Goal Directed Shortest Path Queries Using
Precomputed Cluster Distances™

Jens Maue!, Peter Sanders?, and Domagoj Matijevic!

! Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany,
[jensmaue,dmatijev]@mpi-inf.mpg.de
2 Universitit Karlsruhe, 76128 Karlsruhe, Germany, sanders@ira.uka.de

Abstract. We demonstrate how Dijkstra’s algorithm for shortest path
queries can be accelerated by using precomputed shortest path distances.
Our approach allows a completely flexible tradeoff between query time
and space consumption for precomputed distances. In particular, sublin-
ear space is sufficient to give the search a strong “sense of direction”.
We evaluate our approach experimentally using large, real-world road
networks.

1 Introduction

Computing shortest paths in graphs (networks) with nonnegative edge weights
is a classical problem of computer science. From a worst case perspective, the
problem has largely been solved by Dijkstra in 1959 [1] who gave an algorithm
that finds all shortest paths from a starting node s using at most m + n priority
queue operations for a graph G = (V, E) with n nodes and m edges.

However, motivated by important applications (e.g., in transportation net-
works), there has recently been considerable interest in the problem of acceler-
ating shortest path queries, i.e., the problem to find a shortest path between a
source node s and a target node t. In this case, Dijkstra’s algorithm can stop
as soon as the shortest path to ¢ is found. Furthermore, if the underlying graph
does not change too often, it is possible to store some precomputed information
that helps to accelerate the queries.

An extreme way to accelerate queries is to precompute all shortest path
distances d(s,t). However, this is impractical for large graphs since it requires
quadratic space and preprocessing time. We explore the question whether it is
possible to speed up queries by precomputing and storing only some shortest
path distances.

Our approach, Precomputing Cluster Distances (PCD), is very simple. We
partition the graph into k disjoint clusters ¥V = Vi U --- U V}, and store the
pair of starting and end point as well as the length of the shortest connection
between each pair of clusters. This information needs space O(k?) and can easily
be computed using k executions of Dijkstra’s algorithm. Refer to Section 3 for
details. In Section 4 we explain how this information can be used to compute

* Partially supported by DFG grant SA 933/1-2.

upper and lower bounds for d(s,t) at query time. These bounds can be used
to prune the search. Section 5 completes the description of our algorithmic ap-
proach by presenting some fast partitioning heuristics. Most of them require no
geometric information.

We then evaluate PCD in Section 6 using large, real-world road networks
as they are used in car navigation systems. It is both geometrically plausible,
and supported by our experiments that the speedup compared to Dijkstra’s
basic algorithm scales with V&, i.e., we get a flexible tradeoff between space
consumption and query time that already yields useful acceleration for very small
space consumption. To the best of our knowledge this is the first sublinear space
acceleration technique that yields speedups > 2. Perhaps the most interesting
application of PCD would be a combination with previous techniques that use
linear space and deliver very high speedups but have no sense of goal direction
[2—4]. Section 7 explores further future perspectives on PCD.

2 Related Work

Like most approaches to shortest paths with nonnegative edge weights, our
method is based on Dijkstra’s algorithm [1]. This algorithm maintains tenta-
tive distances d[v] that are initially oo for unreached nodes and 0 for the source
node s. A priority queue stores reached nodes (d[v] < oo) using d[v] as the prior-
ity. In each iteration, the algorithm removes the closest node u, settles it because
d[u] now is the shortest path distance d(s,u), and relazes the edges leaving u —
if d[u]+c((u,v)) < d[v], then d[v] is decreased to d[u]+c((u,v)). When Dijkstra’s
algorithm is used for s—t shortest path queries, it can stop as soon as t is settled.
When we talk about speedup, we mean the ratio between the complexity of this
algorithm and the complexity of the accelerated algorithm.

A classical technique that gives a speedup of around two for road networks is
bidirectional search which simultaneously searches forward from s and backwards
from ¢ until the search frontiers meet. Our implementation optionally combines
PCD with bidirectional search.

Another classical approach is goal direction via A* search: a lower bound
d(v,t) is used to direct the search towards the goal. This method can be in-
terpreted as defining vertex potentials p(v):= d(v,t) and corresponding reduced
edge weights ¢*((u,v)):= ¢((u,v)) + p(v) — p(u). Originally, lower bounds were
based on the Euclidean distance from u to ¢ and the “fastest street” in the net-
work. Besides requiring geometric information, this very conservative bound is
not very effective when searching fastest routes in road networks. In this respect,
a landmark result was recently obtained by Goldberg and Harrelson [5, 6]. Land-
mark A* uses precomputed distances to k landmarks to obtain lower bounds. Al-
ready around k£ = 16 carefully selected landmarks are reported to yield speedups
around 70. Combined with a sophisticated implementation of reach based routing
[2] this method currently yields the fastest query times for large road networks
[4]. The main drawback of landmarks is the space consumption for storing ©(kn)
distances. This is where PCD comes into play, which already yields a very strong

sense of direction using much less space than landmarks. Still, the story is a bit
more complicated than it sounds. We first considered PCD in March 2004 dur-
ing a workshop on shortest paths in Karlsruhe. However, it turned out the lower
bounds obtainable from PCD are not usable for A* search because they can lead
to negative reduced edge weights.® Apparently, Goldberg et al. independently
made similar observations [7]. The present paper describes a solution: use PCD
to obtain both upper and lower bounds to prune search. The basic idea for PCD
was presented in a Dagstuhl Workshop [8] (slides only).

There are several other speedup techniques that are based on partitioning
the network into k clusters [9-11]. However, the preprocessing time required
by these methods not only depends on k£ and the network size but also on the
number B of border nodes, i.e., the number of nodes that have nodes from other
clusters as neighbors. Furthermore, all of these methods need more space than
PCD. Table 1 summarizes the tradeoff between space, preprocessing time and
query time of these methods. Note that usually there is no worst case bound on
the query time known. The given functions make additional assumptions that
seem to be true for road network.

Table 1. Tradeoff between space, preprocessing time and query time depending on the
choice of the parameter k for different speedup techniques, k is the number of clusters
except for the landmark method. We assume road networks with n nodes and ©(n)
edges. D(n) is the execution time of Dijkstra’s algorithm, B is the number of border
nodes. Preprocessing time does not include the time for partitioning the graph. (For
the landmark method this is currently dominating the preprocessing time.)

Method space preprocessing |query

Edge Flags [10,9]{|©(n - k) Bits|@(B - D(n)) |? (=~ D(n)/2000Qk = 128)
Separator Hierarchy [11]|(2 (B®/k) |©(B- D(n/k))|2 (D(n/k) + B*/k)
Landmarks Blllen - k) O(k-D(n)) |? (= D(n)/70Q@Qk = 16)
PCD O(k*+ B) |e(k-Dn)) |2 (D(n/\/E))

An interesting way to classify speedup techniques is to look at two major
ways to prune the search space of Dijkstra’s algorithm. A* search and PCD
direct the search towards the goal. Other algorithms skip nodes or edges that
are only relevant for short distance paths. In particular, reach based routing
[2,4] and highway hierarchies [3] achieve very high speedups without any sense
of goal direction. Other techniques like edge flags [10, 9], geometric containers
[12], and to some extent the landmark method show both effects. Therefore, we
expect a major future application of PCD to augment highway hierarchies and
reach based routing with a space efficient way to achieve goal direction.

3 This was pointed out by Rolf Mdhring.

3 Preprocessing

Suppose, the input graph has been partitioned into clusters V = Vi U --- U V4.
We want to compute a complete distance table that allows to look up

d(Vi, V;):= eiin d(s,t) (1)
in constant time. We can compute d(S,V;) for a fixed cluster S and i =1,...,k

using just one single source shortest path computation: add a new node s’ con-
nected to all border nodes of S using zero weight edges. Perform a single source
shortest path search starting from s’. Fig. 1 illustrates this approach.

/S5
Fig. 1. Preprocessing connections from cluster S.

The following simple lemma shows that this suffices to find all connections
from S to other clusters.
Lemma 1. d(S,V;) = mind(s',v).
veV;
The proof is almost obvious. We include it nevertheless since several other
speedup techniques require shortest path computations from all border nodes
of all partitions.

Proof. We have d(S,V;) < min,ey, d(s',v) as any shortest path (s';s,...,v € V;)
found during the search from s’ contains a path (s, ..., v) connecting the clusters
S and V;.

On the other hand, there cannot be a shorter connection from S to V. As-
sume the contrary, i.e., there is a path (s € S,...,u € S,u’ ¢ S,...,v' € V)
with d(s,v") < mingey; d(s’,v). Then (s',u,...,v") would constitute a shorter
connection from s’ to v’, which is a contradiction. O

Repeating this procedure for every cluster yields the complete distance table. In
addition, for each pair V;, V; we store a start point v; € V; and an end point
vj € V; such that d(v;,v;) = d(V;, Vj).

4 Queries

We describe the query algorithm for bidirectional search between a source s and
a target t. To allow sublinear execution time, the algorithm assumes that the

distance values and predecessor information used by Dijkstra’s algorithm have
been initialized properly during preprocessing. Let S and T denote the clusters
containing s and t respectively. The search works in two phases.

In the first phase, we perform ordinary bidirectional search from s and ¢ until
the search frontiers meet, or until d(s, s’) and d(¢',t) are known, where s’ is the
first border node of S settled in the forward search, and ¢’ the first border node
of T settled in the backward search.

For the second phase we only describe forward search—backward search
works completely analogously. The forward search grows a shortest path tree
using Dijkstra’s algorithm, additionally maintaining an upper bound J(s, t) for
d(s,t), and computing lower bounds d(s,w,t) for the length of any path from
s via w to t. The search is pruned using the observation that the edges out of
w need not be considered if d(s,w,t) > cZ(s, t). Phase two ends when the search
frontiers of forward and backward search meet. In a cleanup phase, the distance
values and predecessor values changed during the search are reset to allow the
proper initialization for the next query. This can be done efficiently by main-
taining a stack of all nodes ever reached during the search. It remains to explain
how d(s,t) and d(s,w,t) are computed.

The upper bound is updated whenever a shortest path to a node u € U
is found such that u is the starting point of the shortest connection between
clusters U and T. Let tyr denote the stored end point of the precomputed
shortest connection from U to T'. Then we have

d(s, t) < d(s, u) + d(u, tUT) -‘rd(tUT, t) . (2)
—_———

=d(U,T)

The value of d(s,) has just been found by the forward search, and d(U,T') and
tyr have been precomputed; thus, the sum in Equation (2) is defined if d(tyr, t)
is known, i.e. if tyr has already been found by the backward search. Otherwise,
we use an upper bound of the diameter of T instead of d(tyr,t) (see Section

5). d(s,t) is the smallest of the bounds from Equation (2) encountered during
forward or backward search. The following lemma establishes the lower bound.

upper bound

Fig. 2. Constituents of upper and lower bounds for d(s,t).

Lemma 2. Consider any node w ¢ T. Let W denote the cluster containing w,
and let Border(T):= {t' € T : 3t ¢ T : (,t') € E} denote the border of T, then
any shortest path from s via w to t has a length of at least

—— : /

d(s,w,t):= d(s,w) +dW,T) + t’GBIgEiI}er(T) dit’,t) . (3)
Proof. We show that d(s,w,t) < d(s,w) + d(w,t) or, equivalently, d(W,T) +
ming eporder(r) d(t',) < d(w,t). Consider a shortest path P = (w,...,t"”,...t)
from w to ¢t where t” denotes the first node on this path that is in cluster T'.
We have d(w,t) = d(w,t"”) + d(t",t). Since (w,...,t") is a connection from W
to T we have d(w,t") > d(W,T). Furthermore, since t" is a border node of T,
we have d(t”,t) > ming eporder(r) d(t', 1) O

d(s,w, t) can be computed efficiently as d(s, w) has been found by forward search,
W can be found by storing a cluster identifier with each node, d(W,T') has been
precomputed, and ming e d(t',t) has been determined by the end of the first
phase. Fig. 2 depicts the situation for computing upper and lower bounds.

Space Efficient Implementation

The algorithm described above is straight forward to implement using space
O(k? + n). This can be reduced to O(k? + B) where B is the number of border
nodes that have neighbors in other cluster. The problem is that when settling a
node u, we need to know its cluster id. The key observation is that clusters only
change at border nodes so that it suffices to store the cluster ids of all B border
nodes in a hash table.

5 Partitioning

For any set C = {c1,...,cx} C V of k distinct centers, assigning each node v € V
to the center closest to it results in a k-center clustering. Here, the radius r(C;)
of a cluster C; denotes the distance from its center ¢; to the furthest member.? A
k-center clustering can be obtained using k’-oversampling: a sample set C’ of k'
centers is chosen randomly from V for some k' > k, and a k’-center clustering is
computed for it by running one single source shortest path search from a dummy
node connected with each center by a zero-weight edge. Then, clusters are deleted
successively until k clusters are left. A cluster C; is deleted by removing the
corresponding center ¢; from C’ and reassigning each member of C; to the center
now closest to it. This amounts to a shortest path search from the neighboring
clusters which now grow into the deleted cluster. This process terminates with
a (k' —1)-clustering. There are several ways to choose a cluster for deletion: in

4 Note that for undirected graphs, 27(C;) is an upper bound of the diameter of C; since
d(u,v) < d(u,¢;)+d(ci,v) < 2r(C;) for any u,v € C;. This bound can be used in the
query as shown in Section 4. For directed graphs we can use 7(C;) + maxcec; d(c, ¢;)
for the same purpose.

Section 6 results are shown for the MinSize and the MinRad heuristics, which
choose the cluster of minimum size and minimum radius respectively, and the
MinSizeRad heuristic, which alternates between the former two. It can be shown
that partitioning using the MinSize heuristic searches O(n log ’%) nodes using
Dijkstra’s algorithm and hence has negligible cost compared to computing cluster
distances which requires searching O(nk) nodes.® The radius of a cluster affects
the lower bounds of its members, and it seems that a good partitioning for PCD
has clusters of similar size and a low average radius. Oversampling indeed keeps
a low average radius since deleted clusters tend to be distributed to neighbors
of lower radius. However, a higher radius is acceptable for smaller clusters since
the lower bound is not worsened for too many nodes then, whereas a low radius
allows a bigger size. Both values can be combined into the weighted average
radius, in which the single radii are weighted with their clusters’ sizes.

Our k-center heuristics are compared with a simple partitioning based on a
rectangular grid and with Metis [13]. Metis was originally intended for parallel
processing where partitions should have close to equal size and small boundaries
in order to reduce communication volume.

6 Experiments

The PCD algorithms were implemented in C++ using the static graph data
structure from the C++ library LEDA 5.1 [14] and compiled with the GNU
C++ compiler 3.4 using optimization level -03. All tests were performed on a
2.4 GHz AMD opteron with 8 GB of main memory running Linux (kernel 2.6.11).
We use the same input instances as in [3]—industrial data for the road network
of Western Europe and freely available data for the US [15]. Table 2 gives more
details. In order to make experiments with a wide range of parameter choices, we
used subgraphs of these inputs. Unless otherwise noted, the experiments make
the following common assumptions: we use undirected graphs in order to be able
to use simple implementations of the partitioning heuristics. (Our PCD imple-
mentation works for general directed graphs.) Edge weights are estimated travel

5 Throughout this paper log z stands for log, .

Table 2. The graph instances used for experiments.

| Instance | n | m | Description

DEU |4 375 849|5 483 579|Germany

SCA |2 453 610|2 731 129|Sweden & Norway
IBE 872 083|1 177 734|Spain & Portugal
SUI 630 962| 771 694|Switzerland

MID |5 246 822[6 494 670 Midwest (IL,IN,IA KS,MI,MN,NE,ND,OH,SD,WI)
WES |4 429 4885 296 150|West (CA, CO, ID, MT, NV, OR, UT, WA, WY)
MAT |2 226 138|2 771 948|Middle Atlantic (DC, DE, MD, NJ, NY, PA)

NEN | 896 115|1 058 481|New England (CT, ME, MA, NH, RI, VT)

Bidirectional PCD (k= 1024)
Bidirectional PCD [k = 25E)

Bidirectional Dijkstra

Fig. 3. The search space for a sample query from Frankfurt to Berlin.

0.84

—— MinSilze
0.71 & —©- MinSizeRad
-+~ MinRad
Grid

0.59

k=64 128 256 512 1024 2048

Fig. 4. Scaled speedups for bidirectional PCD depending on the method of clustering.

times. The default instance is the road network of Germany (DEU). Partitioning
is done using k log k-oversampling with the MinSize heuristic. The speedup is the
ratio between the number of nodes settled by Dijkstra’s unidirectional algorithm
and by the accelerated algorithm. The given values for queries are averages over
1000 random query pairs.

DEU
IBE
SUI
SCA
el
AR MID
WES
MAT
NEN
\ \ \ \ \ \ \
k=16 32 64 128 256 512 1024 2048 4096
Fig. 5. Scaled speedups for bidirectional PCD and different inputs.
4% | | | |
B
2%
1% +
e MinSize
--o-- MinSizeRad
0.5 % MinRad |
- Grid

—s— Metis —

k=64 128 256 512 1024 2048

Fig. 6. Relative number of border nodes B for DEU depending on the clustering method.
The k-center heuristics all use klog k-oversampling.

Fig. 3 gives an example for the shape of the search space explored by PCD.
As to be expected, the search space is a kind of halo around the shortest path
that gets narrower when k is increased. A somewhat optimistic approximation
of the observed behavior is that the clusters near the shortest path are explored.
The shortest path will intersect O(v/k) clusters of size O(n/k) on the average,
i.e., the intersected clusters contain O(n/v/k) nodes. Since Dijkstra’s algorithm
visits @(n) nodes on the average, we expect a speedup of O(Vk).

This hypothesis is verified in Fig. 4, which compares the different partitioning
methods from Section 5. Scaled by vk, the speedups describe fairly flat lines
as our hypothesis suggests. The MinSize heuristic yields the highest speedups,
while the other heuristics perform worse though they also yield fairly small
average radii as mentioned before. Since MinRad keeps deleting clusters in urban
areas, it ends up with clusters of similar radii but differing sizes, wheras MinSize
deletes clusters regardless of their size yielding a good ratio of radius and size.
Interestingly, for the minimum size rule the speedups appear to scale even better
than ©(vk). This observation is confirmed in Fig. 5 for further instances.

As expected, Metis finds clusters with smaller borders as can be seen in
Fig. 6. However, since the percentage of border nodes is very small even for
oversampling, this appears to be less relevant.

\ \
—&— k’=k (no oversampling)

084 — _o_ K =kt A |
K'=k+ia

— % - k'=k+1A (=klogk)

T~

AS 059 L o wekraa

— X = e -

k=64 128 256 512 1024 2048

Fig. 7. Speedups for bidirectional PCD with k’-oversampling using different values for
k', tested on DEU. A = klogk — k denotes the difference between klog k and k.

Oversampling using the MinSize deletion heuristic is tested for several values
of k¥ in Fig. 7. Starting from k' = k, which means just choosing k centers
randomly, increasing k' up to k log k increases the speedup significantly. However,
no considerable further improvement is visible for k' > klog k.

Table 3 summarizes our results for several instances and different numbers
of clusters k calculated by k log k-oversampling.The highest speedup in our tests
is 114.9, while speedups of more than 30 are still achieved while the number of
cluster pairs k? remains significantly below n and the total number of border
nodes B is negligible. The speedups for the US instances are smaller probably
because the available data provides less information on speed differences of roads,
while using travel distances rather than travel times seems to yield even smaller
speedups. The reason is that edges off the fastest path often have high travel
time values compared to edges on the path, so that pruning happens earlier.

Table 3. Performance of PCD for several graph instances and selected values of k.
prep.= preprocessing time. B = total number of border nodes. spd = speedup. settled
= number of settled nodes. ¢t = query time.

graph| k

Btk2 |PTEp. PCD unidirectional PCD bidirectional

7 |[min] [¢[ms] spd| settled spd|t[ms] spd| settled spd
DEU [2%]< 0.01] 2.6]2491 2.2[1 171 110 2.2]2114 2.5[1 028 720 2.4
261 0.01 | 11.1]1410 3.6| 749 870 3.3| 971 5.2| 553 863 4.3
281 0.03 | 35.0] 677 7.7| 443832 59| 422 12.3| 295525 8.5
2191 0.26 [123.0] 256 21.2| 199 663 13.2| 157 35.0| 127 604 20.2
2'2| 3.88 [558.2| 110 70.5| 86401 37.1| 62 114.9] 50417 574
sca [21°] 0.44 | 60.7] 173 21.3] 136 365 14.2] 81 36.5| 70766 22.9
IBE |2'°| 1.25 | 11.7| 43 16.5| 51716 13.7] 20 24.7| 26591 204
SuT [2'° 1.71 | 11.1] 20 20.8] 25070 19.1 9 31.1| 12848 31.4

MID [2%°] 0.22 | 89.2] 287 15.4] 326 112 10.3] 223 18.5] 242 153 12.8
WES [21°] 0.25 | 80.8| 238 15.2| 227 768 11.3| 169 19.0| 159 409 14.4
MAT |2'°| 0.50 | 35.5| 101 17.1| 114 702 12.0| 76 21.1| 83577 152
NEN [2%°| 1.21 | 11.0 39 15.1| 49259 11.6| 28 19.3| 34625 15.0

The speedups in terms of query time are higher than those in terms of settled
nodes. The main reason for this lies in the size of the priority queue in PCD,
which affects the average time for queue operations: after a small ball around the
source is searched, most of the nodes on its boundary are pruned, and the search
frontier turns into a small corridor around the shortest path. Then, the queue
holds a number of nodes which remains roughly constant until finishing. The
queue size corresponds to the width of the corridor, so the average queue size
is in (’)(\/%), while in Dijkstra’s algorithm the queue keeps growing and holds
O(n) nodes on the average. Since the average time of an operation is logarithmic
in the size and the number of operations is linear in the number of settled nodes,
the relation between the speedup in terms of query time and that in terms of

settled nodes is roughly llggg ™.
k

7 Conclusion

We have demonstrated that PCD can give route planning in road networks
a strong sense of goal direction leading to significant speedups compared to
Dijkstra’s algorithm using only sublinear space. The most obvious task for future
work is to combine this with speedup techniques that have no sense of goal
direction [2—4]. There are good reasons to believe that one would get a better
tradeoff between speedup and space consumption than any previous method.

As a standalone method, PCD is interesting because its unidirectional variant
also works for networks with time dependent edge weights such as public trans-
portation networks or road networks with information when roads are likely to
be congested: simply use an optimistic estimate for lower bounds and a pes-
simistic estimate for the upper bounds. Most other speedup techniques do not
have such an obvious generalization.

PCD itself could be improved by giving better upper and lower bounds. Up-
per bounds are already very good and can be made even better by splitting
edges crossing a cluster border such that the new node has equal distance from
both cluster centers. For example, this avoids cluster connections that use a
small road just because the next entrance from a motorway is far away from the
cluster border. While this is good if we want to approximate distances, initial
experiments indicate that it does not give additional speedup for exact queries.
The reason is that lower bounds have a quite big error related to the cluster di-
ameters. Hence, better lower bounds could lead to significant improvements. For
example, can one effectively use all the information available from precomputed
distances between clusters explored during bidirectional search?

It seems that a good partitioning algorithm should look for clusters of about
equal size and low diameter; perhaps, these might be two of the main parameters
for an easily computable objective function. In the literature there is a lot of
work on approximation algorithms for various k-center problems. It might be
interesting to adapt some of the proposed algorithms to our situation.

References

10.

11.

12.

13.

14.

15.

. Dijkstra, E-W.: A note on two problems in connexion with graphs. Numerische

Mathematik 1 (1959) 269-271

Gutman, R.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: 6th Workshop on Algorithm Engineering and
Experiments. (2004)

Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: 13th European Symposium on Algorithms. Volume 3669 of LNCS., Springer
(2005) 568-579

Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Efficient point-to-point
shortest path algorithms. In: Workshop on Algorithm Engineering & Experiments,
Miami (2006)

Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* meets graph
theory. In: 16th ACM-SIAM Symposium on Discrete Algorithms. (2005) 156-165
Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algo-
rithm. In: Workshop on Algorithm Engineering & Experiments. (2005) 26—40
Goldberg, A.: personal communication. (2005)

Sanders, P.: Speeding up shortest path queries using a sample of precomputed
distances. Workshop on Algorithmic Methods for Railway Optimization, Dagstuhl,
June 2004, slides at http://www.dagstuhl.de/04261/ (2004)

Moéhring, R.H., Schilling, H., Schiitz, B., Wagner, D., Willhalm, T.: Partition-
ing graphs to speed up Dijkstra’s algorithm. In: 4th International Workshop on
Efficient and Experimental Algorithms. (2005)

Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Miinster GI-Days. (2004)

Schulz, F.; Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable in-
formation. In: 4th Workshop on Algorithm Engineering and Experiments. Volume
2409 of LNCS., Springer (2002) 43-59

Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: 11th European Symposium on Algorithms. Volume
2832 of LNCS., Springer (2003) 776787

Karypis, G., Kumar, V.: Metis: A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse ma-
trices. http://www-users.cs.umn.edu/ karypis/metis/ (1995)

Mehlhorn, K., Néher, S.: The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press (1999)

U.S. Census Bureau: UA Census 2000 TIGER /Line files. http://www.census.
gov/geo/www/tiger/tigerua/ua_tgr2k.html (2002)

