(Approximate) Conic Nearest Neighbors and the induced Voronoi Diagram

Stefan Funke'* Theocharis Malamatos ' Domagoj Matijevic' Nicola Wolpert"

Abstract

For a given point set in Euclidean space we consider the problem of finding (approximate) nearest neighbors of a query
point but restricting only to points that lie within a fixed cone with apex at the query point. Apart from being a rather natural
question to ask, solutions to this problem have applications in surface reconstruction and dimension detection.

We investigate the structure of the Voronoi diagram induced by this notion of proximity and present approximate and
exact data structures for answering cone-restricted nearest neighbor queries. In particular we develop an approximate
Voronoi diagram of size O((n/e?)log(1/€)) that can be used to answer cone-restricted nearest neighbor queries in
O(log(n/¢)) time.

1 Introduction

Answering nearest neighbor queries for a given point set S in a (low-dimensional) Euclidean space is a classical problem
in computational geometry and many algorithms have been proposed to solve that problem. The natural datastructure to
solve it is the so-called Voronoi diagram VD(S). VD(S) is a decomposition of R into Voronoi cells such that for the cell
V(s,S) of point s € S we have V(s,S) := {p € R|d(p,s) < d(p,s')Vs’ € S}. Unfortunately it is easy to come up with point
sets for which the Voronoi diagram has size Q(nW 2]), so its use to answer nearest neighbor queries in dimensions d > 2
is rather unattractive. The lack of other methods that guarantee efficient (i.e. poly-logarithmic) query times has led to the
introduction of the notion of approximate nearest neighbors. For a query point ¢, a point s € S is a (1 + &) approximate
nearest neighbor (ANN) for g if d(gq,s) < d(q,s’) - (1+€)Vs' € S. Not insisting on the exact nearest neighbor has allowed
for datastructures of near-linear size and logarithmic query time, e.g. [AMNT98], [DGK99]. Similarly, the notion of an
approximate Voronoi diagram (AVD) has allowed for space decompositions of near-linear size, e.g. by Har-Peled [Har01]
and Arya and Malamatos [AMO2]. Here each cell ¢ of this decomposition has a point N(¢) € S assigned such that Vg € ¢,
N(c) is an approximate nearest neighbor (ANN) for ¢. In all these papers as well as in our work the dimension d is treated
as a constant.

In this paper we consider a variant of the nearest neighbor search problem that has not been studied as extensively
before: given a set of points S and a cone C we want to preprocess S such that for a query point ¢ we can determine the
(approximate) nearest neighbor s, € S that is contained in the cone C with apex at g. In Section 2 we describe one application
where this type of nearest neighbor query can be of use. The only related result on this problem that we are aware of is the
work by Funke and Ramos [FR02], where the authors process S in O(n polylog n) time and determine for each s € § its
conic nearest neighbor in S. We want to note though, that their approach does not provide a query datastructure which can
determine the conic nearest neighbor for a point ¢ ¢ S. Attempts to instrument directly some of the known datastructures for
approximate nearest neighbor queries ([AMNT98], [DGK99]) to solve the case of cone queries failed so far, since a certain
crucial packing property necessary for these approaches does not seem to hold in case of cones.

1.1 Our contribution In this paper we consider the problem of computing (approximate) nearest neighbors in a point set
S with the additional restriction that returned points have to lie in a cone with apex at the query point, in particular we

e develop datastructures for answering exact cone queries in sublinear time (Section 3).

e examine the structure of the Voronoi diagram induced by the notion of conic proximity in 2 and 3 dimensions (Section
4).

"This work was done while the first author was member of Prof. Leonidas Guibas’ group at the Computer Science Department, Stanford University,
USA

TMax-Planck-Institut f. Informatik, Saarbriicken, Germany, {funke,tmalamat,dmatijev,wolpert} @mpi-sb.mpg.de

e propose near-linear size datastructures for answering cone queries for a fixed cone approximately and construct an
approximate conic Voronoi diagram of size O((n/e?)1log(1/¢) which allows for query time O(log(n/€)) (Section 5).
This is the main contribution of our paper.

Before we get to the more technical part of the paper we illustrate in Section 2 an actual application for the type of
datastructures developed in this paper.

2 Motivation

The original motivation for this work stems from a problem in surface reconstruction/analysis of point cloud data. Here one
is given a set S of sample points (point cloud) that are taken from an unknown surface I'". The goal is now to reason about or
in the best case even reconstruct the original surface I', e.g. find a faithful polyhedral approximation which has the sample
points in S as vertices. See Figure 1 for a sample set taken from a cactus (model).

One important primitive when working with point cloud data is the estimation of surface normals for a given point on
the surface (but only using the set S and not the original surface I'). A common strategy for estimating the surface normal of
a point p € T is to first collect the k-nearest neighbors of p (for some constant k, this can be done efficiently in O(klogn) if
one is satisfied with approximate nearest neighbors) and then either use some sort of plane fitting (and use the normal of the
fitting plane as estimation) or connect p to two of its k-nearest neighbors to form a ’nice’ triangle using the triangle normal
as an estimation for the surface normal.

In fact for the latter one can prove that if the sample set S is a e-sample (intuitively: it is sampled densely enough), then
the triangle Apgr formed by p and two of its k-nearest neighbors p, g yields a faithful approximation (up to an angle of O(¢))
to the surface normal at p if A is non-skinny, i.e. it is not formed by three almost collinear points, see [FR02]. Essentially,
if p,q,r are almost collinear, a slight height change of the surface in one of the points changes the triangle normal by an
arbitrarily large amount.

Now, the problem is that even if S is a e-sample, there is no constant k for which we can guarantee that amongst the
k-nearest neighbors of p are two points g,r which form a ’nice’ triangle with p. That is due to the fact that the €-sample
condition is only a lower bound on the sampling density but allows for arbitrary oversampling in arbitrary patterns. For
example, in Figure 2, as long as k < 8 collecting k-nearest neighbors from the query point will never yield sample points
suitable for a faithful normal estimation in the query point (also when using plane fitting). Observe, that this threshold
k < 8 can be made arbitrarily high by just sampling further points along the already densely sampled lines. The sample set
obviously remains a e-sample, but normal estimation via simple collection of k-nearest neighbors gets increasingly difficult’.
The solution to this problem is to allow for nearest neighbor searches that are restricted to some direction, see [FR02]. Here,
the authors divide the space into a constant number of cones with a common apex and then determine for a point p nearest
neighbors within each cone. Using this approach it is easy to extract a "nice’ triangle with nearby points of p.

The solution presented in [FR02] computes in O(n polylog n) for each point p € S its nearest neighbors within each of
the cones with apex at p. What is important to note here: their algorithm does not provide a query data structure such that
when interested in the surface normal at some point ¢ € T, but ¢ ¢ S, one cannot use their method to answer this query. It
only applies for points that are already in the point set S. Apart from being a natural question to ask, a genuine query data
structure for nearest neighbors in a cone might be of interest when refining/resampling a surface that is only represented
as a point cloud. Further applications that could be thought of are in the context of dimension detection for manifolds of
unknown dimension in some Euclidean space, see e.g. [DGGZ02], [GWO03].

The contribution of this paper is to provide datastructures of near-linear size which can answer (approximate) nearest
neighbor queries restricted to a cone.

3 Exact cNN Queries for arbitrary Query, Angle, and Direction

Let S be a set of n distinct points (sites) in R?. Furthermore, let V be a set of d linearly independent vectors vy,...,vy € RY.
We define the set C(V) := {v € R|v = ¥;l;v;, A; > 0}. For any point g € RY we define the cone of g as C(q,V) := {x €
R? | x=g+v, ve C(V)}. We also define the reverse cone of g as C(q,V) := {x € R? |x =g —v, v € C(V)}. Note that we
use simplicial cones.

Suppose we want to construct a data structure such that for any cone C(g,V) we can efficiently report the site
sq € SNC(q,V) such that d(q,s,) < d(q,s) for any other s € SNC(q,V). We say that s, is a conic nearest neighbor
(cNN) of ¢ with respect to C(g,V).

TIf one assumes that S is a tight €-, (€,0)-, or (locally) uniform sample, k can be determined easily. But if S is neither of those but only an €-sample,

making S tight itself seems to require reliable normal estimation.

Figure 2: Zoom-In on one of the branches
of the cactus: Neighborhood of a sample
point that does not allow for reliable nor-

Figure 1: Point sample from the surface of a cactus L
mal estimation.

The solution to our problem mainly relies on the well known Partition theorem which has been used in the context of
range searching ([Mat92]). We cite the theorem in the following:

THEOREM 3.1. Any set S of n points in R? can be partitioned into O(r) simplices, such that every simplex contains between
n/r and 2n/r points and every hyperplane crosses at most O(rl’l/) simplices (crossing number). Moreover, for any y > 0
such a simplicial partition can be constructed in O(n'*V) time.

Using this theorem recursively one can construct a tree which is called a partition tree (e.g. the root of the tree, associated
with S, has O(r) children, each associated with a simplex from the first level, and so on). Observe that if r is a constant,
partition tree is of O(n) size and it can be constructed in time O(n!*V) for any y > 0. With the help of such tree it is
well-known that one can answer range counting queries in O(n) space and O(n(]"/ d)+"’) time in R?, which is very close
to the best possible.

The good news for us is that we can use almost the same data structure to answer cone queries. We first deal with the
2D case and then show that a similar approach works in higher dimension as well.

LEMMA 3.1. Let S C R? be a set of points. For any W > 0, there is a data structure of O(nlogn) size and O(n'*V)
construction time such that for any point q and an arbitrary cone C(gq,V) one can compute cNN of q in time O(n'/**V),

Proof: Assume we are given a partition tree and suppose that we have some conic query to answer. Clearly by Theorem 3.1
we have the bound on the number of triangles that intersect the two semi-lines which is O(+/r). On those triangles we
recur, which leads to a total of O(y/n) triangles intersected by the semi-lines. But still there might be O(r) triangles lying
completely inside the cone. To overcome this problem, one can precompute a normal Voronoi diagram (VD) for the points
inside each triangle (the VD extends outside each triangle as well). This will increase the total space of the partition tree by
a O(logn) factor since every level in the tree now will be of O(n) size. However, by doing this we avoid recursing on the
triangles that lie completely inside the cone. Namely, for every triangle that lies inside the cone the point closest to ¢ can be
found by point-location in O(logn) time. O

In principle our ideas developed so far for computing cNN of a point g in the plane work for cNN in arbitrary dimension.
The disadvantage is the high space complexity for storing the Voronoi diagrams associated with each triangle. The space
complexity for a Voronoi diagram of n points is Q(n(d/ 2]). However, one can avoid storing the Voronoi diagrams at the cost
of moving to the higher-dimensional space R?*! instead of R.

LEMMA 3.2. Let S C RY be a set of points. For any \y > 0, there is a data structure of O(n) size and O(n'™V) construction
time such that for any point g € R and an arbitrary cone C(q,V) one can compute cNN of q in time O(n(!=1/({d+1)+v),

Proof: The main idea is to build a partition tree for S, additionally storing a representative point for every simplex. For the
query cone C(g,V) we recurse on all simplices that are intersected by the faces of the cone. What again remains to do is

/ cone—event

! / intersection—evgnt

break—event

Figure 3: Left most figure denote the classic VD cells whereas rest of the figures depict conic VD cells depending on the
relative position of two sites and on the fixed angle o.. Observe that the hashed lines denote the standard Voronoi separator
between two sites.

the handling of the inner simplices, i.e simplices which are completely inside the cone. Among these we determine the one
with the representative point closest to g. Let s; be this nearest representative point. We draw a sphere B, around g with
radius r = |g — s;|. It is easy to see that only the inner simplices intersecting B are candidates to contain the ctNN of g. So
we have to recurse also for these.
In order to be able to bound the number of inner simplices intersecting B we build the partition tree not in d- but in
(d + 1)-dimensional space. We make use of a well-known lifting step and project all points of S onto the unit-paraboloid P
in R?*!. This gives us a new set S. We build the partition tree for S. This of course also leads to a partition of S into convex
< (d+2)-gons. By construction and by the fact that a sphere in R¢ is the projected intersection of a hyperplane and the unit
paraboloid in R¢*! we know that every hyperplane and every sphere in R¢ intersects O(rl’l/ (d“)) < (d+2)-gons.
O

The techniques presented in this section only allow for sublinear but not polylogarithmic query times. Since in practice
this is rather prohibitive, we will later present datastructures that guarantee polylogarithmic query times at the cost of only
approximate answers.

4 Exact Conic Voronoi diagrams

Let S be a set of n distinct points (sites) in the plane. In the following we fix a set of linearly independent vectors V = {vy,v,}
and assume that the cone angle 0 < a(vy,v2) < m. Since V is fixed, let C(q) := C(q,V). We want to precompute the set of
sites in S such that we can efficiently answer ¢cNN queries for ¢ with respect to C(g). The precomputation step is based on
the idea to compute a Voronoi-like diagram on the set of sites which we will call Conic Voronoi diagram (cVD). Answering
the cNN for an arbitrary query point g will then reduce to the classical point location problem in the cVD.

For a fixed set S of sites, fixed angle and fixed direction we define a Conic Voronoi diagram of S as the subdivision of
the plane into n cells, one for each site in S, with the property that a point ¢ lies in the cell corresponding to a site s; € S if
and only if s; is a conic nearest neighbor of ¢. That is, the conic Voronoi cell for s; € S is defined to be:

Ve(si) ={p €R?|s; € C(p) and d(p,s;) < d(p,s;) for all s; € C(p)NS}.

Note that the cVD is a bit more complicated than the normal Voronoi diagram. W.l.0.g. we assume from now on that
the cone direction is parallel to the (0, 1) vector. In Figure 3 three different kind of cVDs for two points are depicted (the
cVD for one point s = (sy,sy) is just the reversed cone C(s) mirrored at the line y = sx). In the cVD for a set S = {s1,...,5,}
of sites there are two different kind of edges: Edges that lie on the reversed cones C(s;) (cone-edges) and edges that lie on
the standard Voronoi edges (voronoi-edges) between sites.

The c¢VD is planar and connected. A cell in the cVD belonging to site s; has s; as the unique point with highest y-
coordinate. The latter allows us to compute the cVD with a sweep-line algorithm where we sweep the scene from top to
bottom. We always maintain the invariant that above the sweep-line the cVD is correctly computed. For the current sweep-
line we know in which order it is intersected by the edges (which may be cone- or voronoi-edges) and by the faces of the
cVD. This is stored in an X-structure. The order changes only at three kind of event points: The sweep-line encounters a
new site (site-event), a cone-edge becomes a voronoi-edge (break-event), or two neighbouring edges along the sweep-line
intersect (intersection-event). A Y-structure stores the event-points discovered so far. It is initialized with the site-events.

At each event-point the X- and Y-structure can be updated in O(logn) time. An event-point causes only local
changes along the sweep-line. Also the Y-structure needs only constantly many updates. The concrete implementation
is straightforward and left to the reader.

Figure 4: The construction of a Conic Voronoi diagram of quadratic complexity in 3-space.

LEMMA 4.1. Let P be a set of n sites. The conic Voronoi diagram of P is of size O(n).

Proof: If we imagine all the unbounded edges of cVD as going to a common point infinity, we can prove the lemma
with the help of Euler’s formula, which states that for any connected planar graph with n, nodes, n. edges and ny cells
ny —ne +ny = 2. Note that in our case ny = n+ 1 since every cell corresponds to a unique site. Furthermore, let
n, = n,,+n, + 1 where n, denotes the number of site- and break-points and n!, denotes the number of intersection-points of
cVD. Since every site can produce at most two break-points, we have that n/, < 3n. Also, observe that the rest of the points
in the cVD have degree at least three (including node infinity) which implies that 3(n|, 4+ 1) < 2n,. Together with Euler
formula this implies the statement of our lemma. U

Next we will show a lower bound for the Conic Voronoi Diagram in 3-dimensional space:
LEMMA 4.2. There exists a set of n points in 3-space which has a Conic Voronoi Diagram of size Q(n?).

Proof: This proof and the pictures are based on ’true’ cones, but translate directly to the case of simplicial cones. The main
idea of construction is the same as for Voronoi diagrams. We assume that the direction for which we want to compute the
cVD is parallel to the (0,0, 1) vector. We take two planes parallel to the (x,y)-plane. On the upper such plane we place n/2
points along a line /;. We do the same on the lower plane but along a line I, which is perpendicular to /;. For illustration
have a look at Figure 4 a). The cVD of the lower n/2 points is depicted in Figure 4 b). The separators of this cVD between
neighbouring cones are planar patches parallel to the z-axis bounded by parabolas. The cVD of all n points consists of two
of these kind of cVD’s just described: one for the lower and one for the upper n/2 points. The cells of the upper points are
delimited from below by the cVD of the lower points. If we choose the upper points sufficiently high above the lower points
the separators between neighbouring cones are stopped by the lower cVD as shown in Figure 4 ¢). Each separator causes
n/2 parabolic segments of the overall cVD, resulting in Q(n?) parabolic segments, Figure 4 d). (]

Like for the regular Euclidean distance, the size of the respective cone Voronoi diagram in dimensions larger than 2
turns out to be prohibitive for its use in answering cone queries.

5 Approximate Conic Voronoi diagrams and NN Queries

In this section we relax the problem in a sense that when querying with a point ¢ we do not insist on receiving the exact
nearest neighbor from the datastructure. In particular we allow as output a point that is slightly (by a factor of (1 +¢€))
further than the true conic nearest neighbor and — for our second approach — slightly outside (by an angle of O(g)) of the
cone with apex at q.

Let V be a set of d linear ind. vectors vy,...,vy € R, Let s € RY be some point and b; = viTs fori=1,...d. We
define the cone of s w.r.t. V as cone(s) := {p € R? : Vi: v p < b;}. We also define the reverse cone of s w.r.t. V as
cone(s) :={p € R : Vi: vI'p > b;}. Note that we use here a different definition of cone — it is expressed wrt to the normals
of the bounding hyperplanes. As before we call the cone in which answers to a query g should lie the reverse cone.

In the following we fix a set of Li. vectors V and aim to preprocess a set S of points in R? such that for any given query
point ¢ we can find an approximate conic nearest neighbor (cCANN) s, with the following properties:

o if din = min{d(s,q) : s € SNcone(q)}, then d(sy,q) < (14 €)dmin
e cither 5, € SNcone(q) or the angle between 5,4 and cone(g)? is O(€)

Intuitively the former guarantees that the returned point is not too far away compared to the ’true’ conic nearest neighbor,
the latter guarantees that it *almost’ lies within the desired reverse cone of the query point.

The first approach is based on a simple construction of nested range trees and returns points that lie exactly in the
cone of query point ¢, and only approximates the distance. The second approach is based on a conic approximate Voronoi
diagram (cAVD) — a decomposition of the underlying space — and allows for very fast query times and rather low space
requirements.

5.1 Reduction to ’orthogonal’ Range Queries in a skewed Coordinate System Here we briefly sketch a method to
solve approximate conic nearest neighbor queries using nested range trees. For convenience we assume that the respective
cone which we want to query is reasonably small, i.e. Yv;,v; € V : Zv;v; > /4. If this is not the case we could always
subdivide the desired cone into a constant number of smaller cones.

The idea is to derive new coordinates for all s € § based on the set of hyperplanes V forming the cone. We set the new
ith coordinate sf»v of apoint s = (s1,...,54) to be sﬁv = vl-Ts. Now, if we have a query point g with respective new coordinates
(qllv yeo .qg) all points p within its reverse cone have new coordinates pﬁv > qfv . That is we can determine them using a nested
range query for points of the form [qllv ,00], .y [qy ,o0|. So we build a 1-dimensional range tree on the first (new) coordinate.
Each internal node stores the points in its respective subtree as a 1-dimensional range tree on the second coordinate and so
on. The overall space requirement is O(nlogd n). The result (a set of points) for the query in the first tree is returned in
O(logn) batches, we query each of these batches according to the 2nd coordinate and so on. Finally, in the last level (d) we
obtain all points within the reverse cone of p in 0(10gd n) batches. It remains to extract an (approximately) closest amongst
them.

Let 7 be a vector starting at (0, ...,0) that is contained in the reverse cone of (0,...,0). We order the sets associated
with the internal nodes of the last level of our tree hierarchy according to the direction 7. Let p; be the point amongst
the 0(logd n) batches that minimizes 77 p (this can be found by inspecting the first element in each batch, as they are
stored sorted according to 77 p). It’s easy to see that for cone angles of less than ©t/4, d(q,p1) < d(q,p)-3/2 for all
p € cone(g), so p; is already a 3/2 approximation. That is we have a upper bound of dup = d(q, p1) and a lower bound
of doy = d(g,p1)-2/3 for the distance of the conic nearest neighbor of g. Now consider the following part of the reverse
cone of g: G := cone(q) N B(q,dup/(1 +¢)) — B(q,d|qy)- Using a standard packing argument it is easy to see that we can
certify using O(1/ e?) many cone queries whether G does not contain any point (in which case the point determining the
current upper bound is a (1 +¢€) cANN) or whether G contains a point (in which case we improve the upper bound by a
factor of at least (1 +¢)). Hence after at most O(log, ,.(3/2)) = O(1/¢) iterations we arrive at a (1 4-€) cANN. Therefore
the overall query time is O((1/e4"")log?n).

THEOREM 5.1. Given a set S of points in R? and a cone defined by a set of vectors V, we can preprocess them in a
datastructure of size O(nlog® n) such that we one determine an cANN (with no angle error) in time O((1/e4T1)1og? n).

We note that using the standard technique of fractional cascading one can improve the query time by a logn factor.

“This angle is min ,cone(q) £5¢4P-

5.2 An approximate conic Voronoi diagram of near-linear size For the first part we will borrow some ideas first
presented in [AMO2] for construction of ("'normal’) approximate Voronoi diagrams but following more the the presentation
in [HP].

The overall picture of our construction is as follows: based on the well-separated pair decomposition (WSPD, see
[CK95]) of the point set S we generate a set of O((n/e4)log(1/¢)) many grid cells. Some of the grid cells are marked
critical, and some of the cells have a point from S associated, such that if the smallest of the generated cells containing a
query point g is non-critical and has a point associated, this point is an approximate conic nearest neighbor for g (where the
approximation is both w.r.t. the angle as well as the distance). Then in a second step, we treat the critical cells individually
and partition them using a constant number of hyperplanes. The set of all generated (and possibly split) cells can then be
transformed into a space decomposition and/or stored in a compressed quadtree (e.g. in [HP]) to allow for efficient point
location in the space decomposition (query time O(log(n/¢€)) and space of O((n/e?)log(1/¢))).

A central component of our construction is the so-called well-separated pair decomposition (WSPD) of a point set. For
a point set S in RY and a separation constant s, the WSPD is a collection of O(ns?) cluster pairs (A;,B;), with A;,B; C S
and centers a; € A;,b; € B; such that Vp € A; : d(p,a;) < |ab|/s (and likewise for points in B;). Furthermore, for any two
points s, € S, there exists a unique pair (A;, B;) with s € A; and ¢ € B;. Intuitively a WSPD approximates the Q(n?) distance
relationships using only O(n) pairs of clusters (for constant s).

In contrast to the constructions in [AMO02] or [HP] we do not rely on a separate query datastructure to determine points
associated with single cells, but rather determine them directly during the construction via a WSPD of the point set. Assume
as in [HP] that the point set S is contained in a cube of dimensions [0.5 —¢€,0.5 + 8}‘1, and this cube is a minimum axis-
aligned cube for S. For the rest of the paper we only consider a decomposition or conic nearest neighbor relationships for
points g € [0, 1]¢ since for points outside this unit cube, we can determine easily whether they’re contained in an enclosing
cone of the point set S, and then any point in S is a conic approximate nearest neighbor. Our algorithm constructs cells that
arise in the quadtree (or its higher dimensional equivalent) when decomposing the unit cube [0, 1]" recursively — we call this
the canonical grid and the cells the canonical cells. The canonical grid G, consists of cubes of width/side length o; (for
o;=2""i€eN).

Hence the constructed cells in the algorithm are either disjoint, identical or one is contained in the other.

We use the notion of an exponential grid® Gg(p,r,R,€) around p. Let b; = b(p,r;), i =0,...[logR/r] be the ball of
radius r; = r2'. Define G§ to be the set of cells of the canonical grid G, that intersect b; with o; = 2llog(eri/(16d))] Obviously
|G| = 0(1/e%). We remove from G/ all cells completely covered by cells of G._,. Cells that are partially covered by
cells in G_, are replaced by the cells covering them in G;_,. Let G; be the resulting set of canonical cells. And let

Ge(p,r,R,€) = U;G;. We have |G (p,r,R,€| = O(e~?log(R/r)). It can be computed in linear time in its size.

5.2.1 Stage I of the construction We first construct a WSPD for the point set with separation constant 32 and then
consider all pairs of the WSPD. A pair (A, B) with representatives (a,b) € P x P in the WSPD has the property that Vp € A
we have d(p,a) < |ab|/32 (and likewise for B and b). For each pair (A,B) with representatives a and b, construct the
exponential grid Gg/(a, |ab|/8,64|ab|/e,€) UGE (b, |ab|/8,64|ab|/€,€). The idea is now to associate either a or b with some
of the cells but maintaining the invariant that if a cell ¢ has a (b respectively) associated, then any point ¢ € C can see a (b
respectively) within its reverse cone or the line between ¢ and a makes an angle of at most O(g) with the reverse cone of g.
Furthermore some cells (which might or might not have a or b associated with it, could be marked as ’critical’). Only cells
that are marked as critical or have a point associated with them are remembered for further processing.

The construction proceeds as follows: Partition the set of grid cells into C, (cells that intersect the ball of radius |ab|/8
around a), Cp, (cells that intersect the ball of radius |ab|/8 around b) and C, (the remaining cells). Now determine which
cells are ’close’ to the cone for a (likewise to the cone for b) as follows: A cell ¢ is said to be ’close’ to the cone of a if
3p1 € ¢, p2 € cone(a) : Lpraps < €, Now for all cells ¢ € Cy:

e if C is only close to the cone of a, store a with C
e if C is only close to the cone of b, store b with ¢
e if C is not close to either ...don’t store anything

e if ¢ is close to both, store either a or b (whichever is closer to the center of ()

For all cells ¢ € C, (that is, cells near b)

3Taken from [HP]

e if C is close to the cone of a, store a with it

e furthermore, if C is close to the cone of b, mark ¢ as ’critical” and remember the WSPD pair (A, B) with it

Do the symmetric thing for all ¢ € C,.
The following lemma should now be easy to see.

LEMMA 5.1. Let C be a cell created during the processing of WSPD pair (A,B), N(C) the point stored with it. Then for
all points g € ¢, N(C) either lies in the reverse cone of q or is at most an angle of 2€ away from it.

Proof: Assume w.l.o.g. N(C) = a. By construction, there exists a point ¢’ € ¢ and a point p € cone(a) (not necessarily
from S) such that /q'ap < €. Furthermore we also have |q¢'| < €|aqg’| (remember that ¢ is far away from a otherwise we
would not have associated a with it). But then it follows immediately that Zgap < Zq'ap + Zq'ag < €+ arctane < 2¢. So
we get that the angle between the reverse cone of ¢ and the ray gd is at most 2¢. |

At this point we have not claimed anything about the distances of the associated points. Construction (continued):
We collect all the cells created (i.e. that have a point associated or have been marked critical) in the above step (some cells
might be created several times) and aggregate the conic neighbor for some cell ¢ as follows: cell ¢ keeps the closest (to its
center) point stored with ¢ or one of its ancestors (i.e. cells that contain). This step completely ignores the fact whether
cells are marked ’critical” or not. ’Criticality’ is also not inherited, i.e. a cell ¢ is called critical iff all of its instances created
were critical (no dependence on ancestors or children). Clearly the Lemma above still remains true and the distance of the
point associated with a cell can only decrease. This finishes the first stage of the construction.

Let g be a query point, and ¢ the smallest cell generated which contains g. We claim that if ¢ is not marked ’critical’,
the point N(¢) stored with ¢ is a (14 O(g)) cANN with angle error of O(g).

LEMMA 5.2. Let g € [0, l}d be a query point, C be the smallest cell created which contains q. If C is not critical, the
point N(C) stored with C has distance at most (1+¢€)dS, (q) where d. (q) denotes the distance of the exact conic nearest
neighbor of q.

Proof: Let us first show that if ¢ has an (exact) conic nearest neighbor 7'(g), a cell containing g was created during our
construction. Let us denote by x the point closest to 7'(g) with |T'(g)x| > €|T(q)g|. Such a point x certainly exists (in the
"worst” case just take the furthest point from 7'(g)), and therefore a cell containing ¢ was considered; but we still need to
show that it had either a point associated or was marked critical (and hence created). Let ¢ be the cell considered when
looking at the WSPD pair (A,B) with representatives (a,b) which separates T'(g) from x (with T(g) € A, x € B). Let us
denote by I = |T(q)q| the distance between g and its true cNN. If we have |aT (q)| < €l, ¢ was ’close’ to the cone of a (as
q has a point p’ in the cone of a at distance of at most |a7 (g)| and then Zqap’ < arctane < €) and therefore was created.
So assume |aT (q)| > €l. But since on the other hand |aT (¢)| < |ab|/32, x = a would have been a better (i.e. closer) choice
with |T(¢q)x| > €|T(g)gq| which contradicts our initial choice of x.

Let us now turn to the second part of the proof: we want to show that if the smallest cell ¢ containing a query point g
is not critical, its associated point is a cANN for g. But this can be argued by essentially the same construction as above;
again we consider point x that is closest to T'(¢) with |T(q)x| > €|T(¢)q|. We have argued that when considering the WSPD
pair (A, B) separating T (g) from x (with T(q) € A, x € B), we will create a cell ¢’ containing g. We also showed that
|aT (q)| < el where I = |T(q)q|. Hence if the cell ¢’ was not "too close’ to a, i.e. d(C’,a)) > |ab|/8, a was stored with ¢’
and |qa| < |T(q)q|+1aT(q)| < (1+¢€)|T(q)q|, thatis a is a (1 +€) cANN. For smaller cells contained in ¢’ containing g,
only better points could have been found, so the point associated with the smallest cell ¢ containing g is certainly a cANN.

It remains to treat the case that d(c’,a)) < |ab|/8, that is, when considering (A,B), ¢’ was marked critical (and
a was not associated with it), By the choice of x and the fact that ¢’ was marked critical, we know that As € § :
elgT (q)| < |sT(q)| < 15|ab|/16 (o.w. x = s would have been chosen). Let w’ be the width of cell ¢’. We have
w' < glab|/(8-16-d) since ¢’ was critical. Now assume the smallest non-critical cell ¢ # ¢’ containing g was created
by WSPD pair (E, F) with representatives e, f. Let w be the width of ¢; w.l.o.g. assume ¢ was closer to e than to f. If
leT (q)| < €|T(q)q| we're done since e is an cANN for g. Otherwise we have |eT (q)| > €|T(q)qg| but also by construction
of the grid for (E,F) |eq| < 32dw/e < 32dw'/e < |ab|/4. Furthermore we have |T(gq)q| < |ab|/2 otherwise ¢’ would
not have been critical and hence |T(q)e| < |T(q)q| + |eq| < |ab|/2 + |ab|/4 < 3|ab|/4 which contradicts the fact that
As € S:€lqT(q)| < |sT(q)| < |ab|15/16.

O

The previous two Lemmas imply that if the smallest generated cell ¢ containing a query point g is not critical, the point
stored with that cell is a valid cANN, i.e. it has distance at most (1 +¢€) times the distance of the exact cNN, and the returned
point lies at most an angle of 2¢ off the reverse cone with apex at g.

5.2.2 Stage II of the Construction In the following we will refine the construction to cope with the case that the query
point ends up in a critical cell. Before we can explain the respective refinement of our construction, let us first prove some
properties about critical cells.

LEMMA 5.3. Let C be a critical cell that is also the smallest cell containing some query point q, assume w.l.o.g. C
was generated and declared critical while processing WSPD pair (A, B) with representatives (a,b) and d(C ,a) < |ab|/8. If
L #£cNN(q) ¢ A, that is, the true conic nearest neighbor of q is not in the set A but exists, then C has already an approximate
conic nearest neighbor for q associated.

Proof: Consider the WSPD pair (E,F) with representatives (e, f) separating T(q) and a (T(q) € E, a € F), let ¢’ be
the respective cell containing . If d(c’,e) > |ef|/8, the cell containing g got a point associated that is a cANN (proof
along the lines of the above: if |T(g)e| < €|T(q)q| we don’t have anything to show, otherwise consider the WSPD pair
separating 7'(¢) and e ...). Butif d(c’,e) < |ef|/8 the cell ¢’ has to be smaller than the cell ¢ (as it is closer to e than to a).
Furthermore either ¢’ or one of its children containing g has been marked or associated with a point (again the argument is
that if |7 (q)e| < €|T(¢)q|, ¢’ would have been marked, otherwise consider the WSPD pair separating T'(¢) and e ...). This
contradicts the assumption that ¢ was the smallest cell created containing q. d

So we know that for points g for which a critical cell ¢ is the smallest containing cell, the conic nearest neighbor is in
A (the cluster whose representative a marked C as critical) or it is already associated with C.

Let us distinguish two cases: |[A| = 1: we can simply split the relevant region of ¢ by the planes of the cone of a and
assign a to one part, the ’old’ representative (if existant) to the other part.

|A| > 1: Let & be the minimum distance of a part of ¢ to a, that is not covered by smaller cells. If § =0 (i.e. a
is not covered by a smaller cell), another point in A together with a would have induced a finer grid cell at a. Hence
assume 8 > 0. Then the diameter of point set A must be less than de. Otherwise consider the WSPD pair (E,F)
separating a and the point x € A furthest from a. Then either the cell ¢ is non-critical for (E,F) (contradiction to the
initial assumption) or it is covered by smaller cells induced by (E,F). So for |A| > 1 we can construct an enlarged cone
econe(a) := {p: ZLpap' < €|p’ € cone(a)} use this to partition the relevant part of cell ¢. Any point in ¢ uncovered by
smaller cells but contained in the enlarged cone of a has a as a cANN: distance wise and angle-wise. We note that the
complexity of the intersection of relevant parts of ¢ with the enlarged cone can be quite considerable (in particular, if ¢ has
many direct descendants). But since every cell has only one direct parent and the complexity of the intersection between a
cube and d hyperplanes is constant for constant d, the overall complexity of the resulting decomposition remains linear in
the number of original cubic cells.

THEOREM 5.2. For a set of points S C RY and a cone defined by d halfspaces, one can compute a decomposition of RY
into O(E% log é) regions with one associated point € S each, such that for any point g € RY, the point associated with the
cell C containing q is a cCANN. If C has no point associated, q has no cNN in S. The space decomposition can be queried in
time O(log(n/¢)) and constructed in O(% log? 2).

Proof: The size follows from the fact that the WSPD created has O(n) pairs and each pair induces O((1/e%)log(1/¢)) cells.
These are then stored in a compressed quadtree as in [HP] which yields the claimed space, construction, and query time.
Correctness of the returned points follows from the previous Lemmas. O

6 Open Problems

Our (approximate) datastructures that allow for polylogarithmic query time all require a fixed cone during their construction.
Even though in actual applications one is typically interested only in a constant number of cones — hence building our
datastructures a constant number of times does not change the asymptotic space and running time — practicability would
be greatly increased if we could design a datastructure that could answer queries for variable cones (like the partition-tree
based approach, but the latter has almost-linear query time).

References

[AMO2] S. Arya and T. Malamatos. Linear-size approximate voronoi diagrams. In Proc. 13th ACM-SIAM Sympos. Discrete Algorithms,
pages 147-155, 2002.

[AMNT98] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. An optimal algorithm for
approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891-923, 1998.

[CK95] Paul B. Callahan and S. Rao Kosaraju. Algorithms for dynamic closest pair and n-body potential fields. In Proc. 6th annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 263-272, 1995.

[DGGZ02] Tamal K. Dey, Joachim Giesen, Samrat Goswami, and Wulue Zhao. Shape dimension and approximation from samples. In
SODA ’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 772—780, 2002.

[DGK99] Christian A. Duncan, Michael T. Goodrich, and Stephen Kobourov. Balanced aspect ratio trees: combining the advantages of
k-d trees and octrees. In Proc. 10th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 300-309, 1999.

[FRO2] Stefan Funke and Edgar A. Ramos. Smooth-surface reconstruction in near-linear time. In SODA ’02: Proceedings of the
thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 781-790, 2002.

[GWO03] Joachim Giesen and Uli Wagner. Shape dimension and intrinsic metric from samples of manifolds with high co-dimension. In
SCG °03: Proceedings of the nineteenth annual symposium on Computational geometry, pages 329-337, 2003.

[HarO1] S. Har-Peled. A replacement for voronoi diagrams of near linear size. In Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci.,
pages 94-103, 2001.

[HP] Sariel Har-Peled. Geometric approximation algorithms. Lecture Notes for CS598, UIUC.

[Mat92] Jirf Matousek. Efficient partition trees. Discrete & Computational Geometry, 8:315-334, 1992.

