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In the context of the Holstein polaron problem it is shown that the dynamical mean field theory
(DMFT) corresponds to the summation of a special class of local diagrams in the skeleton expansion
of the self-energy. In the real space representation, these local diagrams are characterized by the
absence of vertex corrections involving phonons at different lattice sites. Such corrections vanish in
the limit of infinite dimensions, for which the DMFT provides the exact solution of the Holstein
polaron problem. However, for finite dimensional systems the accuracy of the DMFT is limited. In
particular, it cannot describe correctly the adiabatic spreading of the polaron over multiple lattice
sites. Arguments are given that the DMFT limitations on vertex corrections found for the Holstein
polaron problem persist for finite electron densities and arbitrary phonon dispersion.

Since the early works in which some important aspects
of the Mott localization were accounted for successfully,
the DMFT has been used for a broad range of strongly-
correlated problems.22 In the DMFT the quasi-particle
properties are calculated by treating the self-energy as
a local (k independent) quantity. This approach is mo-
tivated by the observation that for some models in the
infinite dimensional limit D — oo the exact self-energy
is local. In particular, for the Hubbard model this prop-
erty is derived from the diagrammatic perturbation the-
ory in the interaction strength U2 as well as from the
diagrammatic expansion around the atomic limit.4 Con-
siderable attention was given to the electron-phonon Hol-
stein model t00,8 for which the nature of the perturbation
theory is local for D — oo. There are however important
differences between the two models, which are best illus-
trated by the fact that motivates the current study. Un-
like in the Hubbard model, which leaves the first electron
in the system free, renormalization occurs in the Holstein
model irrespectively of the dimension D, provided that
the phonon frequency is finite.

It is commonly believed that the DMFT results pro-
vide valuable insights on real materials, although for fi-
nite dimensional systems the level of approximation is
frequently difficult to estimate. For these reasons it is
particularly interesting to analyze the limitations of the
DMFT in the context of the Holstein polaron problem be-
cause accurate results for low frequencies, at which the
polaronic correlations are the strongest, are available in
low dimensions for the whole parameter space.”® Along
these lines, in this work the diagrammatic content of the
DMFT is analyzed first, in order to identify exactly which
are the contributions ignored for finite D. In the next
step, the physical meaning of these is investigated.

The Holstein model? describes the tight-binding elec-
trons in the nearest-neighbor approximation, coupled to
one branch of dispersionless optical phonons,
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Figure 1: The exact electron self-energy ¥ (w) for the Hol-
stein polaron problem. The double line represent the exact
electron propagator G (w), the shaded triangle is the exact
vertex and the single wavy line is the bare phonon propagator
DO (w).

Here, c] and b]. are the creation operators for the electron
and the phonon, respectively, ¢ is the electron hopping
integral, wq is the phonon energy, and g is the electron-
phonon coupling constant. As the bare phonons and the
coupling are local, the lattice geometry and dimension-
ality are expressed only through the first term in Eq. (1)
involving the summation over nearest-neighbor sites J.
The spin index is omitted since only the single-electron
(polaron) problem is considered here.

The exact single-electron propagator in the momentum
representation is given by

1
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with ey the free-electron energy, and X (w) is the exact
self-energy shown in the diagrammatic representation in
Fig.[[l There are no contributions to the phonon propa-
gator due to the creation of the electron-hole pairs, since
Gr(w) describes the dynamics when only one electron
is intermittently added to the system.219 Thus, unlike
for finite density cases, the phonon line in Fig. [l repre-
sents the bare phonon propagator. In particular, for the
Holstein model, this propagator is k-independent (local),
DO (w) = 2w/ (w? — w3 + inwo). The polaron effects on
the phonon self-energy can be investigated by consider-
ing the case of one electron permanently present in the
system, as discussed in Refs.

For the Holstein polaron problem () the DMFT can be
formulated as an iterative procedure of generating a hi-
erarchy of diagrams in the perturbative expansion of the


http://arXiv.org/abs/0706.2582v2

electron self-energy. In each iterative step, one first con-
siders explicitly the electron-phonon interaction on one
lattice site only, usually referred to as the impurity site.
This permits the expression of the electron self-energy
associated with the impurity site s in terms of local elec-
tron and phonon propagators. In particular, by using the
bare phonon propagator to describe the phonons, the im-
purity self-energy for the Holstein polaron problem can
be evaluated® in terms of the continued fraction
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where gg,”s) (w) is the impurity propagator corresponding
to the nth iterative step. The translationally invariant
DMFT electron propagator of the nth iteration is ob-
tained by treating all lattice sites on equal footing using
the self-energy X" (w) of Eq.([@) according to

G (W) = G () + 2 (W) Y G )G (), (4)
with GY ;(w) the free electron propagator. By taking the
Fourier transform of Eq. (@), in the momentum space one
obtains

[ePw)] =[] 2w . )

In order to establish a direct connection with the dia-
grammatic theory, it is appropriate to start the DMFT
iterative procedure with the local free-electron propaga-
tor GY ,(w) as the initial n = 1 guess in Eq. @), ie.,

§12 (w) = GY ,(w). With this initial step, one obtains in
Eq. @) the self-energy ¥(Y) (w) that characterizes the ex-

act solution of the problem in which the electron couples
with a single phonon mode at the impurity site,

Gij(w) =G?(w) + W (w) GY () Gsj(w) . (6)

By examining the diagrammatic expansion® of ¥(!) (w) in
Eq. @) order by order in g2, one can verify that G, ;(w)
of Eq. (@) is the exact solution of the single-electron tun-
neling through a quantum dot involving a single phonon
mode.

For (") (w) = (M (w), the propagator (@) is equal?
to the electron propagator derived in the context of the
momentum averaging (MA) approximation, investigated
in Refs. [13[14. It involves all the processes for which the
phonons occupy just one lattice site at the same time.

At the beginning of each n > 1 iterative step, the new
impurity propagator entering Eq. (@) is determined in
terms of the self-energy considered in the previous step,

G (w) = GL (W) + =D (W) Y G2 ()G (W) - (7)
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Figure 2: In the DMFT context there is no crossing between
phonon lines corresponding to different lattice sites in the di-
agrammatic expansion of the electron self-energy. The vertex
corrections are limited to a single lattice site.

Such expression for gﬁ,’? (w), which is not translation-
ally invariant by construction (X" (w) # 0), prevents
the double counting of the diagrams.*® In particular, the
self-energy diagram shown in Fig. Zh is generated in the
second step (n = 2) of the DMFT iterative procedure.
The phonon lines corresponding to the sites i,j # s de-
scribe the processes considered in the first step. These

processes are included by g§22 (w)in Eq. ([@). The phonon
line corresponding to the impurity site s is added trough
Eq. (@) by inserting g§22 (w) into it.

One sees that each step of the DMFT iteration adds
the phonon lines associated with the impurity site s to
the self-energy diagrams. In general, the diagrams ob-
tained in the nth iterative step may involve phonons at
up to n different lattice sites at the same instant of time.
However, because of the particular way in which the di-
agrams are generated, the phonon lines corresponding to
different lattice sites never cross, i.e., the only vertex cor-
rections considered by the DMFT involve one lattice site,
as illustrated in Fig. 2b.

In actual calculations, the continued fraction (@) is
evaluated to some finite order M, where M defines the
maximal number of phonon excitations associated with
the impurity site.2 For M sufficiently large, M 2 ¢° /w3,
the higher order contributions in Eq. @) can be ne-
glected, and one repeats the iterative procedure until the
results converge to values satisfying a predetermined cri-
teria. If IV is the number of iterative steps, the diagrams
taken into account involve up to M x N phonon lines at
the same instant of time.

For the initial impurity propagator gs(ls) (w) in Eq. @),
the local free-electron propagator Ggs(w) is used in or-
der to identify exactly the diagrams contributing to
the DMFT electron propagator. However, one can
consider all other choices, assuming as usual in the
DMFT that they converge to the same result. In fact,
the DMFT is commonly iterated until the self-consistent
solution,
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is achieved with no particular restrictions on the ini-



tial impurity propagator g§12 (w).  The relation be-
tween the DMFT and perturbation expansion estab-
lished here shows that the existence of (at least one)
self-consistent solution relies on the applicability of the
perturbation series associated with the DMFT.

The absence of vertex corrections involving multiple
lattice sites in the diagrammatic representation of the
DMEFT is not a limitation uniquely related to the single-
electron problem. It persists for finite densities as well.
Namely, in each DMFT iteration, one first calculates the
impurity self-energy in terms of local propagators, taking
into account the vertex corrections involving the impu-
rity site only. This restriction on vertex corrections is
not removed by restoring the translational symmetry in
Eq. (@), whatever the electron density. Furthermore, the
above argument, based on the topology of the diagram-
matic expansion, applies for dispersive phonons as well.

For the Holstein polaron problem, the physical mean-
ing of the diagrams neglected by the DMFT can be eas-
ily determined by comparing to the previous analytical
and numerical results. First, it should be noticed that
in the atomic (small ¢) limit, the exact electron self-
energy i (w) becomes k-independent (local) irrespec-
tively of the dimensionality of the system. This is con-
sistent with the DMFT. However, for finite dimensional
cases, non-local contributions to the electron self-energy
appear by increasing ¢t. In particular, the limitations
of the DMFT are observed best for large adiabatic po-
larons, for which the local and non-local contributions to
the electron self-energy are equally important.t% For the
Holsteln model these polarons form in 1D for ¢ > wy and
(t/wo)® S g/wo S (t/wo)? A0

The original results for large adiabatic polarons were
derived in pioneering works by applying the continuum
adiabatic approximation,>¢ which breaks the transla-
tional symmetry from the outset. In this approximation,
the electron wave function 7, and the lattice deformation
u, are obtained as

Uy =

iy f, w =L\ - /a2 O

where w, is the classical lattice deformation at the site
r in units of the space uncertainty of the zero-point mo-
tion, A = g%/t wy defines the polaron size duq ~ 1/\
(doa 2 1), and &/a is the position of the polaron along
the continuum, with a the lattice constant. The effective
mass My, of the polaron (@) is given by the power law?

Mol ~ Y _ (0 /OE)* = Mot /mer ~ (g/wo)' A* . (10)

In the regime of large adiabatic polarons, Eq. (I0) repro-
duces well the exact effective mass derived either directly
by the full diagrammatic summation!® or from the po-
laron band structure calculated by the relevant coherent
states method (RCSM) 2 me;/mypor = OFE) /Ock|k—0, with

FE the lowest polaron band dispersion. In other words,
the effective mass that follows from the exact electron
self-energy Y (w), 7

Ml 1+ 8k22(k,w)|k:0
= ; (11)
1 - 0,3k, w)|w=r,
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should behave according to Eq. (I0) in the regime of large
adiabatic polarons. The denominator in Eq. () is the
inverse of the quasiparticle weight Zy. From Eq. (@) one
can estimate

nZy~ =Y uf~ —(g/wo)* A, (12)

i.e., for \ constant, Zp exponentially decreases with the
coupling, u, ~ g/wg. Thus, according to Eq. ([I0Q), for
large adiabatic polarons the nonlocal contributions that
determine the numerator in Eq. (1)) are exponentially
large, just as are the contributions in the denominator.
Obviously, it is not possible to achieve this result within
the DMFT because the self-energy is local.

Additional important insights on the applicability of
the DMFT can be obtained from the polaron binding en-
ergy. It is instructive to start the analysis with the weak-
coupling g/wo < (t/wo)® and the small polaron A > 1
limit, for which the DMFT converges to the exact solu-
tion.

Although Eq. ([@) implies that the size of the adiabatic
polaron in 1D increases infinitely as A decreases, it should
be stressed that the upper limit on the range of adiabatic
correlations is independent of the coupling constant g. It
is given by the length /t/wg over Which the free electron
diffuses within a lattice period 1/wyA® In particular, for

dag ~ 1/ ~ /t/wp, there is a smooth crossover between
the large adiabatic and the nonadiabatic polarons, the
latter corresponding to the weak-coupling limit.1? In the
absence of adiabatic correlations for weak couplings, the
exact electron self-energy is local and accurately repro-
duced by the DMFT. Accordingly, as the weak-coupling
regime is approached by decreasing A [see the left side of
Fig. B], one observes that the deviations of the DMFT
ground-state energy with respect to the RCSM results
decrease.

It can be argued that the main length scale over which
the vertex corrections are important in the ground state
energy FEy, is determined by adiabatic correlations. In
particular, for low-frequencies w ~ FEj this length scale
is closely related to the size of the (adiabatic) polaron,
scaling as 1/A. Indeed, on the right side of Fig. Bl the
DMEFT approaches the RCSM ground-state energy as A
is increased. However, the DMFT fails to describe the
adiabatic spreading of small polarons and the adiabatic
hopping to the neighboring sites. That is, on the right
side of Fig. Bl the MA, corresponding to the first step
of the DMFT, exhibits inaccuracies similar to those of
the DMFT. The DMFT is not a substantial improve-
ment over the MA in the description of the adiabatic



Figure 3: (Color online) The RCSM (thick), DMFT (dashed
with symbols), and MA (thin) curves are the polaron ground-
state energies Ey for ¢ = 25. The inset compares the MA and
the RCSM for ¢ = 250. wo is used as the unit of energy.

correlations since, in both cases, the vertex corrections
involving more than one lattice site are neglected. It
is worth noting in this respect that the MA approach
can be improved by including all the lowest order vertex
corrections.2? On the other hand, the DMFT is usually
extended in the context of quantum cluster theories.2% In
this latter case, the vertex corrections involving the sites
of a chosen cluster, rather than a single site, are taken
into consideration.

The central part of Fig. [ reveals that, in the regime
between the weak-coupling and small-polaron limits, the
DMFT and MA data show significant deviations from
the RCSM ground-state energy. These deviations be-
come more pronounced by increasing ¢/wq, which can be
seen from the comparison of the MA and the RCSM in
the inset of Fig.[3l Although by taking into account more

diagrams, the DMFT always gives a greater binding en-
ergy than the MA, for ¢ > wp the DMFT, just as the
MA, wrongly predicts a sudden change in the slope of
the ground-state energy.

Within the Holstein model the sudden change in the
ground-state properties for ¢ > wq occurs if the dimen-
sion of the system is greater than one. Namely, for D > 1
the large adiabatic polarons are unstable irrespective of
the parameters.2t Specifically, for D > 1 and t/wg > 1,
the weakly dressed electron (local self-energy) crosses?2
directly into a heavy nearly-small polaron (nearly lo-
cal self-energy). Obviously, this kind of behavior which
does not involve long-range adiabatic correlations is more
likely to be correctly reproduced by the DMFT. Partic-
ularly in the D — oo limit where the exact self-energy

becomes local 2

For models with short-range interactions as for the
Holstein model discussed here, strong adiabatic corre-
lations develop for significant electron-phonon couplings,
for which the electron spectral weight at low frequen-
cies is strongly suppressed. Therefore, although the
low-frequency dynamics of the charge carriers might be
governed by the adiabatic correlations, one may find
that these correlations are difficult to observe directly
in experiments that measure the spectral function of the
electron,;2? e.g., in photoemission or tunneling measure-
ments. In such circumstances, the investigations that re-
veal the phonon properties, 2 which are strongly affected
by polaron adiabatic correlations 2% might provide bet-
ter insights in strongly coupled electron-phonon systems.

In conclusion, for the Holstein model the DMFT
sums an infinite series of local diagrams characterized
by the absence of vertex corrections involving different
lattice sites. By analyzing the single-electron problem
it is shown that the vertex corrections neglected by the
DMFT are important in low dimensions for the descrip-
tion of the adiabatic polaronic correlations spreading over
multiple lattice sites.
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