tunneling induced splitting in the OH stretch mode is calculated to be 853

cm−1 in the fully coupled case. Due to the strong promoting character of the OH stretch-

ing mode such large tunneling splitting was expected. The uncoupled Hamiltonian given

in Eq. (3.49) yields the value of 806 cm−1 . The constant G-approximation again pro-

vided a larger splitting of 1100 cm−1 . Comparison with the normal modes calculation

shows a blue shift of the 0(+)→ OH,1(-) transition by about 300 cm−1 and a red shift

of the 0(−)→ OH,1(+) transitions by more than 500 cm−1 (compare to Table 4.10). The

results are given with respect to the TS2 most intense transition at 2350 cm−1 . It should

be noted that the calculations were performed under the assumption of the planarity of

the molecular ring, and it is reasonable to expect that the frequencies of the excited

vibrational states could be overestimated. On the basis of the previous work on malon-

aldehyde [118] which compared planar and non-planar PES, the value of the OH-stretch

vibrational energy level would be lower by as much as 100-200 cm−1 . However a much

smaller error is expected to occur for the splittings.
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The red shifted 0(−)→OH,1(+) transition falls into the C=O stretch band region.

As already mentioned, the C=O stretch band has an interesting, still unexplained, three

maxima peak structure. The temperature dependent experiments by B. Cohen and S.

Weiss showed that only the intensity of the middle component at 1630 cm−1 changes with

the temperature [56]. Also, only two components are observed at all temperatures in the

spectra of the deuterated compound (d2-ACAC). Based on the previous perturbative and

reduced dimensionality studies, it can be concluded that this results can not be explained

just by the coexistence of two, energetically low laying ACAC conformers as in the work

of Tayyari et al. [29]. According to the presented results the middle component of the

C=O stretch band could be assigned to the 0(-) → OH,1(+) transition. Indeed, due to

the ground state tunneling splitting of 116 cm−1 , the intensity of the 0(-) → OH,1(+)

transition ought to be temperature dependent. Also, the position of the transition would

change strongly in the deuterated molecules. However, for a more definitive assignment,

an extension of the dimensionality of the model and the full optimization of the PES are

required.
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The formic acid dimer

For FAD two symmetry adapted internal coordinates were used to describe the syn-

chronous double hydrogen transfer (Figure 3.4). There are:

ρ1 = r1 − r3 + r2 − r4, ρ2 = R1 + R2

where r1 and r2 denote the distances from the hydrogen atom to the donor oxygen atoms

and the r3 and r4 distances from the hydrogen atom to the acceptor oxygen atoms. R1 and

R2 are the distances between the oxygen atoms in two monomers. This set is analogous

to the set of coordinates used by N. Shida et al. to span the reaction surface for FAD

[39]. The chosen coordinates incorporate the basic features of the double HAT reaction

in FAD, i.e., the ρ1 coordinate describes the simultaneous symmetric H atom transfer

process while ρ2 accounts for the distance between the two FA monomers.

The potential is constructed on a variable grid in the ρ1 and ρ2 direction at the

B3LYP/6-311++G(3df,3pd) level of theory. This basis set was chosen in order to di-

rectly compare our results to previously calculated ground state tunneling splitting using

the instanton approach [42]. Namely, upon the inclusion of the CCSD(T) energy cor-

rection using this basis set, Mil’nikov et al. obtained the ground state tunneling splitting

of 0.0038 cm−1 which is very close to the assignment of F. Madeja [14].

To construct the potential all together 240 ab initio points were calculated on a -4.0

Å < ρ1 < 4.0 Å and 4.43 Å < ρ2 < 7.13 Å grid. All other degrees of freedom were

optimized. The 2D potential and the three symmetry unique Grs matrices were interpo-

lated using the weighted Shepard interpolation scheme to a 41× 33 regular grid [108].

ρ1/Å

16000

0.0
-4.0

4.0

4.5

7.5

E/cm−1

ρ2/Å

Figure 4.17: 2D potential of FAD spanned by internal coordinates ρ1 and ρ2. The

coloured points denote the IRP for HAT reaction connecting two minima (blue points)

via a transition state (red point).
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The 2D potential is displayed in Figure 4.17. The chosen coordinates reproduce the

FAD double well shape of the potential where the two potential minima correspond to

the two C2h structures of FAD in Figure 2.4. The potential also reveals features char-

acteristic for large amplitude motion in double well potentials: at short intermonomer

distances (small ρ2 value) the bridging hydrogen atom experiences a single well poten-

tial while increasing the intermonomer distance (increasing the ρ2 value) the barrier to

the hydrogen atom transfer rises and hydrogen tunneling sets in.

Figure 4.18 displays the coordinate dependence of the G11, G12 and G22 matrix ele-

ments for the geometries with energy lower than 16 000 cm−1 . The G-matrix elements

were calculated using the same procedure as described in section 4.3.1 for ACAC. On

the basis of the earlier results it was concluded that the general geometrical changes trig-

gered by the hydrogen transfer have to be included via an accurate kinematic coupling.

The coordinate dependence of the G-matrix elements approximately takes into account

the coupling of the 2D subspace spanned by the ρ1 and ρ2 directions to other, geometri-

cally optimized degrees of freedom of the molecule. It can be seen that all the elements

display a considerable coordinate dependence with the G11 term varying between 0.3

and 6.0 (a.m.u.)−1. As in the case of ACAC, the off-diagonal coupling term G12 is small

compared to the diagonal ones. The Schrödinger equation

[T̂q +V (ρ1,ρ2)]Ψm,n(ρ1,ρ2) = Em,nΨm,n(ρ1,ρ2) (4.6)

with the kinetic energy operator T̂q given in Eqs. (3.48), (3.49) and (3.50) was solved

using the Fourier grid Hamiltonian method in internal coordinates [85]. As previously,

for the diagonalization, the Lanczos method was used [109]. The ground state split-

ting (0(+) → 0(-)) was determined as the energy difference between the two lowest

eigenstates. The full form of the kinetic energy operator yielded a ground state tun-

neling splitting of 0.0121 cm−1. By neglecting the mixed derivative term and retaining

the G-matrix coordinate dependence a tunnelling splitting of 0.007 cm−1 was obtained.

The constant G-matrix approximation overestimates the splitting giving the value of

13.84 cm−1. As in the case of ACAC neglecting the effect of geometry relaxation in

a kinetic energy operator leads to a completely unrealistic representation of the HAT

reaction overestimating the ground state splitting by orders of magnitude. The effect

of the geometry relaxation on the tunneling dynamics in FAD was also investigated by

D. Lauckaus [18]. He performed fully coupled ro-vibrational calculations up to six di-

mensions for FAD with and without geometry relaxation. On the potential with the

barrier height of 2930 cm−1 ground state tunneling splittings in the range from 0.17 to

0.0088 cm−1 were obtained for the flexible model depending on the dimensions of the

problem and the choice of explicitly treated internal coordinates. The realistic values
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Figure 4.18: Coordinate dependence of the G11, G12 and G22 matrix elements in

(a.m.u.)−1 for the geometries of the FAD with the energy lower than 16 000 cm−1 .
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Table 4.14: The ground state tunnelling splittings for FAD calculated at the B3LYP/6-

311++G(3df,3pd) and CCSD(T)/cc-pVTZ//B3LYP/6-311++G(3df,3pd) level of theory

using the internal coordinates ρ1, ρ2 for a fully coupled calculation (Eq. (3.48)), "no

kinetic coupling" approximation (Eq. (3.49)) and "constant G-matrix" approximation

(Eq. (3.50)).

Eq. (3.48) Eq. (3.49) Eq. (3.50)
freq/cm−1 freq/cm−1 freq/cm−1

DFT
0(+)→ 0(−) 0.0121 0.007 13.8

with CCSD(T) correction
0(+)→ 0(−) 0.0111 0.009 14.3

for the rigid model are obtained only if all the major heavy atom motion of the HAT

process are explicitly included in the treatment. In FAD at least four internal coordi-

nates had to be included. D. Luckhaus [18] has shown that a converged ground state

splitting can be obtained in a five dimensional model yielding the splitting of 0.0013

cm−1 for (DCOOH)2. Furthermore, Mil’nikov et al. used the instanton WKB theory

on the B3LYP/6-311++G(3df,3dp) potential and obtained the value of 0.17 cm−1 for the

ground state tunneling splitting in FAD [42]. Taking into account the CCSD(T) cor-

rections the ground state splitting of 0.0038 cm−1 was obtained. A large change of the

barrier height from 2280 cm−1 (at the DFT/6-311++G(3df,3dp) level) to 2837 cm−1 (the

CCSD(T) correction) induced a large change in the splitting due to the differences in

instanton trajectories. On the other hand the inclusion of the CCSD(T) correction to the

DFT V(ρ1, ρ2) potential introduces a small change of the ground state splitting. Namely,

on the CCSD(T)/cc-pVTZ//B3LYP/6-311++G(3df,3dp) potential the ground state split-

ting of 0.01108 cm−1 was obtained (Table 4.14). The difference between the DFT and

CCSD(T) calculation is negliable compared to the CPU time needed for the calculation

of the correction (around 120 single point calculation at the CCSD(T)/cc-pVTZ level

was needed in order to calculate the correction). Such a negliable change is obviously a

consequence of the fact that couple cluster corrections were calculated for frozen DFT

geometries. It can be expected that the geometry relaxation on the CCSD(T) level would

effect the HAT dynamics mainly through the change of the coordinate dependence of G-

matrix elements since the DFT results both in the case of ACAC and FAD have proven

the dominance of this effect. However, such calculations at the CCSD(T)/cc-pVTZ level

for the molecule like FAD are still computationally prohibitive.
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4.3.2 Reaction Space Hamiltonian approach

Large amplitude coordinates

In this section the reaction space Hamiltonian (RSH) method is used to describe the

mode specific tunneling dynamics in FAD. Following the approach in Ref. [19] two col-

lective large amplitude coordinates d1 and d2 were constructed as given by Eqs. (3.59)

and (3.60). Mass weighted coordinates for the right-hand (XR), left-hand (XL) minimum

and the transition state for the HAT (XTS) calculated at the B3LYP/6-311++G(3df,3pd)

level of theory have been used. It is important to notice that the geometries XR and XL

are unique only up to an arbitrary rotation. To remove this arbitrariness, two geometries

of the minima as well as all the geometries on the IRP were rotated with respect to the

XTS in order to satisfy the Eckart conditions. The atomic displacements corresponding

to the d1 and d2 vectors are shown in Figure 4.19. It can be seen that the coordinate

d1 corresponds to the double hydrogen atom transfer motion while d2 accounts for the

distance between the two FA monomers. As suggested in Ref. [19] to inspect part of

the potential spanned by vectors d1 and d2, the IRP connecting the XTS structure with

the minima structures XR and XL, was projected onto the reaction plane (d1,d2). The

projected geometries are calculated as

X(s) = XTS +
2∑

i=1

[(X(s) − XTS) ·di]di (4.7)

and the difference respect to the corresponding geometries on the IRP was expressed as

the root-mean squared (RMS) difference:

σ2 =
1√
Nat

√
(x(s) − x(s))2 (4.8)
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Figure 4.19: Displacements along the vectors d1, d2 and d3. Only the most important

displacements are shown.
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where the lower case letters refer to non-mass weighted geometries. The results are

displayed in Figure 4.20. The upper panel shows the energy profile of the IRP (solid

squares) and its projection on the (d1,d2) plane (crosses) while the lower panel displays

the RMS difference between the corresponding geometries (crosses). By definition, the

RMS difference vanishes at the transition state (s = 0 a0 (a.m.u.)−1/2) and at the minima
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Figure 4.20: Upper panel: Energy profile along the IRP (solid squares) and the energy

difference between the IRP geometries and their projections on a reaction plane spanned

by vectors d1 and d2 (crosses). Lower panel: Crosses - RMS difference between the

IRP geometries and their projection on the plane spanned by d1 and d2. Solid dots -

RMS difference between the IRP geometries and their projection on the reaction space

spanned by d1, d2 and d3 vectors
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(s = 3.3 a0 (a.m.u.)−1/2, s=-3.3 a0 (a.m.u.)−1/2). It reaches its maximum of 5.1 ·10−2 Å at

s = 1.1 a0 (a.m.u.)−1/2 (Figure 4.20) with an energy difference of more than 1600 cm−1 .

Because of the large deviation of the IRC geometries from the reaction plane spanned by

the vectors d1 and d2 one concludes that the reaction plane represents a poor start for a

Taylor expansion of the full-dimensional potential of FAD. To build up a configurational

subspace closer to the IRP a third vector d3 was introduced. The vector was constructed

using the two symmetrically related geometries XPL and XPR for which the (d1,d2) RMS

difference σ(2)(s) in Figure 4.20 has its maximum. It was defined as

d3 =
XPL − XPR

|XPL − XPR|
(4.9)

and Gram-Schmidt orthogonalized with respect to the d1 and d2 vectors. The three

dimensional space spanned by d1, d2 and d3 vectors will be called reaction space. Ac-

cording to the molecular symmetry transformation T (permutation of atoms and rotation

which transforms XL to XR and vice versa) the d3 vector transforms as

T d3 = −d3

The atomic displacements corresponding to the d3 vector are shown in Figure 4.19.

These involve a wagging motion of the formic acid monomer accompanying double

hydrogen transfer. At this point it should be emphasized that the construction of the

d1 and d2 vectors is general [16, 19, 93] but the inclusion of the other large amplitude

vectors depends on the system in hand. For instance, the change of the FAD geometrical

parameters along the IRP displayed in Figure 4.5 already indicated a kind of wagging

motion of FA monomers during the HAT. This motion had to be incorporated in the

treatment via a third LAM coordinate in order to construct the configurational subspace

which confines the IRP. The RMS difference between the IRP geometries and their

projections on the reaction space, σ(3)(s) is shown in a lower panel of Figure 4.20 (solid

dots). One can see that the IRP lies approximately in the reaction space. Namely, in

the 3D case the RMS difference has a maxima of only 0.73 · 10−2 Å at s = ±2.1 a0

(a.m.u.)1/2 (Figure 4.20) which corresponds to an energy difference of around 25 cm−1 .

The energy profile of the IRP in the reaction space spanned by d1, d2 and d3 vectors is

shown in Figure 4.21. The red squares in the IRP correspond to the geometries with the

highest energy (starting from the transition state) and the blue colour corresponds to the

geometries with the lowest energy on the IRP (ending in two minima). On the sides, the

projection of the IRP on the reaction planes spanned by the d1/d2 (red), d1/d3 (green)

and d3/d3 vectors (blue) are shown.
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Figure 4.21: The energy profile of the IRP in the reaction space spanned by d1, d2 and

d3 vectors. On the sides, the projection of the IRP on the reaction planes spanned by the

d1/d2 (red), d1/d3 (green) and d3/d3 vectors (blue) are shown.

The form of the reaction space Hamiltonian for FAD

The full-dimensional potential for FAD can be constructed as a harmonic approximation

around the reaction space spanned by the three reactive degrees of freedom as given in

Eq. (3.64). As explained in Chapter 3, section 3.3.3 the harmonically treated degrees of

freedom, {Qi} are obtained by diagonalizing the mass-weighted force constant matrix at

the transition state with symmetry D2h (K(f)(XTS)) from which the d1, d2 and d3 vectors

as well as the rotational and translational directions were projected out. Note that the

rigorous separation of the rotational motion would require rotation of all reaction space

geometries in order to satisfy the Eckart conditions. However, this would destroy the

orthogonal form of the Hamiltonian given in Eq. (4.11). For that reason the rotation is

approximatively eliminated from the reaction space by imposing the Eckart conditions

for the minima and the IRP geometries and from the "bath" by expressing the remaining

DOF in terms of the eigenfunctions Qi of the projected force constant matrix at the

transition state geometry:

KP(XTS) = (1 −P)K(f)(XTS)(1 −P) (4.10)

Diagonalization of the KP(XTS) matrix yields 3Nat − 9 = 21 normal mode Qi with non-

vanishing eigenvalues (ω2
i ). The projector P was defined in Eq. (3.67). All of these

modes can be characterized according to the transformation T as symmetric (+) or anti-
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symmetric (-). In passing, it should be noted that projecting out the d1, d2 and d3 vectors

from the force constant matrix at the transition state corresponds to projecting out the

O-H stretching mode with the harmonic frequency 1265i cm−1 and symmetry b3g, O· · ·O
stretching mode (symmetry ag) with the frequency of 505 cm−1 and the CO2 rocking

mode, (symmetry b3g) with the frequency of 232 cm−1 . Thus one concludes that these

three motions are incorporated in the treatment via three LAM coordinates.

The difference between the IRP and its projection (X(s) − X(s)) can be further an-

alyzed by expressing it in terms of the displacements of the modes ∆Qi relative to a

variance δi of a corresponding ground state harmonic oscillator wave function (a Gaus-

sian). These are shown in Figure 4.22. The relation between the δi in a0 (a.m.u.)−1/2 and

the frequency of the mode ωi is calculated as

δi =

√
h̄
ωi

For all modes the displacement ∆Qi is smaller than 15 % of the variance δi. For a

Gaussian like function exp(−x2/2δ2) at the position x = 0.15δ the value of the function

droppes to 99 % of its maximum. This indicates that all the displacements are small

compared to the extend of a ground state wave function of the corresponding mode and

that further improvements of the reaction space would have a negliable effect on a proper

description of the IRP.

Very recently, the high resolution spectra in the region of the C-O asymmetric stretch

in (HCOOH)2 has been recorded and the resulting rotational-vibrational transitions have
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Figure 4.22: Maximum displacements ∆Qi of the modes orthogonal to the reaction path

along the IRP relative to variance δi of a ground state harmonic oscillator wave function

with the eigenfrequency ωi.
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been assigned [45]. Denoting the set of normal modes at one of the FAD minima

as {Y (f)
k } the asymmetric C-O stretch corresponds to the Y(f)

11 mode with a harmonic

frequency of 1260 cm−1 at the B3LYP/6-311++G(3df,3pd) level. To include the C-O

stretching mode in the full dimensional Hamiltonian (see section 3.3.3), the overlap of

the Y(f)
11 mode with a set of {Qi} modes was inspected. The absolute values of the over-

laps |Y(f)
11 ·Qi| are shown in Figure 4.23. Appreciable overlaps of the Y(f)

11 mode exist

with the:

(i) symmetric modes of b1u symmetry: Q9, (harmonic frequency ν = 1397 cm−1), Q13

(ν = 1235 cm−1) and Q16 (ν = 804 cm−1)

(ii) asymmetric modes of b2u symmetry: Q3 (ν = 1725 cm−1), Q6 (ν = 1566 cm−1 ),

Q7 (ν = 1403 cm−1 )

On the basis of these overlaps and by exploring the fact that any linear combination of Qi

modes is equivalent, two new modes were defined: the qa mode as a linear combination

of antisymmetric Qi modes and the qs mode as a linear combination of symmetric Qi

modes. The modes are constructed in such a way that the coefficients in the linear

combination reproduce the overlap | Y(f)
11 · Qi |. Specifically the combinations qa =√

2/5Q3 +
√

1/5Q6 +
√

2/5Q7 and qs =
√

9/11Q9 −
√

1/11Q13 +
√

1/11Q16 were used.

The new coordinates transform as:

T qs = qs, T qa = −qa

 0.8
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 0
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Figure 4.23: Absolute values of the overlaps |Y(f)
11 ·Qi| where Y (f)

11 denotes the CO asym-

metric stretching mode. Overlaps with the symmetric modes Qi are shown as solid bares

and with the asymmetric modes Qi as dashed bares.
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Chapter 4. Results and discussion 4.3. Large amplitude approaches

It can be seen that for both sets, the reduced mode Y(4D)
2 exclusively involves only one

mode qa or qs while the Y(4D)
1 , Y(4D)

3 and Y(4D)
4 reduced modes involve linear combination

of all reaction space vectors d1, d2 and d3. Namely, in the harmonic approximation the

coupling of the qa and qs modes and the d1, d2 and d3 modes is forbidden by symmetry

(b1u⊗b3g 6= ag or b2u⊗b3g 6= ag).

The reduced normal modes (Y(4D)
k ) are further analyzed by inspecting their overlaps

(p jk) with the full normal modes of the minimum (Y(f)
k ). For that reason, the 3Nat× 5

matrix B (Eq. (3.73)) which transforms between the reduced space and the full dimen-

sional space was formed. The overlaps are calculated according to the Eq. (3.72) and

compiled in Table 4.16 for both sets. The reduced mode Y(4D)
1 has a largest overlap

with the OH stretching mode of the minimum (full normal mode Y(f)
4 ) with a harmonic

Table 4.16: Overlaps p jk between the reduced normal modes Y(4D)
k from Table 4.15 with

the full normal modes of the minimum Y(f)
k . Harmonic frequencies of the full normal

modes at the minimum are calculated at the B3LYP/6-311++G(3df,3pd) level of theory.

mode ω / cm−1 mode ω/ cm−1 p jk

Y(f)
2 3071 0.31

Y(4D)
1 2709 Y(f)

4 3050 -0.78

Y(f)
6 1698 -0.46

Y(f)
9 1403 -0.25

Y(f)
5 1770 0.64

Y(4D)
2 1527 Y(f)

8 1452 -0.24

Y(f)
10 1403 0.41

Y(f)
11 1259 -0.59

Y(f)
5 1770 -0.39

Y(4D)
2 1297 Y(f)

10 1403 -0.33

Y(f)
11 1259 0.75

Y(f)
17 725 0.41

Y(4D)
3 299 Y(f)

21 207 0.83

Y(f)
23 176 0.53

Y(4D)
4 190 Y(f)

21 207 -0.54

Y(f)
23 176 0.84
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4.3. Large amplitude approaches Chapter 4. Results and discussion

frequency of a 2709 cm−1. The reduced modes Y(4D)
3 and Y(4D)

4 have the largest overlap

with the low frequency skeletal vibrations (full normal modes Y(f)
21 and Y(f)

23) which are

the O· · ·O stretching mode with a frequency of 207 cm−1 and the CO2 rocking mode

with a frequency of 190 cm−1 at the minimum. From the Table 4.16 it can be seen that

neither the reduced mode Y(4D)
2 (1527 cm−1 ) nor the reduced mode Y(4D)

2 (1297 cm−1 ) can

reproduce the C-O stretching mode of the minimum (Y(f)
11 ) . They both include the anti-

symmetric C-O (full normal mode Y(f)
11) and antisymmetric C=O stretching mode (full

normal mode Y(f)
5 ). This could be expected since vectors qa and qs are both constructed

from the eigenvectors of the projected force constant matrix at the transition state of

D2h symmetry for which the difference between the C-O(donor) and C=O(acceptor)

bond does not exist. Therefore, to reproduce the asymmetric C-O stretching mode of

the minimum both modes have to be included in the calculation, which leads to a 5D

Table 4.17: Matrix which transforms the directions (d1,d2,d3, qs, qa) to a 5D space of
the reduced normal modes.

mode ω / cm−1 d1 d2 d3 qs qa

Y(5D)
1 2709 0.54 -0.19 -0.82 ≈ 0 ≈ 0

Y(5D)
2 1616 ≈ 0 ≈ 0 ≈ 0 0.51 -0.86

Y(5D)
3 1245 ≈ 0 ≈ 0 ≈ 0 -0.86 -0.51

Y(5D)
4 299 0.63 -0.55 0.54 ≈ 0 ≈ 0

Y(5D)
5 190 -0.56 -0.81 -0.18 ≈ 0 ≈ 0

Table 4.18: Overlaps p jk between the reduced normal modes Y(5D)
2 and Y(5D)

3 from Table

4.17 with the full normal modes Y(f)
k of the minimum. It can be seen that the mode Y(5D)

3

represents the antisymmetric CO stretching mode.

mode ω / cm−1 mode ω / cm−1 p jk

Y(f)
5 1770 -0.74

Y(f)
8 1452 0.23

Y(5D)
2 1616 Y(f)

10 1403 -0.54

Y(f)
11 1259 0.11

Y(f)
17 725 0.23

Y(f)
10 1403 0.11

Y(5D)
3 1245 cm−1 Y(f)

11 1259 0.97

Y(f)
17 725 -0.18
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problem.

In Table 4.17 the decomposition of the 5D (d1,d2,d3,qa,qs) space into the correspond-

ing reduced normal modes at the minimum are given. The overlaps of the two most

relevant reduced modes Y(5D)
k and the full normal modes of the minimum are compiled

in Table 4.18. Again the harmonic modes qs and qa do not mix with the reaction space

vectors. Also from Tables 4.17 and 4.18 it can be seen that the linear combination of the

qa and qs modes forming the reduced mode Y(5D)
3 = −0.86qs − 0.51qa has a 97% overlap

with the target mode Y(f)
11. Thus one concludes that the defined 5D space fully encom-

passes the asymmetric C-O stretching mode observed in the high resolution experiment.

By defining the (d1,d2,d3, qs, qa) set of coordinates, the following reaction space

Hamiltonian (q = (qa,qs)) has been obtained:

Ĥ = −
1
2

3∑

i=1

∂2

∂d2
i

−
1
2

n∑

k=1

∂2

∂q2
k

+V (d1,d2,d3,q = 0) +
2∑

i=1

∂V (d1,d2,d3,q)
∂qi

∣∣∣∣∣
q=0

qi

+
1
2

2∑

i, j=1

∂2V (d1,d2,d3,q)
∂qi∂q j

∣∣∣∣∣
q=0

qiq j (4.11)

where all other harmonic displacements are set to zero. The eigenvalue problem with

the Hamiltonian given in Eq. (4.11) has been solved for the 5D case, but also for the

4D and 3D cases. For the construction of the PES all together 1500 single point en-

ergies, gradients and Hessians were calculated on the (d1,d2,d3) grid at the B3LYP/6-

311++G(3df,3pd) level of theory. The Modified Shepard method was used for the in-

terpolation of the PES in all directions [19]. The grid parameters for the 3D(d1,d2,d3),

4D(d1,d2,d3,qs), 4D(d1,d2,d3,qa) and the 5D (d1,d2,d3,qs,qa) calculations are given in

Table 4.19. The interpolated potential at a general point X is given by the weighted

Table 4.19: Grid parameters for the eigenvalue calculation on the 3D(d1,d2,d3),

4D(d1,d2,d3,qs), 4D(d1,d2,d3,qa) and 5D(d1,d2,d3,qs,qa) PESs. For every DOF, the

grid extends from qmin to qmax with n points.

no. coor. n qmin [a0 (a.m.u.)1/2] qmax [a0 (a.m.u.)1/2]

1 d1 35 -3.5 3.5

2 d2 31 -0.6 5.0

3 d3 23 -1.4 1.4

4 qa 21 -0.38 0.38

5 qs 21 -0.42 0.42
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Figure 4.25: Three dimensional PES spanned by the large amplitude coordinates

d1,d2,d3. Isosurfaces corresponding to the energy of 800 cm−1 , 2000 cm−1 , 4000

cm−1 and 6000 cm−1 are shown.

sum over all ab initio points j [119]:

V (X)≈
∑

j

Wj(X)Vj(X) (4.12)

where the weights are given by

Wj(X) =
w j(X)

∑
k wk(X)

w j(X) =
[
(X − X( j))2

]−p

(4.13)

and X( j) represents the ab initio point. The parameter p controls the smoothness of the

interpolation (the value of 21 was taken). The contribution of each ab initio point to the

potential at the point X is given as

Vj(X) = V ( j) + G( j) · (X − X( j)) +
1
2

(X − X( j))K( j)(X − X( j)) (4.14)

where V ( j), G( j) and K( j) correspond to the energy, gradient and the force constant matrix

at the ab initio point X( j). The 3D potential V (d1,d2,d3) interpolated using the Modified

Shepard method is given in Figure 4.25. The isosurfaces corresponding to 800 cm−1 ,

2000 cm−1 , 4000 cm−1 and 6000 cm−1 are shown.

The eigenvalues and the eigenvectors of the 3D and 4D problems (Eq. 4.11) were

obtained using the Fourier Grid Hamiltonian method [83]. For the diagonalization the
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Lanczos method was used [109]. The eigenvalues and the eigenvectors of the 5D Hamil-

tonian (Eq. 4.11) were obtained by expressing the 5D eigenvectors in the basis of the

three and two dimensional eigenvectors:

Ψ
(5D)
k (d1,d2,d3,qa,qs) =

∑

i j

ci jkφ
(3D)
i (d1,d2,d3)φ(2D)

j (qa,qs) (4.15)

Here φ(3D)
i (d1,d2,d3)(i = 0(±),1(±), . . .) and φ(2D)

j (qa,qs), ( j = (Na,Ns);Na = 0,1, . . . ,Ns =

0,1, . . .) represent the eigenvectors of a 3D and a 2D problem with the potentialsV (d1,d2,d3,q =

0) and V (d = 0,qa,qs). To obtain the convergence of the eigenvalues only the lowest 12

eigenfunctions from each set were needed.

Ground and vibrationally-excited state tunneling splittings in FAD

The frequency splittings obtained by using the PESs of increased dimensionality are

compiled in Table 4.20. Only the transition frequencies are given, the IR intensities of

the transition were not calculated. The appropriate dipole moment surfaces could not be

Table 4.20: Ground state and exited state tunnelling splittings calculated on various

potentials for which the grid parameters are given in Table 4.19.

model transition ωi j / cm−1
∆i / cm−1

3D(d1,d2,d3)

ground state Ψ
(3D)
0(+) → Ψ

(3D)
0(−) 0.197

4D (d1,d2,d3,qa)

ground state Ψ
(4D)
0(+) → Ψ

(4D)
0(−) 0.162

q(a)
4 mode Ψ

(4D)
0(+) → Ψ

(4D)
1(−) 1571.60134 0.112

Ψ
(4D)
0(+) → Ψ

(4D)
1(+) 1571.71362

4D (d1,d2,d3,qs)

ground state Ψ
(4D)
0(+) → Ψ

(4D)
0(−) 0.197

q(s)
4 mode Ψ

(4D)
0(+) → Ψ

(4D)
1(−) 1373.4417 0.199

Ψ
(4D)
0(+) → Ψ

(4D)
1(+) 1373.64039

5D (d1,d2,d3,qs,qa)

ground state Ψ
(5D)
0(+) → Ψ

(5D)
0(−) 0.155

q(s)
4 mode Ψ

(5D)
0(+) → Ψ

(5D)
1(+) 1284.68851 0.0655

Ψ
(5D)
0(+) → Ψ

(5D)
1(−) 1284.75401
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4.3. Large amplitude approaches Chapter 4. Results and discussion

obtained from the ab initio calculations on the (d1,d2,d3) grid because the motion along

the reaction space directions does not change the dipole moment of the molecule, i.e.,

µα(d1,d2,d3) = 0 for α = x,y,z. The ground state tunnelling splitting i.e. the vibrational

transition frequency from the symmetric (+) to the antisymmetric (-) ground state is

determined as the difference between the two lowest eigenvalues of the Hamiltonian

(Eq. (4.11)). For the 3D case, a ground state tunneling splitting of 0.197 cm−1 was

obtained. Upon the inclusion of the qs vector in the treatment the ground state tunneling

is almost unchanged (0.197 cm−1 ). However, the 4D model in which the qa vector is

included gives the reduced value of 0.162 cm−1 indicating an anharmonic coupling of the

qa mode to the large amplitude coordinates which can not be seen from the harmonic

analysis in Table 4.16. In the 5D model in which both modes qa and qs modes were

included the ground state tunneling splitting is further reduced to the value of 0.155

cm−1 . It is only in this model that the fundamental frequency and the splitting of the

C-O stretching mode can be reproduced since here the modes qa and qs can mix giving

the correct symmetry at the minimum. The frequency of the fundamental transition

calculated as 1285 cm−1 is for a 60 cm−1 larger than the experimental value of 1225

cm−1 [45]. It should be noted however that no scaling accounting for the deficiencies of

the DFT was introduced. Further discrepancy can be explained by the limitation of the

RSH method which cannot account for the vibration-rotation coupling.

The assignment of a CO stretching fundamental transition was obtained by inspect-

ing the 2D projections of the 5D wavefunctions:

φ(2D)
k (qi,q j) =

∫
Ψ

(5D)∗
k Ψ

(5D)
k dql 6={i, j} (4.16)

The resulting 2D projections of the Ψ
(5D)
1(±) wave functions are shown in Figure 4.26. The

splitting in the asymmetric C-O stretching mode was evaluated as 0.066 cm−1 which

is a 2.4 times smaller value then the splitting in the ground state (0.155 cm−1 ). This

implies that the asymmetric C-O stretching mode of FAD is not a promoting mode as

suggested by the first experimental assignment for (DCOOH)2 [14]. On the contrary, it

can be concluded that the excitation of the C-O stretching vibrational mode suppresses

the tunneling in FAD. This finding is consistent with the results of Z. Smedarchina et

al. who presented the only theoretical prediction of both, ground state and vibrationally

excited splitting in (DCOOH)2 so far [43]. In their approximate instanton approach

third order anharmonic couplings of the tunneling coordinate to two transition state

modes (roughly corresponding to qa and qs) increase the effective mass of the tunneling

particle as well as the barrier height thus leading to a reduced value of the splitting in

the vibrationally excited state. However, in the present 5D RSH approach the reduced
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Figure 4.26: 2D projections φ(2D)
1(±)(d1,d2), φ(2D)

1(±)(d3,d2), φ(2D)
1(±)(qa,qs) of the Ψ

(5D)
1(±) wave

function calculated according to Eq. (4.16).
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splitting of the asymmetric C-O stretching mode is a consequence of a mixing between

the 3D reaction space and 2D space spanned by the qa and qs modes. Namely, by in-

specting the expansion coefficients in Eq. (4.15) it can be concluded that the excited state

5D wave function represents the combination of the qa and qs fundamental excitation,

but also contains the contribution from the reaction space wave function (φ(3D)
0(∓)(d1,d2,d3)

):

Ψ
(5D)
1(±) = [0.87φ(3D)

0(±) + 0.1φ(3D)
1(±)]φ

(2D)
01 + [0.47φ(3D)

0(∓) + 0.08φ(3D)
1(∓)]φ

(2D)
10 (4.17)

By inspecting the φ(3D)
0(∓)(d1,d2,d3) wave function it was found that it involves an excita-

tion in the d1 and d2 directions. This would correspond to the d1d2qaqs anharmonic cou-

pling model from Ref. [43] which is indeed allowed by symmetry (b3g⊗ag⊗b2u⊗b1u =

ag).

The absolute value of the splittings obtained in the 5D model (ground state = 0.155

cm−1 , excited state = 0.065 cm−1 ) is for an order of magnitude larger than the exper-

imental values obtained for (HCOOH)2 in Ref. [45] (ground state = 0.0158(3) cm−1 ,

excited state = 0.0100(3) cm−1 ). The large discrepancy can be attributed to the defi-

ciencies in the chosen DFT level of theory which cannot accurately predict the reaction

barrier. In Ref. [42] the ground state tunneling splitting of 0.17 cm−1 was obtained at

the B3LYP/6-311++G(3df,3pd) level of theory which is in agreement with the value of

0.155 cm−1 . By including the CCSD(T) correction to the electronic energy the barrier

increases from 2280 cm−1 to 2837 cm−1 and the instanton tunneling splitting drops to

the value of 0.0038 cm−1 which is slightly below the experimental value [42]. For this

reason the effect of the chosen quantum chemistry level on the absolute value of tun-

neling splittings in FAD was further investigated by using the DFT/B3LYP functional

with the 6-31+G(d) basis set. At the B3LYP/6-31+G(d) level of theory the ground state

tunneling splitting of 0.0032 cm−1 was obtained and the splitting in the asymmetric C-O

stretching was calculated as 0.0012 cm−1 . These values are for an order of magnitude

smaller than the experimental values which can be mostly attributed to a larger bar-

rier height compared to the B3LYP/6-311++G(3df,3pd) barrier (2933 cm−1 compared to

2280 cm−1 ). However, the value of 0.0032 cm−1 is close to the ground state tunneling

splitting of 0.0013 cm−1 obtained at the B3LYP/6-31+G(d) level of theory using the 5D

reduced dimensionality approach by D. Luckhaus [18]. Also, it is close to the instanton

value of 0.0077 cm−1 obtained for (DCOOH)2 by Mil’nikov et al. [42]. From the latter

calculation one concludes that the B3LYP/6-31+G(d) quantum chemical method could

lead to serious cancellation of errors. Namely, by including the CCSD(T) correction

to the DFT/6-31+G(d) potential the barrier height increases to 4515 cm−1 leading to the

tunneling splitting of 6 ·10−5. In the light of the provided information one concludes that

the use of the 6-311++G(3df,3pd) basis set is better justified although it gives too large
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absolute numbers. Nevertheless, what is most important both quantum chemistry meth-

ods gave similar relative value for the splittings, i.e., the ground state tunneling splitting

is 2.4 (2.7) times larger than the splitting in the asymmetric CO stretching mode. This

in turn finds good agreement with the experimental ratio of splitting of 1.58 [45].
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4.3.3 Generalized approximation to the reaction path

Following the approach of Hirschfelder and co-workers [94, 95, 96] a set of collective

large amplitude coordinates based on a ”mobile model" are constructed. Their ability

to span the configurational space relevant for HAT reactions is investigated. In addition

the rovibrational Hamiltonian in terms of a new coordinates is obtained.

Large amplitude coordinates

Let Nat denote the number of particles, R̃ j = (R̃ jx, R̃ jy, R̃ jz) the Cartesian coordinates

of an j-th particle in a space fixed system and m j its mass. A set of coordinates Zi =

(Zix,Ziy,Ziz) is defined using the mass dependent transformation matrix T:

Ziγ =
Nat∑

j=1

Ti jR̃ jγ , i = 1, . . .Nat, γ = x,y,z (4.18)

Aiming at the description of the double HAT reaction in FAD, one of many possible

mobiles for FAD is chosen as (see Figure 4.27):

Z1 = R̃1 − R̃7

Z2 = R̃2 − R̃8

Z3 = R̃3 − R̃6

Z4 = R̃5 − R̃4

Z5 = R̃9 −
1
2

(R̃6 + R̃3)

Z6 = R̃10 −
1
2

(R̃4 + R̃5)

Z7 =
R̃1mC + R̃7mH

mC + mH
−

R̃2mC + R̃8mH

mC + mH

Z8 =
R̃9mH + R̃6mO + R̃3mO

mH + 2mO
−

R̃10mH + R̃4mO + R̃5mO

mH + 2mO

Z9 =
1
2

( R̃9mH + R̃6mO + R̃3mO

mH + 2mO
+

R̃10mH + R̃4mO + R̃5mO

mH + 2mO
−

R̃1mC + R̃7mH

mC + mH
−

R̃2mC + R̃8mH

mC + mH

)

Z10 =
1

∑
i mi

Nat∑

i=1

miR̃i (4.19)

where the coordinate Z10 joins the center of mass of the molecule to the origin of the

space fixed system. A molecular symmetry transformation T which transforms the left

minimum to the right one (Eq. (3.62)) permutes the atoms in the molecule and thus
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C1

C2

H7H8

O3
O6

H8

O5
O4 H10

H9

Figure 4.27: Minima structure of the formic acid dimer

changes the components of internal vectors {Zi} as

T {Z1x,Z2x,Z3x,Z4x,Z5x,Z6x,Z7x,Z8x,Z9x,Z10x} = {Z1x,Z2x,Z4x,Z3x,Z6x,Z5x,Z7x,

−Z8x,Z9x,Z10x}
T {Z1y,Z2y,Z3y,Z4y,Z5y,Z6y,Z7y,Z8y,Z9y,Z10y} = {−Z1y,−Z2y,−Z4y,−Z3y,−Z6y,

−Z5y,−Z7y,Z8y,−Z9y,−Z10y}
T {Z1z,Z2z,Z3z,Z4z,Z5z,Z6z,Z7z,Z8z,Z9z,Z10z} = {−Z1z,−Z2z,−Z4z,−Z3z,−Z6z,

−Z5z,−Z7z,Z8z,−Z9z,−Z10z}

The coordinates Zi are redefined in order to obtain symmetry adapted coordinates

Z3 = Z3 + Z4

Z4 = Z3 − Z4

Z5 = Z5 + Z6

Z6 = Z5 − Z6

that separate correctly into symmetric Z(+) and antisymmetric subgroups Z(−) with re-

spect to molecular symmetry transformation T . The symmetry adapted coordinates

transforms as

T Z(+)
iγ = Z(+)

iγ

T Z(−)
iγ = −Z(−)

iγ

Alternatively, a related set of mass-weighted vectors S̃i with elements

S̃iγ =
√
µiZi =

Nat∑

j=1

W̃i j
√

m jR̃ jγ i = 1, . . . ,Nat γ = x,y,z (4.20)
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can be defined where the diagonal matrix µ is determined so that

W̃W̃T = I. (4.21)

The form of the matrix W̃ follows from Eqs. (4.18) and (4.20):

W̃ = µ1/2Tm−1/2 (4.22)

From the condition (4.21) and the fact that Tm−1/2(Tm−1/2)T is a diagonal matrix it

simply follows

µ−1 = Tm−1/2(Tm−1/2)T (4.23)

The matrix elements W̃i,1,W̃i,2 . . . ,W̃i,Nat form an Nat-dimensional vector W̃i and Nat vec-

tors W̃1,W̃2, . . . ,W̃Nat of unit length form a set of orthogonal coordinate axes in the

Nat-space.

As for the choice of Zi coordinates, the choice of S̃i coordinates is not unique. Moreover,

any set of new coordinates S̃new
i generated by unitary transformations of the form

S̃new
i =

N−1∑

j=1

Ãi, jS̃ j (4.24)

represents an equally acceptable set. In the geometrical sense the unitary transformation

Ã corresponds to the rotation of the coordinate axes W̃1,W̃2, . . . ,W̃N.

The Eq. (4.20) can be generalized as

Si =
3Nat∑

j

Wi j
√

m jR j i = 1, . . . ,3Nat (4.25)

where R = (R1x,R2x, . . .RNx,R1y,R2y, . . .RNy,R1z,R2z, . . .RNz)T , and W is a block diagonal

matrix od size 3Nat× 3Nat with blocks of size Nat×Nat formed by repeating W̃ on the

diagonal. The set of 3Nat vectors Wi form an orthogonal base. According to Eq. (4.24)

new coordinates Si can be derived by unitary transformations:

Snew
i =

3Nat∑

j=1

Ai, jS j (4.26)

Thus, in terms of a 3Nat − 3 mass-weighted coordinates Si the rovibrational Hamiltonian

has a form

Ĥ = −
1
2

3Nat−3∑

i=1

∂2

∂S2
i

+V (S) (4.27)

where V (S) is the full dimensional potential. Note however that at this point rotational

and vibrational motion are not separated.
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Reaction Space Hamiltonian in reduced dimensionality

The next question to be answered is the nature of the best reaction coordinates that span

the region of the potential relevant for the HAT process. According to Eq. (4.26) any

unitary transformation of Si coordinates yields an equally acceptable set of coordinates.

The simplest option thus is to consider pure kinematic rotations between the pairs of

S(±)
i coordinates belonging to the same symmetry subgroup:

Snew
i = Si cosθ + S j sinθ

Snew
j = −Si sinθ + S j cosθ (4.28)

As in the previous method, the intrinsic reaction path (IRP) defined in Eq. (3.56) is

used in order to characterize the HAT in FAD serving as a basis for a selection of Si

coordinates that better portion the IRP. Accordingly, the angle θ is optimized in order to

minimalize the the change of the coordinate Snew
i

Min
(

Max(Snew
i [s]) − Min(Snew

i [s])
)

(4.29)

over the entire series of geometries along the IRP. Thus, for each symmetric/antisymmetric

subgroup, it was examined how many degrees of freedom can be made very small in

change between neighbouring geometries on the IRP. Further, it should be emphasized

that for all geometries on the IRP the Eckart conditions are imposed. In this way the

intrinsic reaction path is made orthogonal to the infinitesimal rotations allowing for an

approximative separation of vibrational and rotational motion.

In the case of FAD the kinematic optimization procedure (Eq. (4.28)-(4.29)) yields

three large amplitude coordinates denoted as S(−)
1 , S(+)

2 and S(−)
3 that do change signifi-

cantly along the IRP. The variation of the S1, S2 and S3 coordinates along the IRP is

shown in Figure 4.28 together with the Cartesian displacements corresponding to the

S1, S2 and S3 vectors. The Cartesian displacements are calculated by inverting the Eq.

(4.20). One notices that the coordinate S1 describes the synchronised HAT motion while

S2 and S3 coordinates take into account the rearrangement of the molecular frame. These

are the symmetric stretch and antisymmetric torsion of two monomers. The remaining

coordinates Si, i = 4,5, . . .3Nat − 3 do not change appreciably along the IRP and can be

treated via a harmonic approximation. The deviation between the IRP and a reac-

tion space can be further quantified in terms of a root mean squared (RMS) difference

between the non mass weighted IRP geometries (x(s)) and its projections x(s) on the re-

action space spanned by relevant Si coordinates. The RMS differences for ñ = 2 and ñ = 3

were calculated in analogy to the Eqs. (4.7) and (4.8). Also note that the Cartesian dis-

placements corresponding to the displacements along the S1, S2 and S3 coordinates are
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Figure 4.28: Left panel: The change of coordinates S1, S2 and S3 along the IRP for HAT

reaction in the formic acid dimer. Right panel: Cartesian displacements corresponding

to the coordinates S1, S2 and S3. Only the most important displacements are shown.
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Figure 4.29: RMS difference between the IRP geometries and its projection on the plane

spanned by S1 and S2 coordinates (crosses) and on the reaction space spanned by S1, S2

and S3 (solid dots).

obtained by inverting the Eq. (4.20). The RMS geometry difference σ ñ for ñ = 2,3 are

shown in Figure 4.29. By definition the RMS difference vanishes at the transition state

but not at the minima where it is made very small, i.e., σ2
s=±3.3 and σ3

s=±3.3 are 0.0011 Å

and 0.00097 Å in the 2D and 3D cases. Figure 4.29 also shows that the pair of symmetric

and antisymmetric LAM coordinates S1 and S2 capture a large portion of the IRP, but it

is only upon the inclusion of S3 that the maximal difference between the IRP geometries

and the projected geometries has been reduced to 0.007 Å at σ3
s=±2.2. In terms of energy

this corresponds to an difference of 25 cm−1 . Comparing Figures 4.20 and 4.29 one sees

that calculated RMS differences match exactly the ones calculated when projecting the

IRP geometries on a reaction space spanned by d1,d2 and d3 vectors defined in Eqs.

(3.59), (3.60) and (4.9). When comparing the Cartesian displacements corresponding to

the displacements in coordinates S1, S2 and S3 with d1,d2 and d3 vectors one finds scalar

products 0.9999899, 0.99998401 and 0.99971 which prove the collinearity between the

two sets. Thus, the S1,S2,S3 coordinates span the same configurational subspace as d1,

d2 and d3 vectors do. Moreover, the {d1,d2,d3} set of vectors emerges naturally from

the "mobile" coordinates by kinematic rotations aimed at spanning the configurational

subspace close to the IRP.

The reaction coordinates S1, S2 and S3 account for the large amplitude hydrogen mo-

tion and span the same reaction space as d1, d2 and d3 vectors. Consequently, the same

approach as described in the last subsection can be further used to treat the remaining or-

thogonal degrees of freedom and to derive the form of the Hamiltonian. The procedure
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has been detailed in sections 3.3.3 and 4.3.2 and only the most important issues will be

given here. According to the Reaction Space Hamiltonian approach the potential V(S)

is harmonically approximated in the S4 . . .S3N−3 directions around the reaction space.

However, since the quantum chemical packages provide the analytical forces and force

constant matrices from which the translational and rotational directions are projected

out it is more convenient to use the normal mode coordinates Qi of the reference D2h

structure instead. The later are simply related to the Si as

Si =
3N−9∑

j

Ci jQ j (4.30)

with C being the overlap matrix.

The vectors Qi are obtained by diagonalizing the projected force constant matrix at

the transition state KP :

KP(XTS) = (1 −P)K(f)(XTS)(1 −P) (4.31)

where the projectorP projects out the rotational and translational directions and three re-

action coordinates S1, S2 and S3 (see Eq. (3.67)). To make the computation numerically

feasible the number of Qi modes included in the treatment is reduced by considering

linear combinations of the form

qk =
N−9∑

j=1

ck jQ j, k = 1, · · · ,N − 9 (4.32)

which better describe the configurational space of interest. Other harmonic modes are

set to zero. Assuming three large amplitude coordinates Si and ñ relevant modes qi the

Reaction Space Hamiltonian read as

Ĥ = −
1
2

3∑

i=1

∂2

∂S2
i

−
1
2

ñ∑

k=1

∂2

∂q2
k

+V (S1,S2,S3,q = 0) +
ñ∑

i=1

∂V (S1,S2,S3,q)
∂qi

∣∣∣∣∣
q=0

qi

+
1
2

ñ∑

i, j=1

∂2V (S1,S2,S3,q)
∂qi∂q j

∣∣∣∣∣
q=0

qiq j (4.33)

Hamiltonian obtained in Eq.(4.33) is an analogue of an Hamiltonian defined in Eq.(4.11)

and used further in section 4.3.2.
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4.3.4 Summary and outlook

Table 4.21 summarized all the results concerning the ground state and excited state

tunneling splitting in FAD calculated using three large amplitude approaches. The val-

ues are compared to the new VRT experimental results obtained by M. Ortlieb and M.

Havenith who measured the ground state splitting in (HCOOH)2 as 0.0158(4) cm−1 and

the splitting in an asymmetric C-O stretching mode as 0.0100(3) cm−1 [45]. The new

assignment strongly supports the reversed assignment for the (DCOOH)2 given by F.

Madeja and M. Havenith (ground state splitting of 0.0123(3) cm−1 and the excited state

splitting 0.0031(3) cm−1 ) [14]. The new experimental results are in agreement with

the theoretical predictions given in Table 4.21. The ratio of the splittings (ground

state/excited state) for both quantum chemistry methods is 2.4/2.6 and finds good agree-

ment to the experimental value of 1.59. The error of the absolute values for the splittings

obtained by the RSH method is explained by the failure of the DFT theory to accurately

predict the barrier height for the HAT reaction in FAD. Nevertheless apart from the re-

gion of the IRP for the HAT reaction, the tunneling dynamics is governed by all regions

of the configurational space that are accessible to the ground state wave function. For

instance, the IRP for the HAT in malonaldehyde is planar but it is well known that out of

plane motion strongly influences the tunneling dynamics [16, 118]. To identify the re-

gions of the configurational space that are relevant to the HAT process it is convenient to

consider the difference between the reaction space spanned by {S1, S2, S3} or {d1,d2,d3}
coordinates and a fully relaxed PES in internal coordinates ρ1 and ρ2 (Figure 4.17). The

difference is quantified by inspecting the RMS differences between the geometries on a

surface spanned by internal coordinates ρ1 and ρ2 and their projections on the reaction

Table 4.21: Results for the ground state and excited state tunneling splitting in the FAD

calculated using three large amplitude approaches: Internal coordinates approach, Reac-

tion Surface Hamiltonian (RSH)/General Approximation to the Reaction Path approach

(GARP)

method barrier height internal RSH exp. [45]

B3LYP/6-311++G(3df,3pd) 2273 cm−1

ground state 0.012 0.155 0.0158

C-O stretching mode 0.0655 0.0100

B3LYP/6-31+G(d) 2973 cm−1

ground state 0.0013 [18] 0.003 0.0158

C-O stretching mode 0.001 0.0100
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space calculated as

σ(3)(ρ1,ρ2) =
1√
Nat

∣∣∣∣∣(1 −
3∑

i=1

didt
i)(x(ρ1,ρ2) − xTS)

∣∣∣∣∣ (4.34)

where x(ρ1,ρ2) corresponds to a non mass-weighted geometry with the ρ1,ρ2 value of

the internal coordinates. Figure 4.30 shows the V(ρ1,ρ2) potential together with the

points on the potential whose RMS difference σ3(ρ1,ρ2) is less than 2 ·10−2 Å. The solid

red line represents the IRP for the HAT connecting the two minima via a transition state.

From Figure 4.30 one sees that d1,d2,d3 or equivalent S1,S2,S3 directions reproduce the

full dimensional PES only in the IRP region. This is however expected as these LAM

coordinates are constructed on the basis of the minima energy path which connects the

transition state and the minima and thus gives no information about the shape of the po-

tential beyond the minima. However, Figure 4.30 shows that the PES in the region which

extends in the direction of increasing ρ1 and ρ2 values, i.e., in the dissociation limit of

the dimer, is not well reproduced by d1, d2, d3 or S1, S2 and S3 coordinates. Therefore,

in future we intend to investigate the influence of a dimmer dissociative motion on the

tunneling dynamics in FAD. This implies the introduction of additional degrees of free-

dom in the treatment described in section 4.3.3 in order to account for the full length of

the dimer dissociation channels. The construction of new coordinates can be easily done

by kinematic rotations (Eq.(4.28)) using the remaining S4,S5 . . .S3Nat−6 vectors in such a

−4 −3 −2 −1  0  1  2  3  4
 4.5

 5

 5.5

 6

 6.5

 7

 7.5

ρ1 / Å

 ρ2 / Å

Figure 4.30: Black solid lines: V (ρ1,ρ2) PES, the contours are drown at each 800

cm−1 and the inner contour corresponds to an energy lying 800 cm−1 above the minimum

of the PES. Crosses: geometries on a V (ρ1,ρ2) PES with σ3(ρ1,ρ2) < 2 · 10−2 Å. Red

solid line: the IRP for hydrogen atom transfer in FAD.
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way to minimize the difference to the dimer dissociation region. A generalization of the

IRP beyond the HAT region in therefore needed.
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Conclusion

Several methods are employed to investigate some of the basic features of hydrogen

atom transfer reactions in the FAD and ACAC. These molecules serve as prototype sys-

tems for single and double hydrogen atom transfer. This is considered to be an important

issue since testing the reliability of theoretical methods on simple, benchmark systems

represents the key step to future quantitative treatment of the tunneling fenomena in

biological systems.

The first part of the thesis was concerned with the performance of the normal mode

based methods, second order perturbative treatment and non-perturbative calculations

in reduced dimensionality. These methods are able to reproduce the basic features of

IR spectra of hydrogen bonded molecules. For instance, the shape and the position

of the OH stretch band in the FAD and ACAC are well reproduced. Also, the nature

of the anharmonic couplings triggered by the formation of the hydrogen bond can be

revealed. However, the normal coordinates describe the motion in the vicinity of the

most stable conformation and appear to be unsuitable in reproducing the double-well

shape of the potential. As a result, they are not efficient in explaining the tunneling

splittings observed in high resolution ro-vibrational spectra. To investigate this aspect

of the IR spectroscopy, three quantum methods capable of describing large amplitude

motion of the bridging hydrogen were used in the second part of the thesis.

The most interesting points concerning the structure and dynamics of the hydrogen

bond in acetylacetone are:

• The minimum energy structure of acetylacetone has Cs symmetry, while the tran-

sition state for HAT reaction has C2v symmetry. The barrier height for HAT in

ACAC was calculated using various ab initio, DFT and CCSD(T) theory with

various basis sets and it is estimated to be 3.03 kcal mol−1 at the CCSD(T)/cc-

pVTZ//MP2(FC)/cc-pVTZ level of theory.
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• It has been shown that the HAT reaction is coupled to the methyl group rotation,

but that the two reaction do not occur simultaneously. Starting from the mini-

mum, the HAT reaction takes place only after the methyl groups have reached

an eclipsed conformation. The barrier height for the rotation of the distal methyl

group in ACAC is estimated to be 0.27 kcal mol−1 at the CCSD(T)/cc-pVTZ//MP2(FC)/cc-

pVTZ level of theory.

• Within the normal mode approach in reduced dimensionality it was concluded that

at least two rotamers of ACAC contribute to the extreme broadness of OH-stretch

band in ACAC. Namely, the transitions in the OH stretching band arising from the

minimum energy structure and from the eclipsed rotamer of ACAC are separated

by more then 500 cm−1 . In addition, it is found that the IR spectrum of ACAC

in the O-H stretching region displays some interesting features like disappearance

of the νOH fundamental, resonance enhanced intensities and mixing with the low

frequency modes of the molecular frame. This features can be considered as a

general features of the vibrational dynamics in hydrogen bonded systems.

• The treatment of the HAT reaction in ACAC using large amplitude internal coor-

dinates revealed a ground state tunneling splitting of 116 cm−1 . An excited state

tunneling splitting of 850 cm−1 is predicted for the OH-stretching vibration. Fur-

thermore, it was concluded that the three-maxima shape of the C=O stretch band

could be due to the OH-stretching doublet and accordingly a consequence of the

double-well hydrogen atom motion.

The most interesting points concerning the structure and dynamics of the hydrogen bond

in the formic acid dimer are:

• Both the second order perturbative treatment and a normal mode approach in re-

duced dimensionality which were used to investigate the OH stretching mode re-

gion in the IR spectrum of FAD showed that the red shift of the asymmetric OH

stretching vibration in FAD is caused by Davydov coupling to the IR inactive sym-

metric OH stretch. Anharmonic couplings to low frequency modes of the dimer

and Fermi resonances to mid-infrared modes contribute to the width and to the

shape of the OH stretching band, but in minor extent to its position.

• It has been shown that the excitation of the asymmetric C-O vibration suppresses

the tunneling motion. This result is in accordance with the new assignation of

the VRT spectra of FAD [45]. Specifically, a ground state tunneling splitting

in FAD was found to be 2.5 times larger than in the asymmetric C-O stretching

mode. It has also been shown that the decrease of the tunneling splitting emerges
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from the mixing of the reactions space containing the minimum energy path and

CO-oscillator wavefunctions. These theoretical results together with the new ex-

perimental results ended the controversy concerning the assignment of the VRT

spectra of FAD [14].

The most important points concerning the construction and use of LAM coordinates are

• The internal coordinates reproduce the absolute value for the ground state splitting

that appear to be in good agreement with the experiment, but the kinetic coupling

terms and variable, coordinate dependent reduced masses complicate the form

of the vibrational Hamiltonian. Apart from these technical complications, the

calculation of the tunneling splitting in the excited vibrational modes is far from

being straightforward.

In the case of the HAT reactions the multidimensional nature of the hydrogen atom

vibration is reflected in the strong coordinate dependence of the elements of Wil-

son G-matrix. In order to reproduce the high-resolution VRT results quantitatively

accurate kinematic couplings have to be included in the treatment.

• The construction of the LAM coordinates from the stationary points on the IRP,

i.e., the left and right-hand minimum energy structures and the transition state for

the reaction as proposed by Takada et al. [93] has been applied to the FAD case

in order to reproduce the energetics and geometries on the whole IRP. It has been

shown that these coordinates were not sufficient for reproducing the IRP region of

the FAD potential. An additional coordinate constructed from two non-stationary

points had to be introduced in the treatment to fully confine the IRP. This 3D

reaction space has been shown to account for the ground state splitting in FAD.

Hence, apart from the two LAM coordinates introduced in Ref. [93] and used

in Refs. [16, 19] an introduction of additional relevant coordinates depends on

system at hand.

• Starting from mobile coordinates, the optimization scheme which tailors coordi-

nates along a predefined general reaction path is presented for the first time. This

method will be referred as to a generalized approximation to the reaction path

(GARP). Compared to other methods it provides a complete set of orthogonal co-

ordinates. Furthermore, the GARP procedure was applied to the FAD case and

three LAM coordinates capable of describing the IRP were found to be collinear

to the LAM coordinates proposed by Takada et al.[93]. Furthermore, the coordi-

nates reproduce the barrier height of the full-dimensional potential and no further

optimization is needed in order to reproduce the energetics of the full-dimensional
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Chapter 5. Conclusion

case. In both cases the remaining degrees of freedom are easily included in the

treatment via the harmonic approximation and the vibrational excited dynamics

can be treated within the Reaction Surface Hamiltonian approach. The only draw-

back is represented by the fact that both methods are confined to the minimum en-

ergy path. Possible extensions of the reaction space beyond the minima requires

new algorithms aimed at generalizing the concept of Intrinsic Reaction Path.
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Appendix A

The Eckart Equations

The Eckart equations optimize the separation of the rotational and vibrational degrees

of freedom in the rotational-vibrational Schrödinger equation. For any displacement in

the molecule there is an unambiguous way of rotating the molecule fixed axes (x,y,z)

to the new axes system (x′,y′,z′) in which the Eckart conditions are satisfied. The Euler

angles θ,φ i χ are used to define the orientation of the (x,y,z) axis system to the new

(x′,y′,z′) axis system (Figure A.1).

Figure A.1: The definition of the Euler angles θ,φ and χ that relate the orientation

of the molecule fixed axes (x,y,z) to the new axes system (x′,y′,z′). To get from one

system to the other system of axes, first the (x,y,z) system is rotated by an angle φ

counterclockwise about the z axes (x goes to N). In the second step the intermediate

axes are rotated by an angle θ counterclockwise about the N axes to get the second

intermediate axes (z goes to z′). Finally, this axes are rotated counterclockwise by and

angle χ about the z′ axes to produce the desired (x′,y′,z′) system of axes.
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For any atom in the molecule its coordinates in the (x′,y′,z′) axis system can be

related to its coordinates in (x,y,z) axis system as:



xi

yi

zi


 =




λxx′ λxy′ λxz′

λyy′ λyy′ λyz′

λzz′ λzy′ λzz′







x′i
y′i
z′i


 (A.1)

where

λxx′ = cosθ cosφcosχ− sinφsinχ, λxy′ = cosθ sinφcosχ− cosφsinχ,

λyx′ = −cosθ cosφsinχ− sinφcosχ, λyy′ = −cosθ sinφsinχ− cosφcosχ,

λzx′ = sinθ cosφ, λzy′ = sinθ sinφ,

λxz′ = −sinθ cosχ,

λyz′ = sinθ sinχ,

λzz′ = cosθ.

Using the defined relations three Eckart equations:
∑

i

mi(x
0
i yi − y0

i xi) = 0 (A.2)

∑

i

mi(y
0
i zi − z0

i yi) = 0 (A.3)

∑

i

mi(z
0
i xi − z0

i xi) = 0 (A.4)

can be written as:

[xx′]λyx′ + [xy′]λyy′ + [xz′]λyz′ − [yx′]λxx′ − [yy′]λxy′ − [yz′]λxz′ = 0

[yx′]λzx′ + [yy′]λzy′ + [yz′]λzz′ − [zx′]λyx′ − [zy′]λyy′ − [zz′]λyz′ = 0

[zx′]λxx′ + [zy′]λxy′ + [zz′]λxz′ − [xx′]λyx′ − [zy′]λzy′ − [xz′]λzz′ = 0

(A.5)

where

[ατ ] =
N∑

i=1

miα
0
i τi

with α0 = x0,y0,z0 and τ = x′,y′,z′. The equilibrium coordinates in the molecule fixed

axis (x0, y0, z0) together with the displaced coordinates (x′i, y′i, z′i) can be used to deter-

mine the values [ατ ] and to form three equations A.5. Solving this equations simultane-

ously, for instance by using the Newton-Raphson method, three Euler angles θ, φ i χ are

obtained. Furthermore, using Eq. A.1 molecular coordinates which satisfy the Eckart

conditions can be determined.

There is also an analytical procedure for solving the Eckart conditions [120]. The

Eckart equations can be written as

N∑

i=1

mi[r0
i ×Ori] (A.6)
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where O is a 3× 3 rotation matrix which rotates the geometry ri in oder to satisfy the

Eckart conditions with respect to the equilibrium geometry r0
i . A solution for O is given

by Yaron [120]. First, one has to define a matrix C with the elements

Cαβ =
N∑

i=1

mi[(r0
i )α(ri)β] (A.7)

where α and β denote the x,y,z coordinates of a nonplanar molecule. To satisfy the

Eckart conditions one has to diagonalize the product C+C and get the matrix U (eigen-

vectors of C+C) and a diagonal matrix λ (eigenvalues of C+C). The solution for the

rotational matrix O for a nonplanar molecule is given by

O = U+
Λλ1/2UC−1 (A.8)

where Λ is a 3× 3 diagonal matrix with +1 or -1 on the diagonal. Because there are 23

possibilities for the +/- sign when calculating the square root of λ, the matrix Λ presents

the only ambiguity in the procedure. In principle, four signs are correct and they yield

det(O) = 1 (the rest would yield det(O) = −1). However, the correct solution is the one

that gives the rotated Ori geometry closest to the starting ri geometry.

For planar molecules element Czz is set to unity. This assumes that the molecule is

placed in xy plane and is rotated around the z axis. The problem represents the case

in which the equilibrium geometry is planar and the displaced geometry is not or vice

versa. Then the analytical solution does not exist because the C+C is not regular and the

problem has to be solved numerically.
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The Fourier Grid Hamiltonian method

for solving the vibrational Schrödinger

equation

The Fourier Grid Hamiltonian (FGH) method is based on the transformation between

the coordinate and momentum representation of a Schrödinger equation. In the mo-

mentum representation, the kinetic energy is diagonal since the basic vectors or kets of

this representation |k〉1 are eigenfunctions of both linear momentum and kinetic energy

operator. On the other hand, the potential is diagonal in coordinate representation since

the basic vectors of this representation |x〉 are eigenfunctions of the position operator.

Using the Fourier representation of the Dirac delta function2 the first derivative of

the wave function can be written:

∂

∂x
ψ(x) =

∂

∂x

∫ ∞

x′=0
δ(x′ − x)ψ(x′)dx′

=
∂

∂x

∫ ∞

x′=0

{
1

2π

∫ ∞

k=−∞
exp−ik(x−x′ ) dk

}
ψ(x′)dx′

=
∫ ∞

k=−∞

{
1

2π

∫ ∞

k=−∞
ik exp−ik(x−x′ ) dk

}
ψ(x′)dx′ (B.1)

The continuous range of coordinate values x is replaced by a grid of discrete values

xi:

xi = i∆x

where ∆x is the spacing between the grid points. The grid size and the spacing chosen

in the coordinate space determines the reciprocal grid size in momentum space. If the

1this is the Dirac bra-ket notation in which the scalar product of vectors f and g is 〈 f | g〉. If f and g

are functions the scalar product is 〈 f | g〉 =
∫

f ∗gdτ
2δ(x − x′) = 1

2π

∫
∞

k=−∞ exp−ik(x−x′) dk
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total length of the coordinate space is L = N∆x then ∆k = 2π/L is the spacing in the

momentum grid. The odd number of grid points is always used to obtain a real form of

the matrix representation of the first derivative operator in the grid representation. If the

values of k range from k = −n∆k to k = +n∆k then the value of the partial differential at

the jth grid is

[
∂

∂x
ψ(x)

]

x=x j

=
N∑

t=1

{
1

2π

n∑

p=−n

ip∆k exp−ip∆k(t− j)∆x
∆k

}
ψt∆x

=
N∑

t=1

{
−

4π
LN

n∑

p=1

psin[2πp( j − t)/N]

}
ψt

(B.2)

where ψt is the value of the wave function at the grid point xt i.e. ψ(xt ). The term in

braces, which is the ( j, t)th matrix element, represents the grid representation of the first

derivative operator
[
∂

∂x

]

j,t

=

{
−

4π
LN

n∑

p=1

psin[2πp( j − t)/N]

}

The summation in the last equation is performed analytically [85]. A similar derivation

leads to the grid representation of the second derivative and the grid representation of

the kinetic energy operator from the Eq. 3.46 has the form

Tµ1,...,µm;µ′

1...,µ
′

m
= −

h̄2

2

M∑

r=1

M∑

s=1

{
δrs

Nr∑

l=1

[
∂

∂qr

]

qr,µr ;qr,l

[
∂

∂qr

]

qr,l ;qr,µ′

r

×Grs(qr,l,qs,µs ;qi,µi) + (1 − δrs)
[
∂

∂qr

]

qr,µr ;qr,µ′

r

[
∂

∂qr

]

qs,µs ;qs,µ′

s

}
M∏

i6=r,s

δµi,µ′

i
(B.3)

The notation qr,µr indicates the grid point µr of the coordinate qr. Grs(qr,l,qs,µs ;qi,µi)

indicates that the among the arguments of the G-matrix the qi,µi term stands for all the

coordinates other than the qr and qs. The grid representation of the potential is

Vµ1,...,µM ;µ′

1...,µ
′

M
= V (q1,µ1 , . . . ,qM,µM )

M∏

i=1

δµi,µ′

i
(B.4)

The overall grid representation of the Hamiltonian is the sum of the terms (B.3) and

(B.4). The vibrational eigenvalues and eigenfunctions are obtained by diagonalizing the

Hamiltonian matrix.
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Appendix C

List of abbreviations

C.1 Notation

χi j elements of the anharmonic correction matrix

δi j Kronecker delta (δi j = 1 for i = j, δi j = 0 for i 6= j )

di large amplitude coordinates defined in Ref. [93]

Grs G-matrix element

Ĥ Hamilton operator

I moment of inertia tensor

Ĵi angular momentum operator

εαβγ unit antisymmetric tensor

K force constant matrix, also called Hessian matrix

µ reduced mass

mi mass of the particle i

M mass of the molecule

ñ dimensionalty of the problem

Nat number of atoms in the molecule

ωi vibrational frequency

P ,R projector operators

P̂i momentum operator

q linear combination of normal modes Qi

Qi normal coordinate

ρ internal coordinate

ri Cartesian coordinates for particle i in a molecule fixed system

Ri Cartesian coordinates for particle i in a space fixed system

σ root mean square difference

Si large amplitude "mobile" coordinates

xxi



Appendix C

T kinetic energy

T molecular symmetry transformation

V potential energy

X mass-weighted Cartesian coordinates

Y[̃nD]
i the so-called reduced normal modes

Y(f)
i full normal modes at the minimum

ζlk Coriolis coupling constants

C.2 Abbreviations

ACAC acetylacetone

ANTI anti-enol structure of acetylacetone

B3LYP exchange-correlation functional, Becke 1-parameter functional for the exchange

Lee, Yang and Parr functional for correlation

B1LYP exchange-correlation functional, Becke 3-parameter functional for the exchange

Lee, Yang and Parr functional for correlation

BSSE basis set superposition error

CCSD(T) couple cluster singles dubles with perturbative evaluation of triple excitations

CISD configuration interaction method, includes single and double electronic

excitations

CISD+T configuration interaction method, includes single, double and triple electronic

excitations

DFT density functional theory

DOF degree of freedom

FA formic acid monomer

FAD formic acid dimer

FC frozen core approximation

FGH Fourier grid Hamiltonian method for solving the nuclear Schrödinger equation

GARP general approximation to the reaction path method

HAT hydrogen atom transfer reaction

HB hydrogen bond

HF Hartree-Fock method

IRC intrinsic reaction coordinate

IRP intrinsic reaction path

LAM large amplitude motion

MP2 Möller-Plesset second order perturbation theory

MSM modified Shepard method for interpolation

MA malonaldehyde
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PES potential energy surface

RSH reaction surface Hamiltonian

RMS root mean square

SYN global minimum structure of acetylacetone

TS transition state

TS2 acetylacetone conformer with eclipsed conformation of methyl groups

TS3 transition state for the hydrogen atom transfer reaction in acetylacetone

WKB Wentzel-Kramers-Brillouin theory

VRI valley-ridge inflection point

VRT vibration rotation tunneling spectroscopy

VSCF vibrational self-consistent field method
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Priopćenja znanstvenim skupovima:
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