
PHP Scripts Generator for Remote Database Administration based on C++
Generative Objects

Danijel Radošević, Tihomir Orehovački, Mario Konecki
Faculty of Organization and Informatics

University of Zagreb
Address: Pavlinska 2, 42 000 Varaždin, Croatia
Phone: +385 42 390 800 Fax: +385 42 213 413

E-mail: danijel.radosevic@foi.hr, tihomir.orehovacki@foi.hr, mario.konecki@foi.hr

Abstract - The scripting model of generators was originally
developed for faster development of application generators in
scripting languages. It was shown later that this model is not
restricted only on scripting languages, so the appropriate
library for generator development was developed in C++. For
the purpose of this paper, the simple generator of PHP scripts
for remote administration of database using web interface
was developed. The application generators scripting model
properties, like aspect orientation and the fact that the
generators scripting model is typeless (which is the property
of scripting languages like PHP) were important for this
generator development.

I. INTRODUCTION

Generative programming is a discipline of automatic
programming which started, under that name, in the late
90's of last century. According to this definition,
generative programming represents "... designing and
implementing software modules which can be combined to
generate specialized and highly optimized systems
fulfilling specific requirements", Eisenecker [5].
Aspiration to programming code optimization makes,
according to [5], the main specific difference toward other
techniques of automatic programming.

The main goals of generative programming are,
according to Czarnecki [3]:
• decrease the conceptual gap between program code

and domain concepts (known as achieving high
intentionality)

• achieve high reusability and adaptability
• simplify managing many variants of a component,

and
• increase efficiency (both in space and execution

time)
Generative programming came out from the aspiration

to increase productivity of making software, by producing
it in a way comparable to industrial production. Because of
some weaknesses, observed by Guerraoui [6], and
Ousterhout [11], today's object-oriented programming is
not able to fulfill those aspirations completely. That was
the reason why some new disciplines of programming
occurred in the middle of 90's in the last century, which
should succeed this object paradigm. One of that
disciplines is so called Aspect Oriented Programming
(AOP) [6], which is one of the basic disciplines in
generative programming.

According to Czarnecki [3], generative programming is
based on the following disciplines:
• metaprogramming
• generic programming
• object-oriented programming
• aspect-oriented programming and
• domain engineering.

II. USAGE OF SCRIPTING LANGUAGES WITHIN
GENERATIVE PROGRAMMING

Generative programming has been originally observed

mostly as a discipline of object-oriented programming.
But, as announced by Sells [14], some attempts of
connecting generative programming to scripting languages
appeared. Also, some projects of making specialized
scripting languages for generative programming appeared.
Some examples of them are Open Promol [15] in Lithuania
and Codeworker [10] in France.

Advantages of using scripting languages should be
reached through avoiding certain weaknesses of object-
oriented programming, primarily the [11] rigidity of object
model, large amount of typing and the need to have a
translation/compiling phase during the development of the
program. In addition, we could point out the following
scripting language characteristics that are useful in
generative programming:
• scripting language abilities in character queue

processing [15][10],
• possibilities of connecting completed components

written in target program languages [15] and
• flexibility of scripting language syntax which come

out from low typing level [15][11].
Mentioned features are used in up-today’s projects of

scripting languages usage within generative programming,
such as Open Promol and Codeworker.

III. THE GENERATOR SCRIPTING MODEL

Scripting model was developed for the needs of
generative programming based on scripting languages
[12]. Different to the object model, it's oriented to defining
specified, specific aspects of the future applications within
specified problem domain, not on all application
functionalities, because these are defined on lower level
(in program code templates; within the scripting model
these are called metascripts). Aspects, according to

Kinczales [8], represent features that are not strictly
connected to individual program organizational units like
functions or classes, so they can appear within different
application parts. Therefore the connection model is
needed. In the basis, the offered model represents the kind
of join point model, according to Kandé [7]. Furthermore,
the scripting model is not based on types, i.e. it represents
a type-free system [1], because connecting points in the
scripting model do not represent classes and their objects,
but only connections between metaprograms and
characteristics defined in application specification [12].

The scripting model consists of two graphic diagrams
(or equivalent textual specifications), so it's simpler in
relation to the models based on UML [12]. The first
diagram is called the specification diagram and it defines
the structure of the application specification within the
generation system (Figure 1.).

Application
specification

Generator
(joins

metascripts to
specification)

Library of
metascripts

Aplication

Problem
domain Generator Solution

domain

Figure 1. The generation system

The generation system generates the application within
its problem domain, which is designated by program code
templates (metascripts). The connection rules for
connecting metascripts to application specification are
defined in the second diagram - the metascripts diagram
[12].

A. The specification diagram

The specification diagram of PHP scripts for remote

database maintaining generator defines features (aspects)
which make single application different from other within
it's problem domain. In the example, specification defines
used tables and fields in each table (Figure 2.).

title [] table primary_key

field_int field_char field_float

field_

Figure 2. The specification diagram

B. The metascripts diagram

The metascripts diagram of PHP scripts for remote
database maintaining generator defines connections
between metascripts and application specification (Figure
3.).

SCRIPT

script.metascri

pt

[table].php

#primary_key#

primary_key

#table#

table

#title#

title

#arguments_post#

field_

#list_of_fields#

field_

field_post

field_post.metascript

#field#

field_

field_int

field_int.metascript

#field#

field_int

field_char

field_char.metascrip

t

#field#

field_char

field_float

field_float.metascript

#field#

field_float.
.
.

Figure 3. The metascripts diagram

IV. IMPLEMENTATION OF GENERATOR SCIPTING
MODEL THROUGH GENERATIVE OBJECTS

The scripting model of generators was originally

developed for the purpose of developing generators in
scripting languages, like Perl. However, it was shown that
model and its implementation don't depend on using
scripting languages. Generators based on scripting model
can be written in object-oriented programming languages
like C++, as well as in scripting languages. Moreover,
using object-oriented languages enables usage of object
modeling techniques, like UML.

Generative objects are objects from classes which are
included in programs in a form of libraries. For that
purpose, the appropriate library for C++ is developed.

A. C++ library for generator development

The library defines two classes for generator

development: cgenerator, and cspecification. The
cgenerator class enables implementation of generating
functions, while the cspecification class inherits
cgenerator, adding methods for working with application
specification.

B. Class cgenerator

The cgenerator class enables implementation of simple

one-level generator in C++ language, which is shown in
the next diagram (Figure 4.).

<metascript
name>

<source file>

<output file>

#<link>#

<source>

metascript

link

source

Figure 4. Single level generator

Operations supported by appropriate methods from

cgenerator class are following:
• loading program code templates (metascripts)
• simple generating by exchanging links using

appropriate exchange contents (sources)
• saving generated program code into output file
• different operations on character strings, like

concatenation of generated code and assembling
templates

C. Class cspecification

The cspecification class enables working with

application specification. Application specification is
proposed by specification diagram (Fig. 3). The
cspecification class inherits cgenerator and enables
implementation of specification linked list, all operations
connected to application specification and implementation
of more complex generating functions.

The application specification is in a simple textual file,
in a form of label-value pairs, like the following example:

title:students
field_int:id
field_char:surname_name
field_float:average_mark

The linked list of application specification is formed by

loading from textual specification (Figure 5.).

<label>
<vralue>

<methods>

head of the list

title
students

field_int
id

field_char
surname_name

field_float
average_mark

N
U

LL

specification

Figure 5. Linked list of specification

Operations supported by appropriate methods from
cspecification class are following:
• loading specification to specification linked list
• implementation of simple single level generator

(Figure 4.)
• selecting parts of specification, due to proper

connecting sources to metascripts.

D. The structure of generator

The general structure of generator based on C++

generative objects is shown in Figure 6.

cgen_01
method_1

.

.
method_M1

cgenerator
method_1

.

.
method_M

cspecification
method_1

.

.
method_M

cgen_N
method_1

.

.
method_MN

.

.

.

.

.

.

.

Figure 6. General structure of generator based on C++ generative

objects

As shown in Figure 6., particular generators are

implemented by appropriate classes, which are inherited
from cspecification. Particular branches of metascripts
diagram are implemented by appropriate methods.

V. THE APPLICATION PROTOTYPE

The prototype presents starting point of generator

development because it’s reengineering results in
programming code templates (metascripts). Also,
prototype presents one of possible applications inside of
problem domain which generator covers. In this case we
examine remote database administration through web
interface. The prototype is made of PHP scripts and
HTML form templates which enable the main operations
over „students“ table (data review, new record entry,
existing record modification and record deletion, Table 1.)

TABLE I

STRUCTURE OF PROTOTYPE DATABASE TABLE

Attributes Data types
student_id (primary key) integer

surname_name varchar
year_of_study integer

year_of_enrolment integer

During the development of the application prototype

the following infrastructure was used:
• Apache Web server
• mySQL database – for entity relationship model

implementation
• PHP server-side scripting language – for user's

view implementation
The main purpose of this prototype is generator

development. This generator will be the virtue of prototype
structure and functionality (generation of similar and more
complex systems). Model of database-driven prototype
which presents prototype functionality and used
infrastructure is shown in Figure 7.

Figure 7. Model of a database-driven prototype

HTML templates of main operations (data review and

existing record modification) which prototype maintains
are shown in Figure 8. and Figure 9., respectively.

Figure 8. Data review

Figure 9. Data modification

VI. CONCLUSION

In this paper, it is shown that scripting model of

generators can be implemented by appropriate object
model by using object-oriented programming languages,
like C++. For that purpose, the appropriate library for C++
was developed, as well as generator of PHP scripts for
remote administration of database using web interface.
Development of applications and their generators is
adapted to Boehm's spiral model of software development
[2].

By usage of C++ in generator development, some
advantages in implementation of scripting model are
achieved in comparison to scripting languages: better
efficiency of program code, and its better protection
(because of compilation into machine language),
possibility of using object-modeling techniques like UML.

On the other hand, the flexibility in generators
development using scripting languages was held.

REFERENCES

 [1] Albano, A., Dearle, A., Ghelli, G., Marlin, C., Morrison,
R., Orsini, R., Stemple, D.: "A Framework for Comparing
Type Systems for Database Programming Languages",
http://citeseer.ist.psu.edu/albano89framework.html

 [2] Boehm, B.W., A Spiral Model of Software Development
and Enhancement, Computer, May 1988, v. 21 no. 5, pp.
61-72.

 [3] Czarnecki, K.: "Generative Programming and GMCL",
Technische Universität Ilmenau,Fakultät für Informatik
und Automatisierung, 1999.,

 http://www-ia.tu-ilmenau.de/~czarn/gmcl/
 [4] Czarnecki, K.:"Generative Core Concepts - Generative

Domain Model", Program-Transformation.Org, 2002.,
http://www.program-
transformation.org/Transform/GenerativeCoreConcepts

 [5] Eisenecker, U.:" .:"Generative Programming (GP) with
C++", Proceedings of Modular Programming Languages
(JMLC'97, Linz, Austria, March 1997.), Springer-Verlag,
heidelberg 1997."

 [6] Guerraoui R. : "Strategic directions in object-oriented
programming", ACM Computing Surveys, Baltimore,
december 1996.

 [7] Kandé, M.M., Kienzle,J., Strohmeier, A.: "From AOP to
UML - A Bottom-Up Approach", 1st International
Conference on Aspect-Oriented Software Development,
2002., Enschede, The Netherlands,
http://lglwww.epfl.ch/workshops/aosd-
uml/Allsubs/kande.pdf

 [8] Kinczales, G., Lamping, J., Mendhekar, A., Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, John Irwin.
“Aspect-Oriented Programming”. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), Finland. Springer-Verlag LNCS 1241. June
1997.
http://citeseer.nj.nec.com/kiczales97aspectoriented.html

[9] Lee, K.W.K.:"An Introduction to Aspect-Oriented
Programming", COMP610E: Course of Software
Development of E-Business Applications (Spring 2002),
Hong Kong University of Science and Technology, 2002.

[10] Lemaire, C.: "CODEWORKER Parsing tool and Code
generator - User’s guide & Reference manual",
http://codeworker.free.fr/CodeWorker.pdf

[11] Ousterhout J. K. : "Scripting : Higher Level programming
for the 21st Century", IEEE computer magazine, march
1998.

[12] Radošević, D.:"Integracija generativnog programiranja i
skriptnih jezika", doctoral thesis, Fakultet organizacije i
informatike, Varaždin, 2005.

[13] Radošević,D., Kozina,M., Kliček B.: "Comparison
Between UML And Generator Application Scripting
Model", Conference proceedings of "Information and
Intelligent Systems 2005" (IIS 2005), Fakultet organizacije
i informatike, Varaždin, 21.-23.09.2005.

[14] Sells, C.: "Generative programming: Modern Techniques
to Automate Repetitive programming Tasks", MSDN
Magazine, december 2001,
http://msdn.microsoft.com/msdnmag/issues/01/12/GenProg
/GenProg.asp

[15] Štuikys, V., Damaševičius, R., Ziberkas, G.: "Open
PROMOL: An Experimental Language for Target Program
Modification", Software Engineering Department, Kaunas
University of Technology, Kaunas, Lithuania, 2001.,
http://soften.ktu.lt/~damarobe/publications/Vytautas_Stuik
ys.pdf

	PHP Scripts Generator for Remote Database Administration based on C++ Generative Objects

