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Establishing a well defined point of comparison between experimental re-
sults and theoretical predictions has for decades been one of the main issues
in hadron spectroscopy, and the present status is still not satisfactory. Ex-
periments, via partial wave (PWA) and amplitude analysis (AA), can give
reliable information on scattering matrix singularities, while quark model
calculations usually give information on resonant states spectrum in the first
order impulse approximation (bare/quenched mass spectrum). And these
two quantities are by no means the same. Up to now, in the absence of
a better recipe, these quantities have usually been directly compared, but
the awareness has ripen that the clear distinction between the two has to
be made. One either has to dress quark-model resonant states spectrum
and compare the outcome to the experimental scattering matrix poles, or
to try to take into account all self-energy contributions which are implicitly
included in the measured scattering matrix pole parameters, make a model
independent undressing procedure and compare the outcome to the impulse
approximation quark-model calculations. The first options seems to be fea-
sible but complicated [1], but the latter one seems to be impossible [2] due
to very general field-theory considerations [3, 4].

Hence, it seems fairly reasonable to focus our interest onto investigating
detailed features of scattering matrix singularities.

The general structure of all coupled-channel models is identical: the same
type of Dyson-Schwinger integral equation is always solved, but the channel-
resonance vertex interaction is treated differently - the approach varies from
phenomenological to microscopic [5]. Consequently, all coupled-channel mod-
els contain two types of scattering matrix singularities: full and bare. While
the full scattering matrix singularities are unanimously identified with ”mea-
surable” scattering matrix poles, the interpretation of bare poles, related to
the vertex interaction, have not yet been reached. Desirous ones attempt
to relate them to quark-model resonant states: in [6–8] the possibility has
been opened that γN → ∆ helicity amplitudes and transition form factors of
constituent quark models should be compared to the bare coupled-channel
functions, in [9] a simple well defined model is devised for understanding
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Roper and ∆ resonances in terms of Cloudy Bag Model form factors [10],
and in [11,12] this idea is used for understanding charmed/strange resonant
states in meson-meson scattering sector. Second, more cautious ones give
them certain measure of physical importance, but strongly refrain from giv-
ing them such a tempting physical meaning. The main reason for such a
disagreement lies in believing that the poles of the interaction potential do
arise only from the assumed model, and as such do not reveal much dynamics
of the interaction [2, 13].

Here we discuss various modes how to numerically quantify both types
of scattering matrix singularities, bare and dressed ones. First we focus onto
dressed scattering matrix singularities.

Dressed scattering matrix singularities

Dressed scattering matrix poles are nowadays quantified in two dominant
ways: either as Breit-Wigner parameters, i.e. parameters of a Breit-Wigner
function which is used to locally represent the experimentally obtainable T-
matrix, or as scattering matrix poles (either T or K). In spite of the fact that
it is since Hoehler’s analysis [14] quite commonly accepted that Breit-Wigner
parameters are necessarily model dependent quantities, they are still widely
used to quantify the scattering matrix poles. Only recently the scattering
matrix poles are being shown in addition [15].

The possibility to define model independent “Breit-Wigner like” parame-
ters parameters by parameterizing K-matrix poles with a Breit-Wigner func-
tion has been discussed by our group [16], but in this contribution we focus
the presentation on extracting the dressed scattering matrix poles as complex
numbers in the complex energy plane, quantities which are to be extracted
by knowing only real and imaginary part of the scattering matrix on the
real energy axes. We analyze the reliability of the speed-plot technique in
particular.

As a self-consistency test to extracting the scattering matrix pole posi-
tions using the inherent multi-channel analytic continuation methods [17],
we have applied the standard speed plot technique (single-channel) to the
amplitudes which describe various different-channel reactions. Surprisingly,
we obtained the values which differed from those obtained when using the
original method. In addition, the obtained parameters were not identical for
different channel processes. This anomalous behavior challenged common
sense and the conclusion was drawn that either our partial-wave analysis
or the applied pole extraction methods were incorrect. The single-channel
extraction methods were carefully examined, and those methods were de-
termined to be at fault. This effort resulted in a new model-independent
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Table 1: The N∗ resonance pole parameters obtained by the analytic contin-
uation method and speed plot in various channels. The N(????) stands for
resonances unnamed in the RPP.

Continuation method Speed plot method
πN elastic ηN → ηN πN → ηN

N* L2I 2J Re µ −2 Im µ Re µ −2 Im µ Re µ −2 Im µ Re µ −2 Im µ
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

N(1535) S11 1517 190 1506 83 1531 388 - -
N(1650) S11 1642 203 1657 183 1601 208 1632 179
N(2090) S11 1785 420 1764 133 - - 1917 423
N(1440) P11 1359 162 1355 154 st2 sta sta sta

N(1710) P11 1728 138 1722 121 1733 154 1679 151
N(????) P11 1708 174 - - - - - -
N(2100) P11 2113 345 2131 394 2122 357 2116 360
N(1720) P13 1686 235 1706 219 1617 289 1641 252
N(1520) D13 1505 123 1505 129 1527 129 - -
N(1700) D13 1805 130 1953 290 1809 129 - -
N(2080) D13 1942 476 1960 270 - - - -
N(1675) D15 1657 134 1657 136 1651 149 1620 108
N(2200) D15 2133 439 2134 375 2141 422 2130 401

extraction method free from this anomaly.

Using the speed plot technique we have extracted the pole parameters
from the coupled-channel amplitudes of ref. [17] for πN → πN , ηN → ηN
and πN → ηN processes. We summarized the results in Table 1, and com-
pared them to the pole parameters of analytic continuation method. To our
surprise, in some partial waves the obtained pole positions turned out to be
different for each process, and shifted with respect to analytic continuation
method by a few tens of MeV. And that is in obvious contradiction with the
input, because the pole positions in ref. [17] are manifestly identical for all
T-matrix matrix elements by the very construction. Therefore, something
was wrong.

In order to understand, explain and remedy this, we devise a new single-
channel method: the T-matrix regularization procedure, the method in which
the speed-plot technique is nothing but the first order approximation.

We start with a very general set of assumptions.

Let there be an analytic function T (z) of complex variable z which has a
first-order pole at some complex point µ. The function T (z) can be any of
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A. Švarc On ambiguities and uncertainties in PWA

the T-matrix matrix elements, and variable z can be either Mandelstam s or
center-of-mass energy

√
s. In order to achieve a full correspondence with the

speed plot technique, from now on we are going to use the latter choice. Since
all physical processes occur for real energy values, we are allowed to directly
determine only T (x) for x being a real number. To be able to successfully
continue T (x) into complex energy plane (to search for its poles), we should
regularize this function (i.e. remove the pole). In that case, any simple
expansion of the regularized function would converge in the proximity of the
removed pole.

The T-matrix matrix amplitudes are parameterized as:

T (z) =
r

µ− z︸ ︷︷ ︸
resonant part

+

(
T (z)− r

µ− z

)

︸ ︷︷ ︸
smooth background

, (1)

where µ and r are pole position and pole residue, and the varable z stands
for center-of-mass energy (

√
s).

The function T (z) with a simple pole at µ, is regularized by multiplying
it with a simple zero at µ:

f(z) = (µ− z) T (z). (2)

From this definition and Eq. (1), it is evident that the value of f(µ) is
equal to the residue r of T (z) at point µ. As we have the access to the
function values on real axis only, the Taylor expansion of f is done over some
real x to give the value (residue) in the pole µ (where background is highly
suppressed)

f(µ) =
N∑

n=0

f (n)(x)

n!
(µ− x)n + RN(x, µ). (3)

The expansion is explicitly written to the order N , and the remainder is
designated by RN(x, µ). Using the mathematical induction one can show
that the nth derivative of f(x), given by Eq. (2), is given as:

f (n)(x) = (µ− x) T (n)(x)− n T (n−1)(x). (4)

Insertion of this derivative into Taylor expansion conveniently cancels all
consecutive terms in the sum, except the last one

f(µ) =
T (N)(x)

N !
(µ− x)(N+1) + RN(x, µ), (5)

where T (N)(x) is the Nth energy derivative of T-matrix element. To simplify
the notation, the pole can be written as a general complex number µ = a+i b.
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Table 2: The comparison of N∗ resonance pole parameters obtained by the
analytic continuation method, and the Regularization method for πN , ηN →
ηN and πN → ηN processes. Numbers in subscript are the expansion order
required to obtain convergent result.

Analytic Contin. Regularization Method
πN → πN πN → ηN ηN → ηN

N∗ L2I 2J Re µ −2 Im µ Re µ −2 Im µ Re µ −2 Im µ Re µ −2 Im µ
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

N(1535) S11 1517 190 1522(7) 146(7) - - - -
N(1650) S11 1517 203 1647(7) 203(7) 1645(10) 211(10) - -
N(2090) S11 1785 420 - - - - - -
N(1440) P11 1359 162 1354(8) 162(8) st3 sta sta sta

N(1710) P11 1728 138 1729(8) 150(8) 1733(5) 133(5) 1728(7) 142(7)

N(????) P11 1708 174 - - - - - -
N(2100) P11 2113 345 2120(6) 347(6) 2120(6) 347(6) 2120(6) 347(6)

N(1720) P13 1686 235 1691(5) 235(5) 1691(5) 234(5) 1691(5) 235(5)

N(1520) D13 1505 123 1506(4) 124(4) - - - -
N(1700) D13 1805 130 1806(5) 132(5) 1806(4) 130(4) - -
N(2080) D13 1942 476 - - - - - -
N(1675) D15 1657 134 1658(5) 138(5) 1657(3) 137(3) 1658(5) 138(5)

N(2200) D15 2133 439 2145(6) 439(6) 2144(4) 435(4) 2144(6) 438(6)

Once the Taylor series converges the remainder RN(x, µ) can be disregarded,
and the absolute value of both sides of Eq. (5) is given as:

|f(µ)| =
∣∣T (N)(x)

∣∣
N !

|a + i b− x|(N+1) . (6)

To keep the form as simple as possible, Eq. (6) is raised to the power of
2/(N + 1). After simple rearrangement of terms, in which we have collected
the information on the T-matrix values on the right hand side, and the
information on the pole position and residuum on the left hand side, the
elemental second-order polynomial emerges:

(a− x)2 + b2

N+1

√
|f(µ)|2

= N+1

√
(N !)2

|T (N)(x)|2 , (7)

This is the equation which enables us to directly extract the pole position
(a = Re µ, b = Im µ) and the absolute value of the function residue |f(µ)|
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from the T-matrix values at the real axes, namely from the quantities directly
attainable from the energy-dependent partial wave analysis and evaluated at
factual energy points x.

What we actually do is the following: we first find the N-th derivative of
the T-matrix, and then we calculate the right-hand side of Eq. (7). Observe
that the exact knowledge of the right-hand side of Eq. (7) in only three
points uniquely determines the pole parameters. The problem is that we
can never know the right-hand side of Eq. (7) exactly. Therefore, we have
two options: either i) to take various three-point sets, evaluate the right-hand
side of Eq. (7), solve the equation for pole parameters, and make a statistical
analysis of obtained results; or ii) to fit the right-hand side of Eq. (7) with
the three parameter parabolic function. We have chosen the latter option,
and the obtained fitting parameters are our final result.

The pole parameters attained in this way, with the subscript N denot-
ing the number of required Taylor series terms, are for all three calculated
processes given in Table 2. Discrepancies are eliminated.
Observe:

The standard speed plot method turns out to be the “regularization”
method in the first order approximation! (To get the speed plot, one should
reduce the expansion given by Eq. (3) to N = 1 term.) The developed regu-
larization method represents an improvement of contemporary single-channel
pole extraction methods. We demonstrate that it successfully finds resonance
pole parameters from a T-matrix in a model-independent way, i.e. without
having to assume a specific T-matrix functional form.

Bare scattering matrix singularities

Coupled-channel T-matrix formalisms (CC T) [17, 19, 20] by construction
distinguish between scattering-matrix poles and bare Green function (bare
propagator) poles. The bare Green function poles, which are the subset of
CC T model fit parameters, can not be detected experimentally. To be-
came observable they have to interact. Through the formalism described by
resolvent Dyson-Schwinger equation the self-energy term is generated; the
self-energy term shifts the initial real-value bare propagator poles into the
complex energy plane; and eventually the measurable complex scattering-
matrix poles are generated as dressed Green function poles.

Following the ideas formulated in a dynamical coupled-channel model of
refs. [6, 21], but baring in mind controversies raised in ref. [2], we propose
that in any CMB type model one should as well try to identify the position
of a bare Green function pole with the mass of a quark-model resonant state
(QMRS), and to correlate the imaginary part of the scattering-matrix pole
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(SMP), which is created when the interaction effects shift QMRS into the
complex energy plane, with its decay width.

Such an identification simultaneously solves two problems: establishes
a missing link between QMRS and SMP offering a better control over the
missing-resonance problem, and at the same time creates a mechanism how to
distinguish between genuine scattering-matrix resonant states (SMRS) being
states which are produced by a nearby bare propagator pole, and dynamically
generated ones which are only an interference effect of distant ones. By
accepting this assumptions, we are able to: a) identify which QMRS are
needed to explain a chosen collection of experimental data; b) determine a
nature of a given SMRS (genuine or dynamic).

Even before showing the results, we want to warn the reader that the
simplicity of the model, i.e. the fact that we are effectively using only three
out of at least seven accessible and contributing channels, will produce only
qualitative results. Complexity of the coupled-channel model (simultaneous
mixing of all channels) requires considerable number of parameters, and we
expect that the absence of constraining data in more than two channels will
necessarily produce instabilities in obtained fitting solutions.

The first four partial waves in I=1/2 channel (S11, P11, P13 and D13) were
analyzed. We use a model with three channels: two physical two-body chan-
nels πN and ηN , while the third, effective channel represents all remaining
two- and three-body processes in a form of a two-body process.
For the πN elastic partial waves we used the VPI/GWU single-energy solu-
tions [22,23].
For the πN→ηN partial-wave data we used the coupled-channel amplitudes
from Batinić et al. [17], but instead of using smooth theoretical curves, we
constructed the data points by normally distributing the model input (see
ref. [16]).
Fitting strategy was taken over from ref. [16].
The obtained curves correctly reproduce all input partial wave data for πN
elastic and πN→ηN process, but are because of lack of space given else-
where [24].

In Fig. 1 we show two groups of results: scattering matrix poles for two
lowest negative and two lowest positive parity partial waves.

First group of results, the two lowest negative parity partial waves S11

and D13, pretty well confirm our assumption. All three bare propagator
poles for both partial waves can be naturally identified with lowest QMRS of
refs. [25]. We do see some discrepancies in mass position, but each required
bare propagator pole does qualitatively correspond to a particular QMRS,
and all lowest QMRS have found their bare propagator counter partners.

The obtained CC T scattering-matrix pole positions correspond reason-
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ably well to the experimental values reported in ref. [15]. The only disagree-
ment, the unexpected position of the third SMP of the S11 partial wave (too
far in the complex energy plane), is again a consequence of the fit-results
instability, and is expected to disappear with including more channels. All
three experimentally detected SMPs for the D13 partial wave are reproduced,
but the lowest two are somewhat shifted in mass.

We also symbolically visualize the influence of the interaction upon bare
propagator poles, and their “journey” from the initial QMRS to the final
SMP positions. In the world without interaction mixing matrices γ vanish,
we have no “dressing”, and bare propagator and scattering-matrix poles are
identical. In the real world, in the world with interaction, the γ matrices
are non-vanishing, and are obtained by fitting the partial wave data. Arrows
represent the way how bare propagator poles travel from the world without
interaction (γ=0) to the real world scattering-matrix singularities (γ 6= 0).

Figure 1: Scattering-matrix singularities and bare propagator pole positions.
Full dots denote bare propagator pole positions, triangle arrows denote the
few lowest quark-model resonant state masses of refs. [25].

Next group of results, the two lowest positive parity partial waves P13 and
P11, is still consistent with the hypothesis of the article, but some problems
appear. Only one out of five QMRS of ref. [25] for the P13 partial wave is
identified with the bare propagator pole, while other states remain yet to
be identified. The second required bare propagator pole should either be
identified with one of the higher lying QMRS, or will be shifted downwards
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when results of the fit stabilize.
The notoriously problematic P11 partial wave, however, remains a trou-

blemaker as in majority of theoretical considerations. First, we needed four
bare propagator poles in order to achieve acceptable fit to the input data.
Having in mind that we should identify bare propagator poles with all quark-
model states (resonant and bound), we have fixed the value of the first bare
propagator pole to the mass of the sub-threshold nucleon pole, and left the
remaining three poles unconstrained.

Problems start with the identification of QMRS with bare propagator
pole position. In ref. [16] we have demonstrated that the presence of inelastic
channels directly produces the N(1710) P11 SMP, and in Fig. 1 we show
that it is generated by dressing the 1.854 GeV bare propagator pole. This
pole can be directly associated with one of the quark-model states of ref. [25],
either 1.770 or 1.880. The nucleon state is producing an insignificant, sub
threshold and experimentally inaccessible pole at 1.1 GeV; remaining two
poles at 2.018 and 2.759 produce SMP of 2.2 GeV which can be identified with
poorly determined N(2100) P11, and an experimentally not yet established
state at 2 GeV.

However, our model with constraining data in only two channels shows
two very interesting features for P11 partial wave: i) no bare propagator pole
which would correspond to the 1.540 quark-model state is needed; ii) one
of experimentally confirmed SMPs, namely the N(1440) P11 state - Roper
resonance, is not produced by any nearby bare propagator pole as it was the
case for all other scattering-matrix poles; it is generated differently.

The CMB model in conjunction with our interpretation of physical mean-
ing of bare propagator poles offers us a natural way to characterize the na-
ture of scattering-matrix resonant state. We propose a criteria: the genuine
SMRS is a state which is produced by a nearby bare propagator pole; the
dynamic SMRS is a state which is created out of distant bare propagator
poles through the interaction mechanism itself.

According to this definition, we have no need for such an entity as the
“Roper quark-model resonant state”, in our model Roper resonance is a
dynamic resonant state.
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