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Diagrammati
 
ontent of the DMFT for the Holstein polaron problem in �nitedimensionsO. S. Bari²i¢Institute of Physi
s, Bijeni£ka 
. 46, HR-10000 Zagreb, CroatiaIn the 
ontext of the Holstein polaron problem it is shown that the dynami
al mean �eld theory(DMFT) 
orresponds to the summation of a spe
ial 
lass of lo
al diagrams in the skeleton expansionof the self-energy. In the real spa
e representation, these lo
al diagrams are 
hara
terized by theabsen
e of vertex 
orre
tions involving phonons at di�erent latti
e sites. Su
h 
orre
tions vanish inthe limit of in�nite dimensions, for whi
h the DMFT provides the exa
t solution of the Holsteinpolaron problem. However, for �nite dimensional systems the a

ura
y of the DMFT is limited. Inparti
ular, it 
annot des
ribe 
orre
tly the adiabati
 spreading of the polaron over multiple latti
esites. Arguments are given that the DMFT limitations on vertex 
orre
tions found for the Holsteinpolaron problem persist for �nite ele
tron densities and arbitrary phonon dispersion.Sin
e the early works in whi
h some important aspe
tsof the Mott lo
alization were a

ounted for su

essfully,the DMFT has been used for a broad range of strongly-
orrelated problems.1,2 In the DMFT the quasi-parti
leproperties are 
al
ulated by treating the self-energy asa lo
al (k independent) quantity. This approa
h is mo-tivated by the observation that for some models in thein�nite dimensional limit D → ∞ the exa
t self-energyis lo
al. In parti
ular, for the Hubbard model this prop-erty is derived from the diagrammati
 perturbation the-ory in the intera
tion strength U ,3 as well as from thediagrammati
 expansion around the atomi
 limit.4 Con-siderable attention was given to the ele
tron-phonon Hol-stein model too,6 for whi
h the nature of the perturbationtheory is lo
al for D → ∞. There are however importantdi�eren
es between the two models, whi
h are best illus-trated by the fa
t that motivates the 
urrent study. Un-like in the Hubbard model, whi
h leaves the �rst ele
tronin the system free, renormalization o

urs in the Holsteinmodel irrespe
tively of the dimension D, provided thatthe phonon frequen
y is �nite.It is 
ommonly believed that the DMFT results pro-vide valuable insights on real materials, although for �-nite dimensional systems the level of approximation isfrequently di�
ult to estimate. For these reasons it isparti
ularly interesting to analyze the limitations of theDMFT in the 
ontext of the Holstein polaron problem be-
ause a

urate results for low frequen
ies, at whi
h thepolaroni
 
orrelations are the strongest, are available inlow dimensions for the whole parameter spa
e.7,8 Alongthese lines, in this work the diagrammati
 
ontent of theDMFT is analyzed �rst, in order to identify exa
tly whi
hare the 
ontributions ignored for �nite D. In the nextstep, the physi
al meaning of these is investigated.The Holstein model9 des
ribes the tight-binding ele
-trons in the nearest-neighbor approximation, 
oupled toone bran
h of dispersionless opti
al phonons,
Ĥ = −t

∑

r,δ

c†rcr+δ + ω0

∑

r

b†rbr

−g
∑

r

c†rcr(b
†
r + br) . (1)

Figure 1: The exa
t ele
tron self-energy Σk(ω) for the Hol-stein polaron problem. The double line represent the exa
tele
tron propagator Gk(ω), the shaded triangle is the exa
tvertex and the single wavy line is the bare phonon propagator
D

(0)(ω).Here, c†r and b†r are the 
reation operators for the ele
tronand the phonon, respe
tively, t is the ele
tron hoppingintegral, ω0 is the phonon energy, and g is the ele
tron-phonon 
oupling 
onstant. As the bare phonons and the
oupling are lo
al, the latti
e geometry and dimension-ality are expressed only through the �rst term in Eq. (1)involving the summation over nearest-neighbor sites δ.The spin index is omitted sin
e only the single-ele
tron(polaron) problem is 
onsidered here.The exa
t single-ele
tron propagator in the momentumrepresentation is given by
Gk(ω) =

1

ω − εk − Σk(ω)
, (2)with εk the free-ele
tron energy, and Σk(ω) is the exa
tself-energy shown in the diagrammati
 representation inFig. 1. There are no 
ontributions to the phonon propa-gator due to the 
reation of the ele
tron-hole pairs, sin
e

Gk(ω) des
ribes the dynami
s when only one ele
tronis intermittently added to the system.5,10 Thus, unlikefor �nite density 
ases, the phonon line in Fig. 1 repre-sents the bare phonon propagator. In parti
ular, for theHolstein model, this propagator is k-independent (lo
al),
D(0)(ω) = 2ω0/(ω2 − ω2

0 + iηω0). The polaron e�e
ts onthe phonon self-energy 
an be investigated by 
onsider-ing the 
ase of one ele
tron permanently present in thesystem, as dis
ussed in Refs. 10,11.For the Holstein polaron problem (1) the DMFT 
an beformulated as an iterative pro
edure of generating a hi-erar
hy of diagrams in the perturbative expansion of the
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2ele
tron self-energy. In ea
h iterative step, one �rst 
on-siders expli
itly the ele
tron-phonon intera
tion on onelatti
e site only, usually referred to as the impurity site.This permits the expression of the ele
tron self-energyasso
iated with the impurity site s in terms of lo
al ele
-tron and phonon propagators. In parti
ular, by using thebare phonon propagator to des
ribe the phonons, the im-purity self-energy for the Holstein polaron problem 
anbe evaluated5 in terms of the 
ontinued fra
tion
Σ(n)(ω) =

g2

[G(n)
s,s (ω − ω0)]−1 − 2g2

[G
(n)
s,s (ω−2ω0)]−1−...

, (3)where G(n)
s,s (ω) is the impurity propagator 
orrespondingto the nth iterative step. The translationally invariantDMFT ele
tron propagator of the nth iteration is ob-tained by treating all latti
e sites on equal footing usingthe self-energy Σ(n)(ω) of Eq.(3) a

ording to

G
(n)
i,j (ω) = G0

i,j(ω) + Σ(n)(ω)
∑

r

G0
i,r(ω)G

(n)
r,j (ω) , (4)with G0

i,j(ω) the free ele
tron propagator. By taking theFourier transform of Eq. (4), in the momentum spa
e oneobtains
[

G
(n)
k (ω)

]−1

=
[

G0
k(ω)

]−1 − Σ(n)(ω) . (5)In order to establish a dire
t 
onne
tion with the dia-grammati
 theory, it is appropriate to start the DMFTiterative pro
edure with the lo
al free-ele
tron propaga-tor G0
s,s(ω) as the initial n = 1 guess in Eq. (3), i.e.,

G(1)
s,s (ω) = G0

s,s(ω). With this initial step, one obtains inEq. (3) the self-energy Σ(1)(ω) that 
hara
terizes the ex-a
t solution of the problem in whi
h the ele
tron 
oupleswith a single phonon mode at the impurity site,
Gi,j(ω) = G0

i,j(ω) + Σ(1)(ω) G0
i,s(ω) Gs,j(ω) . (6)By examining the diagrammati
 expansion5 of Σ(1)(ω) inEq. (3) order by order in g2, one 
an verify that Gi,j(ω)of Eq. (6) is the exa
t solution of the single-ele
tron tun-neling through a quantum dot involving a single phononmode.For Σ(n)(ω) = Σ(1)(ω), the propagator (5) is equal12to the ele
tron propagator derived in the 
ontext of themomentum averaging (MA) approximation, investigatedin Refs. 13,14. It involves all the pro
esses for whi
h thephonons o

upy just one latti
e site at the same time.At the beginning of ea
h n > 1 iterative step, the newimpurity propagator entering Eq. (3) is determined interms of the self-energy 
onsidered in the previous step,

G(n)
s,s (ω) = G0

s,s(ω) + Σ(n−1)(ω)
∑

r 6=s

G0
s,r(ω)G(n)

r,s (ω) . (7)

Figure 2: In the DMFT 
ontext there is no 
rossing betweenphonon lines 
orresponding to di�erent latti
e sites in the di-agrammati
 expansion of the ele
tron self-energy. The vertex
orre
tions are limited to a single latti
e site.Su
h expression for G(n)
s,s (ω), whi
h is not translation-ally invariant by 
onstru
tion (Σ(n)(ω) 6= 0), preventsthe double 
ounting of the diagrams.15 In parti
ular, theself-energy diagram shown in Fig. 2a is generated in these
ond step (n = 2) of the DMFT iterative pro
edure.The phonon lines 
orresponding to the sites i, j 6= s de-s
ribe the pro
esses 
onsidered in the �rst step. Thesepro
esses are in
luded by G(2)

s,s (ω) in Eq. (7). The phononline 
orresponding to the impurity site s is added troughEq. (3) by inserting G(2)
s,s (ω) into it.One sees that ea
h step of the DMFT iteration addsthe phonon lines asso
iated with the impurity site s tothe self-energy diagrams. In general, the diagrams ob-tained in the nth iterative step may involve phonons atup to n di�erent latti
e sites at the same instant of time.However, be
ause of the parti
ular way in whi
h the di-agrams are generated, the phonon lines 
orresponding todi�erent latti
e sites never 
ross, i.e., the only vertex 
or-re
tions 
onsidered by the DMFT involve one latti
e site,as illustrated in Fig. 2b.In a
tual 
al
ulations, the 
ontinued fra
tion (3) isevaluated to some �nite order M , where M de�nes themaximal number of phonon ex
itations asso
iated withthe impurity site.5 For M su�
iently large, M >∼ g2/ω2

0,the higher order 
ontributions in Eq. (3) 
an be ne-gle
ted, and one repeats the iterative pro
edure until theresults 
onverge to values satisfying a predetermined 
ri-teria. If N is the number of iterative steps, the diagramstaken into a

ount involve up to M ×N phonon lines atthe same instant of time.For the initial impurity propagator G(1)
s,s (ω) in Eq. (3),the lo
al free-ele
tron propagator G0

s,s(ω) is used in or-der to identify exa
tly the diagrams 
ontributing tothe DMFT ele
tron propagator. However, one 
an
onsider all other 
hoi
es, assuming as usual in theDMFT that they 
onverge to the same result. In fa
t,the DMFT is 
ommonly iterated until the self-
onsistentsolution,
[

G(n)
s,s (ω)

]−1

= [G(n)
s,s (ω)]−1 + Σ(n)(ω) , (8)is a
hieved with no parti
ular restri
tions on the ini-



3tial impurity propagator G(1)
s,s (ω). The relation be-tween the DMFT and perturbation expansion estab-lished here shows that the existen
e of (at least one)self-
onsistent solution relies on the appli
ability of theperturbation series asso
iated with the DMFT.The absen
e of vertex 
orre
tions involving multiplelatti
e sites in the diagrammati
 representation of theDMFT is not a limitation uniquely related to the single-ele
tron problem. It persists for �nite densities as well.Namely, in ea
h DMFT iteration, one �rst 
al
ulates theimpurity self-energy in terms of lo
al propagators, takinginto a

ount the vertex 
orre
tions involving the impu-rity site only. This restri
tion on vertex 
orre
tions isnot removed by restoring the translational symmetry inEq. (5), whatever the ele
tron density. Furthermore, theabove argument, based on the topology of the diagram-mati
 expansion, applies for dispersive phonons as well.For the Holstein polaron problem, the physi
al mean-ing of the diagrams negle
ted by the DMFT 
an be eas-ily determined by 
omparing to the previous analyti
aland numeri
al results. First, it should be noti
ed thatin the atomi
 (small t) limit, the exa
t ele
tron self-energy Σk(ω) be
omes k-independent (lo
al) irrespe
-tively of the dimensionality of the system. This is 
on-sistent with the DMFT. However, for �nite dimensional
ases, non-lo
al 
ontributions to the ele
tron self-energyappear by in
reasing t. In parti
ular, the limitationsof the DMFT are observed best for large adiabati
 po-larons, for whi
h the lo
al and non-lo
al 
ontributions tothe ele
tron self-energy are equally important.10 For theHolstein model these polarons form in 1D for t ≫ ω0 and

(t/ω0)
1
4 <∼ g/ω0

<∼ (t/ω0)
1
2 .10The original results for large adiabati
 polarons werederived in pioneering works by applying the 
ontinuumadiabati
 approximation,9,16 whi
h breaks the transla-tional symmetry from the outset. In this approximation,the ele
tron wave fun
tion ηr and the latti
e deformation

ur are obtained as
ur =

2g

ω0
|ηr|2 , ηr =

√
λ

2
sech [λ (r − ξ/a)/2] , (9)where ur is the 
lassi
al latti
e deformation at the site

r in units of the spa
e un
ertainty of the zero-point mo-tion, λ = g2/t ω0 de�nes the polaron size dad ∼ 1/λ(dad
>∼ 1), and ξ/a is the position of the polaron alongthe 
ontinuum, with a the latti
e 
onstant. The e�e
tivemass mpol of the polaron (9) is given by the power law9

mpol ∼
∑

r

(∂ur/∂ξ)
2 ⇒ mpol/mel ∼ (g/ω0)

4
λ2 . (10)In the regime of large adiabati
 polarons, Eq. (10) repro-du
es well the exa
t e�e
tive mass derived either dire
tlyby the full diagrammati
 summation10 or from the po-laron band stru
ture 
al
ulated by the relevant 
oherentstates method (RCSM),8 mel/mpol = ∂Ek/∂εk|k=0, with

Ek the lowest polaron band dispersion. In other words,the e�e
tive mass that follows from the exa
t ele
tronself-energy Σk(ω),17
mel

mpol

=
1 + ∂k2Σ(k, ω)|k=0

1 − ∂ωΣ(k, ω)|ω=E0

, (11)should behave a

ording to Eq. (10) in the regime of largeadiabati
 polarons. The denominator in Eq. (11) is theinverse of the quasiparti
le weight Z0. From Eq. (9) one
an estimate
lnZ0 ∼ −

∑

r

u2
r ∼ −(g/ω0)

2 λ , (12)i.e., for λ 
onstant, Z0 exponentially de
reases with the
oupling, ur ∼ g/ω0. Thus, a

ording to Eq. (10), forlarge adiabati
 polarons the nonlo
al 
ontributions thatdetermine the numerator in Eq. (11) are exponentiallylarge, just as are the 
ontributions in the denominator.Obviously, it is not possible to a
hieve this result withinthe DMFT be
ause the self-energy is lo
al.Additional important insights on the appli
ability ofthe DMFT 
an be obtained from the polaron binding en-ergy. It is instru
tive to start the analysis with the weak-
oupling g/ω0 < (t/ω0)
1
4 and the small polaron λ ≫ 1limit, for whi
h the DMFT 
onverges to the exa
t solu-tion.Although Eq. (9) implies that the size of the adiabati
polaron in 1D in
reases in�nitely as λ de
reases, it shouldbe stressed that the upper limit on the range of adiabati

orrelations is independent of the 
oupling 
onstant g. Itis given by the length √

t/ω0 over whi
h the free ele
trondi�uses within a latti
e period 1/ω0.18 In parti
ular, for
dad ∼ 1/λ ∼

√

t/ω0, there is a smooth 
rossover betweenthe large adiabati
 and the nonadiabati
 polarons, thelatter 
orresponding to the weak-
oupling limit.10 In theabsen
e of adiabati
 
orrelations for weak 
ouplings, theexa
t ele
tron self-energy is lo
al and a

urately repro-du
ed by the DMFT. A

ordingly, as the weak-
ouplingregime is approa
hed by de
reasing λ [see the left side ofFig. 3℄, one observes that the deviations of the DMFTground-state energy with respe
t to the RCSM resultsde
rease.It 
an be argued that the main length s
ale over whi
hthe vertex 
orre
tions are important in the ground stateenergy E0, is determined by adiabati
 
orrelations. Inparti
ular, for low-frequen
ies ω ≈ E0 this length s
aleis 
losely related to the size of the (adiabati
) polaron,s
aling as 1/λ. Indeed, on the right side of Fig. 3 theDMFT approa
hes the RCSM ground-state energy as λis in
reased. However, the DMFT fails to des
ribe theadiabati
 spreading of small polarons and the adiabati
hopping to the neighboring sites. That is, on the rightside of Fig. 3 the MA, 
orresponding to the �rst stepof the DMFT, exhibits ina

ura
ies similar to those ofthe DMFT. The DMFT is not a substantial improve-ment over the MA in the des
ription of the adiabati
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Figure 3: (Color online) The RCSM (thi
k), DMFT (dashedwith symbols), and MA (thin) 
urves are the polaron ground-state energies E0 for t = 25. The inset 
ompares the MA andthe RCSM for t = 250. ω0 is used as the unit of energy.
orrelations sin
e, in both 
ases, the vertex 
orre
tionsinvolving more than one latti
e site are negle
ted. Itis worth noting in this respe
t that the MA approa
h
an be improved by in
luding all the lowest order vertex
orre
tions.19 On the other hand, the DMFT is usuallyextended in the 
ontext of quantum 
luster theories.20 Inthis latter 
ase, the vertex 
orre
tions involving the sitesof a 
hosen 
luster, rather than a single site, are takeninto 
onsideration.The 
entral part of Fig. 3 reveals that, in the regimebetween the weak-
oupling and small-polaron limits, theDMFT and MA data show signi�
ant deviations fromthe RCSM ground-state energy. These deviations be-
ome more pronoun
ed by in
reasing t/ω0, whi
h 
an beseen from the 
omparison of the MA and the RCSM inthe inset of Fig. 3. Although by taking into a

ount more

diagrams, the DMFT always gives a greater binding en-ergy than the MA, for t ≫ ω0 the DMFT, just as theMA, wrongly predi
ts a sudden 
hange in the slope ofthe ground-state energy.Within the Holstein model the sudden 
hange in theground-state properties for t ≫ ω0 o

urs if the dimen-sion of the system is greater than one. Namely, for D > 1the large adiabati
 polarons are unstable irrespe
tive ofthe parameters.21 Spe
i�
ally, for D > 1 and t/ω0 ≫ 1,the weakly dressed ele
tron (lo
al self-energy) 
rosses22dire
tly into a heavy nearly-small polaron (nearly lo-
al self-energy). Obviously, this kind of behavior whi
hdoes not involve long-range adiabati
 
orrelations is morelikely to be 
orre
tly reprodu
ed by the DMFT. Parti
-ularly in the D → ∞ limit where the exa
t self-energybe
omes lo
al.5For models with short-range intera
tions as for theHolstein model dis
ussed here, strong adiabati
 
orre-lations develop for signi�
ant ele
tron-phonon 
ouplings,for whi
h the ele
tron spe
tral weight at low frequen-
ies is strongly suppressed. Therefore, although thelow-frequen
y dynami
s of the 
harge 
arriers might begoverned by the adiabati
 
orrelations, one may �ndthat these 
orrelations are di�
ult to observe dire
tlyin experiments that measure the spe
tral fun
tion of theele
tron,23 e.g., in photoemission or tunneling measure-ments. In su
h 
ir
umstan
es, the investigations that re-veal the phonon properties,24 whi
h are strongly a�e
tedby polaron adiabati
 
orrelations,11,25 might provide bet-ter insights in strongly 
oupled ele
tron-phonon systems.In 
on
lusion, for the Holstein model the DMFTsums an in�nite series of lo
al diagrams 
hara
terizedby the absen
e of vertex 
orre
tions involving di�erentlatti
e sites. By analyzing the single-ele
tron problemit is shown that the vertex 
orre
tions negle
ted by theDMFT are important in low dimensions for the des
rip-tion of the adiabati
 polaroni
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