
In Transit to Constant Time Shortest-Path Queries in Road Networks∗

Holger Bast† Stefan Funke† Domagoj Matijevic† Peter Sanders‡

Dominik Schultes‡

Abstract

When you drive to somewhere ‘far away’, you will leave

your current location via one of only a few ‘important’

traffic junctions. Starting from this informal observation,

we develop an algorithmic approach—transit node routing—

that allows us to reduce quickest-path queries in road

networks to a small number of table lookups. We present

two implementations of this idea, one based on a simple grid

data structure and one based on highway hierarchies. For the

road map of the United States, our best query times improve

over the best previously published figures by two orders of

magnitude. Our results exhibit various trade-offs between

average query time (5 µs to 63 µs), preprocessing time

(59 min to 1200 min), and storage overhead (21 bytes/node

to 244 bytes/node).

1 Introduction

Computing optimal routes in a road network G = (V,E)
is one of the showpieces of real-world applications of
algorithmics. The classical way to compute the shortest
path between two given nodes in a graph with given
edge lengths is Dijkstra’s algorithm [4]. Its asymptotic
running time is O(m + n log m), where n is the number
of nodes, and m is the number of edges. For graphs with
constant degree, like the road networks we consider, this
is O(n log n). Our benchmark throughout this paper is
the US road network [22], which has about 24 million
nodes and 58 million edges. On this network, Dijkstra’s
algorithm takes more than a second on a state-of-the-art
workstation to compute the shortest path between two
random nodes. This is too slow for many applications.

While it is still an open question, whether Dijk-
tra’s algorithm is optimal for single-source single-target
queries in general graphs, there is an obvious Ω(n + m)

∗Partially supported by DFG grant SA 933/1-3, by the
EU within the 6th Framework Programme under contract

001907 “Dynamically Evolving Large Scale Information Systems”
(DELIS), and by the Max Planck Center for Visual Computing

and Communication (MPC-VCC) funded by the German Federal

Ministry of Education and Research (FKZ 01IMC01).
†Max-Planck-Institut für Informatik, 66123 Saarbrücken, Ger-

many, {bast,funke,dmatijev}@mpi-inf.mpg.de
‡Universität Karlsruhe (TH), 76128 Karlsruhe, Germany,

{sanders,schultes}@ira.uka.de

lower bound, because every node and every edge has to
be looked at in the worst case. Sublinear query time
hence requires some form of preprocessing of the graph.
For general graphs, constant query time can only be
achieved with superlinear space requirement; this is due
to a recent result by Thorup and Zwick [21]. Like pre-
vious works, we therefore exploit special properties of
road networks, in particular, that the nodes have low
degree and that there is a certain hierarchy of more
and more important roads, such that further away from
source and target the more important roads tend to be
used on shortest paths.

Our approach, coined transit node routing, is based
on the following two key observations on large road
networks. First, there is a relatively small set of
what we call transit nodes, about 10 000 for the US
road network, with the property that for every pair
of nodes that are ‘not too close’ to each other, the
shortest path between them passes through at least one

of these transit nodes. Second, for every node, the set of
transit nodes encountered first when going far—we call
these access nodes—is small: about 10 for the US road
network. The corresponding intuition is illustrated in
Figure 1.

The idea behind transit node routing is now to pre-
compute distances between transit nodes and distances
from all nodes to their access nodes. Together with an
effective notion of ‘sufficiently far away’ this allows most
queries to be answered using only a few table lookups.
Our fastest query times of 6µs improve over the best
previously published numbers by two orders of magni-

tude.
The structure of the paper is as follows: After re-

viewing related work in Section 2, we introduce transit
node routing more formally in Section 3. In particular,
we introduce several layers of more and more local tran-
sit nodes that are required to achieve good performance
for all possible queries.

In Section 4 we describe a simple grid-based imple-
mentation of these techniques tuned for space efficiency
and provide an experimental evaluation thereof. In
Section 5 we give a more sophisticated implementation
based on highway hierarchies that achieves the fastest

Figure 1: Finding the optimal travel time between two points (flags) somewhere between Saarbrücken and
Karlsruhe amounts to retrieving the 2× 4 access nodes (diamonds), performing 16 table lookups between all
pairs of access nodes, and checking that the two disks defining the locality filter do not overlap. Transit nodes

that are not relevant for the depicted query are drawn as small squares.

possible query and preprocessing times and also provide
a detailed experimental analysis.1 Section 6 summarises
the results and outlines avenues for further research in-
cluding additional possible approaches to transit node
routing.

2 Related Work

2.1 Bidirectional Search. A classical technique is
bidirectional search which simultaneously searches for-
ward from s and backwards from t until the search fron-
tiers meet. Many more advanced speedup techniques
(including ours) use bidirectional search as an ingredi-
ent.

2.2 Separators. Perhaps the most well known prop-
erty of road networks is that they are almost planar,
i.e, techniques developed for planar graphs will often
also work for road networks. Queries accurate within

1Transit node routing was first proposed by the first three
authors in [2], with a simple geometric implementation. Shortly

afterwards, the last two authors combined the transit node idea
with highway hierarchies [18]. For these historical reasons, the
experimental parts of Sections 4 and 5 are not unified but kept
separately.

a factor (1 + ǫ) can be answered in near constant time
using O((n log n)/ǫ) space and preprocessing time [20].
Using O(n log3 n) space and preprocessing time, query
time O(

√
n log n) can be achieved [5] for directed pla-

nar graphs without negative cycles. A previous practi-
cal approach based on separators is the separator based

multi-level method [19]. The idea is to partition the
graph into small components by removing a (hopefully
small) set of separator nodes. These separator nodes to-
gether with edges representing precomputed paths be-
tween them constitute the next level of the graph.

Using more space and preprocessing time, separa-
tors can be used for transit node routing. The separator
nodes become transit nodes and the access nodes are the
border nodes of the component of v. Local queries are
those within a single component. Another layer of tran-
sit nodes can be added by recursively finding separators
for each component. Müller et al. [14] have essentially
developed this approach (using different terminology).
An interesting difference to generic transit node routing
is that the required information for routing between any
pair of components is arranged together. This takes ad-
ditional space but has the advantage that the informa-
tion can be accessed more cache efficiently (it also allows

subsequent space optimisations). Although separators
of road networks have much better properties than the
worst case bounds for planar graphs would suggest, sep-
arator based transit node routing needs many more ac-
cess nodes than our schemes (≈ 80 rather than ≈ 10 per
node for Europe). This leads to higher space consump-
tion2, preprocessing time, and query time. In our grid
based scheme, the candidates for transit nodes form a
(comparably bad) separator but only a small subset of
this separator needs to be selected. The main reason
for the difference in the number of access nodes is that
the separator approach does not take the ‘sufficiently
far away’ criterion into account that is so important for
reducing the number of access nodes in our schemes.

2.3 Highway Hierarchies. Commercial systems
use information on road categories to speed up search.
‘Sufficiently far away’ from source and target, only ‘im-
portant’ roads are used. This requires manual tuning of
the data and a delicate tradeoff between computation
speed and suboptimality of the computed routes. In
previous papers [16, 17] we introduced the idea to au-

tomatically compute highway hierarchies that yield op-

timal routes uncompromisingly quickly. The basic idea
is to define a neighbourhood for each node to consist of
its H closest neighbours. Now an edge (u, v) is a high-
way edge if there is some shortest path 〈s, . . . , u, v, . . . t〉
such that neither u is in the neighbourhood of t nor v
is in the neighbourhood of s. This defines the first level
of the highway hierarchy. After contracting the network
to remove low degree nodes, the same procedure (iden-
tifying the highway network at the next level followed
by contraction) is applied recursively. We obtain a hi-
erarchy. The query algorithm is bidirectional Dijkstra
with restrictions on relaxing certain edges. Roughly, far
away from source or target, only high level edges need to
be considered. Highway hierarchies are successful (sev-
eral thousand times faster than Dijkstra) because of the
property of real world road networks that for constant

neighbourhood size H, the levels of the hierarchy shrink

geometrically. One can view this as a self-similarity—
each level of the hierarchy looks similar to the original
network, just a constant factor smaller. Under certain
(somewhat optimistic) assumptions, this self-similarity
yields logarithmic query time in contrast to the super-
linear query time of Dijkstra’s algorithm.

2.4 Reach Based Routing. Comparable effects can
be achieved with the closely related technique of reach

based routing [9, 6].

2The current implementation uses so much space that some

data does not even fit on the hard disk of the machine used and
thus must be recomputed every time.

2.5 Distance Tables. In [17] transit node routing
is almost anticipated. Precomputed all-to-all distances
on some sufficiently high level—say K—of the highway
hierarchy are used to terminate the local searches when
they ascended far enough in the hierarchy. The main
differences to transit node routing is that access nodes
are computed online and that only distances within level
K of the highway hierarchy (rather than distances in
the underlying graph) are precomputed. This leads
to much larger sets of access nodes (≈ 55) that made
precomputing them appear much less attractive than it
actually is. It was also not addressed, how to decide
when the distance given by the distance table is the
actual shortest path distance.

2.6 Goal Direction. Another interesting property
of road networks is that they allow effective goal di-
rected search using A∗ search [10]: lower bounds define
a vertex potential that directs search towards the target.
This approach was recently shown to be very effective
if lower bounds are computed using precomputed short-
est path distances to a carefully selected set of about
20 Landmark nodes [7, 8] using the Triangle inequality
(ALT). In combination with reach based routing, this
is one of the fastest known speedup techniques [6]. An
interesting observation is that in transit node routing,
the access nodes could be used as landmarks (with the
help of the distance tables). The resulting lower bound
could be used for distinguishing local and global queries
or for guiding local search.

2.7 Geometry. Finally, a tempting property of road
networks is that nodes have a geographic position. Even
if this information is not available, equally useful coordi-
nates can be synthesised [24]. Interestingly, so far, suc-
cessful geometric speedup techniques have always been
beaten by related non-geometric techniques (e.g. [10]
by [7, 8] or [23] by [12, 13]). We initially thought that
the highway hierarchy approach outperforming the grid
based approach to transit node routing would turn out
to be another instance of this phenomenon. However,
currently it looks like the highway hierarchy approach
needs a geometric locality test for good performance.

3 Transit Node Routing

To simplify notation we will present the approach for
undirected graphs. However, the method is easily gen-
eralised to directed graphs and our highway hierarchy
implementation already handles directed graphs. Con-
sider any set T ⊆ V of transit nodes, an access mapping

A : V → 2T that maps a vertex to its access node
set, and a locality filter L : V × V → {true, false} that
decides whether an s-t-query is a ‘local query’ or not.

We require that ¬L(s, t) implies that the shortest path
distance is d(s, t) =

min{d(s, u)+d(u, v)+d(v, t) : u∈A(s), v∈A(t)} (3.1)

In principle, we can pick any set of transit nodes,
any access mapping, and any locality filter fulfilling
Equation (3.1) to obtain a transit node query algorithm:
Assume we have precomputed all distances between
nodes in T .
If ¬L(s, t) then compute d(s, t) using Equation (3.1)
Else, use any other routing algorithm.

Of course, we want a good choice of (T , A, L). T
should be small but allow many global queries, L should
efficiently identify as many of these global query pairs
as possible, and we should be able to store and evaluate
A efficiently.

We can apply a second layer of generalised transit

node routing to the remaining local queries (that may
dominate some real world applications). We have a node
set T2 ⊃ T , an access mapping A2 : V → 2T2 , and
a locality filter L2 such that ¬L2(s, t) implies that the
shortest path distance is defined by Equation 3.1 or by
d(s, t) =

min {d(s, u) + d(u, v) + d(v, t) : u ∈ A2(s), v ∈ A2(t)}
(3.2)

In order to be able to evaluate Equation 3.2 ef-
ficiently we need to precompute the local connections
from {d(u, v) : u, v ∈ T2 ∧ L(u, v)} which cannot be ob-
tained using Equation 3.1. In an analogous way we can
add further layers.

We now describe techniques that can be used to-
gether with any set of transit nodes. The more specific
techniques presented in Section 4 and Section 5 will re-
fine and in some cases replace these general techniques.

3.1 Computing Access Nodes: Backward Ap-
proach. From each transit node v ∈ T , start a back-
ward Dijkstra search, i.e., a search in the reverse graph.
Run it until all paths leading to nodes in the priority
queue pass over another node w ∈ T . Record v as an
access node for any node u on a shortest path from
v that does not lead over another node in T . Record
an edge (v, w) with weight d(v, w) for a transit graph

G[T] = (T , ET). When this local search has been per-
formed from all transit nodes, we have found all access
nodes and the distance table can be computed using an
all-pairs shortest path computation in G[T].

3.2 Layer 2 Information is computed similarly to
the top level information except that a search on the
transit graph G[T2] can be stopped when all paths in
the priority queue pass over a top level transit node

w ∈ T . Level 2 distances from each node v ∈ T2 can
be stored space efficiently in a static hash table. We
only need to store distances that actually improve on
the distances obtained going via the top level T .

3.3 Computing Access Nodes: Forward Ap-
proach. Start a Dijkstra search from each node u. Stop
when all paths in the shortest path tree are ‘covered’ by
transit nodes. Take these transit nodes as access nodes
of u. Applied naively, this approach is rather ineffi-
cient. However, we can use two tricks to make it effi-
cient. First, during the search we do not relax the edges
leaving transit nodes. This leads to the computation of
a superset of the access nodes. Fortunately, this set can
be easily reduced if the distances between all transit
nodes are already known: if an access node v′ can be
reached from u via another access node v on a shortest
path, we can discard v′. Second, we can only determine
the access node sets A(v) for all nodes v ∈ T2 and the
sets A2(u) for all nodes u ∈ V . Then, for any node
u, A(u) can be computed as

⋃

v∈A2(u) A(v). Again, we
can use the reduction technique to remove unnecessary
elements from the set union.

3.4 Locality Filters. There seem to be two basic
approaches to transit node routing. One that starts
with a locality filter L and then has to find a good set
of transit nodes T for which L works (e.g., Section 4).
The other approach starts with T and then has to find
a locality filter that can be efficiently evaluated and
detects as accurately as possible whether local search
is needed (e.g., Section 5). One approach that we
found very effective is to use the information gained
when computing the distance table for layer i + 1
to define a locality filter for layer i. For example,
we can compute the radius ri(u) of a circle around
every node u ∈ Ti+1 that contains for each entry
d(u, v) in the layer-(i + 1) table the meeting point of
a bidirectional search between u and v. We can use
this information in several ways. We can (pre)compute
conservative circle radii for arbitrary nodes v as ri(v) :=
max

{

||v − u||2 + ri(u) : u ∈ Ai+1(v)
}

, where ||v − u||2
denotes the Euclidean distance between u and v. Note
that even if we are not able to store the information
gathered during a precomputation at layer i+1, it might
still make sense to run it in order to gather the more
effective locality information.

3.5 Space Efficient Storage of Access Nodes. If
all shortest paths from a node v to its access nodes A(v)
have to go over nodes from a set M , we can exploit that
A(v) ⊆ A(M) :=

⋃

u∈M
A(u). Moreover, if the nodes

in M are ‘close’ to v, we can expect that A(M) is not

too much bigger than A(v). Therefore, as long as we
can efficiently find M , it suffices to store access node
information with a subset of the nodes. This subset
might be T2 or a separator partitioning the graph into
small pieces.

3.6 Outputting Shortest Paths (rather than only
distances). First note that in a graph with bounded
degree (e.g. a road network) and with a (near) constant
time distance oracle, we can output a shortest path
from s to t in (near) constant time per edge: Look
for an edge (s, u) such that d(s, u) + d(u, t) = d(s, t),
output (s, u). Continue by looking for a shortest path
from u to t. Repeat until t is reached. We can
speed up this process by two measures. Suppose the
shortest path uses the access nodes x ∈ A(s) and
y ∈ A(t). First, while reconstructing the path from
s to x (and from y to t) we can use this access node
information to eliminate all search for the right access
nodes and perform only a single distance table lookup.
Second, reconstructing the path from x to y can work
on the transit graph G[T] rather than on the original
graph. We can precompute information that allows us
to output the paths associated with each edge in G[T] in
time linear in the number of edges of G it contains. Note
that long distance paths will mostly consist of these
precomputed paths so that the time per edge can be
made very small. This technique can be generalised to
multiple layers.

If we use a separator based approach for storing
access nodes, we can bridge the gap from s to a
separator node as follows: Let M denote the border
nodes of the partition R containing s. Associate a bit
vector of edge flags of size |A(M)| with each edge in
R. Knowing the entrance node we are heading for, we
can decide which edge to take by just inspecting the
edge flags. Note that this approach somewhat resembles
[12, 13] with the difference that this is information
leading out of a local region rather than information
leading to a global region. When the border of one
region is reached, we can then switch to the next region
on the shortest path to the access node w.

4 A Geometric (Grid-Based) Implementation

In this section we will present a natural and straightfor-
ward implementation of the transit idea. The resulting
data structure uses very little space compared to the
graph itself, and achieves query times around 10µs for
about 99% of the queries.

4.1 Transit Nodes. Consider the smallest enclosing
square of the set of nodes V (coming with x and y
coordinate each), and the natural subdivision of this

square into a grid of g × g equal-sized square cells, for
some integer g. We define a set of transit nodes for each
cell C as follows. Let Sinner and Souter be the squares
consisting of 5×5 cells and 9×9, respectively, each with
C at their centre. Let EC be the set of edges which have
one endpoint inside C, and one outside, and define the
set VC of what we call crossing nodes by picking for
each edge from EC the node with smaller ID (we want
to avoid considering both endpoints of an edge). Define
Vouter and Vinner accordingly, see Figure 2, left, for an
illustration. The set of access nodes for the cell C is
now the set of nodes v from Vinner with the property
that there exists a shortest path from some node in VC

to some node in Vouter which passes through v. The
overall set of transit nodes is just the union of these sets
over all cells. It is easy to see that if two nodes are at
least four grid cells apart in either horizontal or vertical
direction, then the shortest path between the two nodes
must pass through one of these transit nodes. Also note
that if a node is a transit node for some cell, it is likely
to be a transit node for many other cells (all two cells
away) too.

A naive way to compute these sets of transit nodes
would be as follows. For each cell, compute all shortest
paths between nodes in VC and Vouter, and mark all
nodes in Vinner that appear on at least one these shortest
paths (again, Figure 2 will help to understand this). But
such a computation would take several days even for a
(for our purposes relatively coarse) 128 × 128 grid.

As a first improvement, consider the following sim-
ple sweep-line algorithm, which runs Dijkstra computa-
tions within a radius of only three grid cells (instead of
five, as in the naive approach). Consider one vertical
line of the grid after the other, and for each such line
do the following. Let v be the endpoint with smaller
ID of an edge intersecting the line. We run a local Di-
jkstra computation for each such v as follows: let Cleft

be the set of cells two grid units left of v and which
have vertical distance of at most 2 grid units to the cell
containing v. Accordingly define Cright. See Figure 2,
right; there we have Cleft = {CA,CB,CC,CD,CE}
and Cright = {C1, C2, C3, C4, C5}. We start the local
Dijkstra at v until all nodes on the boundary of the cells
in Cleft and Cright respectively are settled; we remember
for all settled nodes the distance to v. This Dijkstra run
settles nodes at a distance of roughly 3 grid cells. Af-
ter having performed such a Dijkstra computation for
all nodes v on the sweep line, we consider all pairs of
boundary nodes (vL, vR), where vL is on the boundary
of a cell on the left and vR is on the boundary of a cell on
the right and the vertical distance between those cells is
at most 4. We iterate over all potential transit nodes v
on the sweep line and determine the set of transit nodes

C

outer

inner

0

+1

+2

−1

−2

CA

CD

CC

CE

CB

C5

C4

C3

C2

C1

Figure 2: Definition and computation of transit nodes in the grid-based construction.

for which d(vL, v) + d(v, vR) is minimal. With this set
of transit nodes we associate the cells corresponding to
vL and vR, respectively.

It is not hard to see that two such sweeps, one
vertical and one horizontal, will compute the set of
transit nodes defined in the previous subsection. The
computation is space-efficient, because at any point in
the sweep, we only need to keep track of distances
within a small strip of the network. The consideration
of all pairs (vL, vR) is negligible in terms of running
time. As a further improvement, we first do the above
computation for some refinement of the grid for which
we actually want to compute transit nodes. For the
finer grid, we consider only those sweep lines, which
also lie on the coarser grid. When computing the transit
nodes for the coarser grid, we can then restrict ourselves
to nodes from the sets of transit nodes computed for
the finer grid. This easily generalises to a sequence of
refinements. In our experiments we use grids with 2i×2i

cells.

4.2 Access Nodes and Distance Tables. The ac-
cess nodes for a node v are just the transit nodes of the
cell containing v. The distances from v to these transit
nodes can be easily memorised from the Dijkstra com-
putations which had these transit nodes as source. A
standard all-pairs shortest-path computation gives us
the distances between each pair of transit nodes. Note
that we do not need to consider the whole original graph
for this computation but can operate on a small graph
only consisting of the transit nodes and (weighted) edges
as memorised from the above Dijkstra computations.
Since the number of transit nodes is typically small (e.g.
less than 8 000 for the US road network, using a 128×128
grid), this takes negligible time.

4.3 Queries. The query algorithm is extremely sim-
ple for the grid-based approach. Given a pair of source
and target node, we determine whether the two nodes
are more than four grid cells in apart in either hori-
zontal or vertical direction. If so, then by construction
the shortest path must pass through at least one transit
node, and we can do table lookup as described in Sec-
tion 3. Otherwise, we resort to another shortest-path
algorithm as described in the following.

4.4 Dealing with the Local Queries. If source and
target are very close to each other (less than four grid
cells apart in both horizontal and vertical direction), we
cannot compute the shortest path via the transit nodes.
The good news is that most shortest-path algorithms
are much faster, when source and target are close to
each other. In particular, Dijkstra’s algorithm ist about
a thousand times faster for local queries, where source
and target are at most four grid cells apart, for an
256 × 256 grid laid over the US road network, than
for arbitrary random queries (most of which are long-
distance). However, the non-local queries are roughly a
million times faster and the fraction of local queries is
about 1 %, so the average running time over all queries
would be spoiled by the local Dijkstra queries.

Instead, we can use any of the recent sophisticated
algorithms to process the local queries. Highway Hier-
archies, for example, achieve running times of a frac-
tion of a millisecond for local queries, which would then
only slightly affect the average processing time over all
queries. The main drawback here is the additional space
requirement.

As we were aiming for a very space efficient solution
we used a simple extension of Dijkstra’s algorithm using
geometric edge levels (as in [9]) and shortcuts. This
extension uses only six additional bytes per node. An

|T | |T | × |T |/node avg. |A| % global queries preprocessing

64 × 64 2 042 0.1 11.4 91.7% 498 min

128 × 128 7 426 1.1 11.4 97.4% 525 min

256 × 256 24 899 12.8 10.6 99.2% 638 min

512 × 512 89 382 164.6 9.7 99.8% 859 min

1 024 × 1 024 351 484 2 545.5 9.1 99.9% 964 min

Table 1: Number |T | of transit nodes, space consumption of the distance table, average number |A| of access
nodes per cell, percentage of non-local queries (averaged over 100 000 random queries), and preprocessing time to
determine the set of transit nodes for the US road network.

edge has level l if it is on the middle of a shortest path,
where the sum of the euclidean lengths of the edges
along that path are above a certain monotonic function
f(l). For each node u, we insert at most two shortcuts
as follows: consider the first level, if any, where u lies
on a chain of degree-2 nodes (degree with respect to
edges of that level); on that level insert a shortcut from
u to the two endpoints of this chain. In each step of the
Dijkstra computation for a local query, then consider
only edges above a particular level (depending on the
current euclidean distance from source and target), and
make use of any available shortcuts suitable for that
level. This algorithm requires an additional 5 bytes per
node. Note that ’uncompressing’ edges in a compressed
shortest path is completely straightforward with this
scheme and does not require any additional memory.

4.5 Saving Space via a Multi-Level Grid. In our
implementation as described so far, there is an obvious
tradeoff between the size of the grid and the percentage
of local queries which cannot be processed via transit
node routing. For a very coarse grid, say 64 × 64, the
number of transit nodes, and hence the table storing
the distances between all pairs of transit nodes, would
be very small, but the percentage of local queries would
be as large as 10 %. For a very fine grid, say 1024×1024,
the percentage of local queries is only 0.1 %, but now
the number of transit nodes is so large, that we can no
longer store, let alone compute, the distances between
all pairs of transit nodes. Table 1 gives the exact
tradeoffs, also with regard to preprocessing time. Note
that the average query processing time for the non-local
queries is around 10 microseconds, independent of the
grid size.

To achieve a small fraction of local queries and a
small number of transit nodes at the same time, we
employ a hierarchy of grids. We briefly describe the two-
level grid, which we used for our implementation. The
generalisation to an arbitrary number of levels would be

straightforward.
The first level is a 128 × 128 grid, which we

precompute just as described so far. The second level is
a 256×256 grid. For this finer grid, we compute the set
of all transit nodes as described, but we compute and
store distances only between those pairs of these transit
nodes, which are local with respect to the 128×128 grid.
This is a fraction of about 1/200th of all the distances,
and can be computed and stored in negligible time and
space. Note that in this simple approach, the space
requirement for the individual levels simply add up.

Query processing with such a hierarchy of grids is
straightforward. In a first step, determine the coarsest
grid with respect to which source and target are at
least four grid cells apart in either horizontal or vertical
direction. Then compute the shortest path using the
transit nodes and distances computed for that grid as
described before. If source and target are at most four
grid cells apart with respect to even the finest grid, we
have to resort to the special algorithm for local queries.

4.6 Reducing the Space Further. As described so
far, for each level in our grid hierarchy, we have to store
the distances from each node in the graph to each of
its closest transit nodes. For the US road network,
the average number of closest transit nodes per node
is about 11, independent of the grid size, and most
distances can be stored in two bytes. For a two-level
grid, this gives about 44 bytes per node.

To reduce this, we implemented the following addi-
tional heuristic. We observed that it is not necessary to
store the distances to the access nodes for every node
in the network. Consider a simplification of the road
network where chains of degree 2 nodes are contracted
to a single edge. In the remaining graph we greedily
compute a vertex cover, that is, we select a set of nodes
such that for every edge at least one of its endpoints
is a selected node. Using this strategy we determine
about a third of all nodes in the network to store dis-

non-local (99%) local (1%) all queries preprocessing space per node

12 µs 5112 µs 63 µs 20 h 21 bytes

Table 2: Average query time (in microseconds), preprocessing time (in hours), and space consumption (in bytes
per node) for the grid based approach, for the US road network.

grid size ≤ 29 210 211 212 213 214 215 216 217 218 219 220 ≥ 221

128 × 128 100% 100% 100% 99% 99% 99% 98% 94% 85% 64% 29% 5% 0%

256 × 256 100% 99% 99% 99% 97% 94% 84% 65% 36% 12% 1% 0% 0%

Table 3: Estimated fraction of queries which are local with respect to a given grid, for various ranges of Dijkstra
ranks. The estimate for the column labeled 2r is the average over 1000 random queries with Dijkstra rank in the
interval [2r, 2r+1).

tances to their respective access nodes. Then, for the
source/target node v of a given query we first check
whether the node is contained in the vertex cover, if so
we can proceed as before. If the node is not contained
in the vertex cover, a simple local search along chains
of degree 2 nodes yields the desired distances to the ac-
cess nodes. The average number of distances stored at
a node reduces from 11.4 to 3.2 for the 128×128 grid of
the US, without sigificantly affecting the query times.
The total space consumption of our grid data structure
then decreases to 16 bytes per node.

4.7 Implementation and Experiments. We
tested all our schemes on the US road network, pub-
lically available via http://www.census/gov/geo/

www/tiger. This is a graph with 24 266 702 nodes
and 58 098 086 edges, and an average degree of 2.4.
Edge lengths are travel times. We implemented our
algorithms in C++ and ran all our experiments on a
Dual Opteron Machine with 8 GB of main memory,
running Linux. Table 2 give a summary of experimental
results for our actual two-level grid approach with a
reach based Dijkstra implementation for the local
queries.

The grid based approach achieves an average query
time of 12 microseconds for 99% of all queries. To-
gether with our simple algorithm for the local queries,
described in Section 4.4, we get an average of 63 mi-
croseconds over all queries. This overall average time
could be easily improved by employing a more sophisti-
cated algorithm, e.g. highway hierarchies from [17], for
the local queries, however at the price of a larger space
requirement and a considerably more complex imple-
mentation. The space consumption of our algorithm is

21 bytes per node, which comes from 16 bytes per node
for the distance tables of the two grids (Sections 4.5, 4.6)
plus 5 bytes per node for the edge levels and shortcuts
for the local queries (Section 4.4).

If we also output the edges along the shortest path,
our average query processing becomes just about 5 mil-
liseconds (which happens to be the average processing
time for the local queries, too).

Many previous works provided a figure that showed
the dependency of the processing time of a query on
the Dijkstra rank of that query, which is the number of
nodes Dijkstra’s algorithm would have to settle for that
query. The Dijkstra rank is a fairly natural measure
of the difficulty of a query. In transit node routing,
query processing times are essentially constant for the
non-local queries, because the number of table lookups
required varies little and is completely independent from
the distance between source and target. Table 3 instead
gives details on which percentage of the queries with a
given Dijkstra rank are local. Note that for both the
128 × 128 grid and the 256 × 256 grid, all queries with
Dijkstra rank of 29 = 512 or less are local, while all
queries with Dijkstra rank above 221 ≈ 2 000 000 are
non-local.

5 An Approach Based on Highway Hierarchies

5.1 Preliminaries. For each node v, we define some
neighbourhood node set N(v). Then, the highway

network of a graph G = (V,E) is defined by its edge
set: an edge (u, v) ∈ E belongs to the highway network
iff there are nodes s, t ∈ V such that the edge (u, v)
appears in the shortest path 〈s, . . . , u, v, . . . , t〉 with the
property that v 6∈ N(s) and u 6∈ N(t). The size of
a highway network (in terms of the number of nodes)

Level Layer

14

22

1

0

generous

(3)

Level Layer
15

23

1

0

economical

L

L
L2 L2

Figure 3: Representations of information relevant to highway hierarchy transit node routing.

can be considerably reduced by a contraction procedure:
for each node v, we check a bypassability criterion that
decides whether v should be bypassed—an operation
that creates shortcut edges (u,w) representing paths
of the form 〈u, v, w〉. The graph that is induced by
the remaining nodes and enriched by the shortcut edges
forms the core of the highway network.

A highway hierarchy of a graph G consists of several
levels G0, G1, G2, . . . , GL. Level 0 corresponds to the
original graph G. Level 1 is obtained by computing the
highway network of level 0, level 2 by computing the
highway network of the core G′

1 of level 1 and so on.
Let us fix any rule that decides which element

Dijkstra’s algorithm removes from the priority queue
when there is more than one queued element with the
smallest key. Then, during a Dijkstra search from a
given node s, all nodes are settled in a fixed order.
The Dijkstra rank rks(v) of a node v is the rank of v
w.r.t. this order.

5.2 Transit Nodes. Nodes on high levels of a high-
way hierarchy have the property that they are used on
shortest paths far away from starting and target nodes.
‘Far away’ is defined with respect to the Dijkstra rank.
Hence, it is natural to use (the core of) some level K
of the highway hierarchy for the transit node set T .
Note that we have quite good (though indirect) control
over the resulting size of T by choosing the appropri-
ate neighbourhood sizes and the appropriate value for
K =: K1. In our current implementation this is level
4 or 5 in the biggest graph we have. In addition, the
highway hierarchy helps us to efficiently compute the
required information. Our layer 2 is level K2 := ⌈K/2⌉
of the highway hierarchy. If present, layer 3 is level

K3 := ⌈K/4⌉. Note that there is a difference between
the level of the highway hierarchy and the layer of tran-
sit node search.

5.3 Access Nodes and Distance Tables. We use
our highway hierarchy based code for many-to-many
routing to compute the top level distance table [11].
Roughly, this algorithm first performs independent
backward searches from all transit nodes and stores
the gathered distance information in buckets associated
with each node. Then, a forward search from each tran-
sit node scans all buckets it encounters and uses the
resulting path length information to update a table of
tentative distances. This approach can be generalised
for computing distances at layer i > 1. As a byproduct
of the distance table computations, we obtain geometric
locality filters as described in Section 3.4.

We use the forward approach from Section 3.3 to
compute the access point sets. (In our case, we do not
perform Dijkstra searches, but highway searches [17].)

Figure 3 summarises the representation used for
running our algorithm. We have two variants. Variant
economical aims at a good compromise between space
consumption, preprocessing time and query time. Eco-
nomical uses K = 5 and reconstructs the access node
set and the locality filter needed for the layer-1 query
using information only stored with nodes in T2, i.e., for
a layer-1 query with source node s, we build the union
⋃

u∈A2(s)
A(u) of all layer-1 access nodes of all layer-2

access nodes of s to determine on-the-fly a layer-1 ac-
cess node set for s. Similarly, a layer-1 locality filter
for s is built using the locality filters of the layer-2 ac-
cess nodes (cp. Section 3.4). Variant generous accepts
larger distance tables by choosing K = 4 (however us-
ing somewhat larger neighbourhoods for constructing
the hierarchy). Generous stores all information required
for a query with every node. To obtain a high quality
layer-2 filter L2, the generous variant performs a com-
plete layer-3 preprocessing based on the core of level 1
and also stores a distance table for layer 3.

5.4 Queries are performed in a top down fashion.
For a given query pair (s, t), first A(s) and A(t) are
either looked up or computed (cp. Section 5.3) depend-
ing on the used variant. Then table lookups in the top
level distance table yield a first guess for d(s, t). Now,
if ¬L(s, t), we are done. Otherwise, the same procedure
is repeated for layer two. If even L2(s, t) is true, we per-
form a bidirectional highway hierarchy search that can
stop if both the forward and backward search radius
exceed the upper bounds computed at layers 1 and 2.
Furthermore, the search need not expand nodes at the
core of level K2 since paths going over these nodes are
covered by the search in layers 1 and 2. In the generous
variant, the search is already stopped at the level-1 core
nodes, which form the access node set for layer 3. Addi-
tional lookups in the layer-3 table ensure the correctness
of this variant.

5.5 Outputting Shortest Paths. For a given node
pair (s, t), in order to get a complete description of the
shortest s-t-path, we first perform a transit node query
and determine the layer i that is used to obtain the
shortest path distance. Then, we have to determine the
path from s to the forward access node u to layer i,
the path from the backward access node v to t, and the
path from u to v. In case of a local query, we can fall
back on the routines used in the highway hierarchies
approach [3].

Currently, we provide an efficient implementation
only for the case that the path goes through the top
layer. In all other cases, we just perform a normal
highway search and invoke the methods from [3]. The
effect on the average times is very small since more than
99% of the queries are correctly answered using only the
top search (in case of the travel time metric; cp. Tab. 7).

When a node s and one of its access nodes u are
given, we can determine the next node on the shortest
path from s to u by considering all adjacent nodes s′

of s and checking whether d(s, s′) + d(s′, u) = d(s, u).
In most cases, the distance d(s′, u) is directly available
since u is also an access node of s′. In a few cases—
when u is not an access node of s′—, we have to
consider all access nodes u′ of s′ and check whether
d(s, s′)+d(s′, u′)+d(u′, u) = d(s, u). Note that d(u′, u)
can be looked up in the top distance table. Using this
subroutine, we can determine the path from s to the
forward access point u and from the backward access
node v to t.

A similar procedure can be used to find the path
from u to v (cp. [3]). However, in this case, we consider
only adjacent nodes u′ of u that belong to the top layer
as well because only for these nodes we can look up
d(u′, v). Since there are shortest paths between top

layer nodes that leave the top layer—we call such paths
hidden paths—, we execute an additional preprocessing
step that determines all hidden paths and stores them in
a special data structure (after the used shortcuts have
been expanded). Whenever we cannot find the next
node on the path to v considering only adjacent nodes
in the top layer, we look for the right hidden path that
leads to the next node in the top layer.

In order to unpack the used shortcuts (i.e., deter-
mine the subpaths in the original graph that correspond
to the shortcuts), we use a rather sophisticated data
structure to represent unpacking information for the
shortcuts in a space-efficient way. In particular, we do
not store a sequence of node IDs that describe a path
that corresponds to a shortcut, but we store only hop

indices: for each edge (u, v) on the path that should be
represented, we store its index minus the index of the
first edge of u. Since in most cases the degree of a node
is very small, these hop indices can be stored using only
a few bits. The unpacked shortcuts are stored in a re-
cursive way, e.g., the description of a level-2 shortcut
may contain several level-1 shortcuts. Accordingly, the
unpacking procedure works recursively.

To obtain a further speed-up, we cache the complete
descriptions—without recursions—of all shortcuts that
belong to the topmost level, i.e., for these important
shortcuts that are frequently used, we do not have to
use a recursive unpacking procedure, but we can just
append the corresponding subpath to the resulting path.

5.6 Experiments. We deal with two road networks.
The network of Western Europe3 has been made avail-
able for scientific use by the company PTV AG. Only
the largest strongest connected component is consid-
ered. The original graph contains for each edge a length
and a road category, e.g., motorway, national road, re-
gional road, urban street. We assign average speeds to
the road categories, compute for each edge the average
travel time, and use it as weight. In addition to this
travel time metric, we perform experiments on a vari-
ant of the European graph with a distance metric. The
network of the USA (without Alaska and Hawaii) has
been obtained from the TIGER/Line Files [22]. Again,
we consider only the largest strongest connected compo-
nent, and we deal with both a travel time and a distance
metric. In contrast to the PTV data, the TIGER graph
is undirected, planarised and distinguishes only between
four road categories.

314 countries: Austria, Belgium, Denmark, France, Germany,
Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain,
Sweden, Switzerland, and the UK

layer 1 layer 2
metric variant |T | |table| |A| |T2| |table2| |A2| space time

[× 106] [× 106] [B/node] [h]

USA
time

eco 12 111 147 6.1 184 379 30 4.9 111 0:59
gen 10 674 114 5.7 485 410 204 4.2 244 3:25

dist eco 15 399 237 17.0 102 352 41 10.9 171 8:58

EUR
time

eco 8 964 80 10.1 118 356 20 5.5 110 0:46
gen 11 293 128 9.9 323 356 130 4.1 251 2:44

dist eco 11 610 135 20.3 69 775 31 13.1 193 7:05

Table 4: Statistics on preprocessing for the highway hierarchy approach. For layers 1 and 2, we give the size (in
terms of number of transit nodes), the number of entries in the distance table, and the average number of access
nodes to the layer. ‘Space’ is the total overhead of our approach.

All graphs4 have been taken from the DIMACS Chal-
lenge website [1]. Table 5 summarises the properties of
the used networks.

Europe USA
#nodes 18 010 173 23 947 347
#directed edges 42 560 279 58 333 344
#road categories 13 4
average speeds [km/h] 10–130 40–100

Table 5: Properties of the used road networks.

The experiments were done on one core of a sin-
gle AMD Opteron Processor 270 clocked at 2.0 GHz
with 8 GB main memory and 2 × 1 MB L2 cache, run-
ning SuSE Linux 10.0 (kernel 2.6.13). The program was
compiled by the GNU C++ compiler 4.0.2 using opti-
misation level 3.

At first, we report only the times needed to compute
the shortest path distance between two nodes without
outputting the actual route, while at the end of this
section, we also give the times needed to get a complete
description of the shortest paths.

Since it has turned out that a better performance is
obtained when the preprocessing starts with a contrac-
tion phase, we practically skip the first construction step
(by choosing neighbourhood sets that contain only the
node itself) so that the first highway network virtually
corresponds to the original graph. Then, the first real
step is the contraction of level 1 to get its core. Note
that compared to [17, 3], we use a slightly improved
contraction heuristic, which sorts the nodes according
to degree and then tries to bypass the node with the
smallest degree first.

4Note that the experiments on the TIGER graphs had been
performed before the final versions, which use a finer edge costs
resolution, were available. We did not repeat the experiments
since we expect hardly any change in our measurement results.

The shortcut hops limit (introduced in [3]) is set
to 10. The settings of the other parameters (some of
them have been introduced in [16, 17]) can be found in
Tab. 6. Note that when using the travel time metric
(time), for all levels of the hierarchy, we use a constant
contraction rate c and a constant neighbourhood size
H—a different one for the economical (eco) and the
generous (gen) variant. For the distance metric (dist),
we use linearly increasing sequences for c and H.

metric time dist
variant eco gen eco
levels of layers 1–2(–3) 5–3 4–2–1 6–4
neighbourhood size H 60 110 90, 180, . . .
contraction rate c 1.5 1.5 1.5, 1.6, . . .

Table 6: Parameters.

Table 4 gives the preprocessing times for both road
networks and both the travel time and the distance met-
ric; in case of the travel time metric, we distinguish be-
tween the economical and the generous variant. In addi-
tion, some key facts on the results of the preprocessing,
e.g., the sizes of the transit node sets, are presented. It
is interesting to observe that for the travel time metric
in layer 2 the actual distance table size is only about
0.1% of the size a naive |T2|× |T2| table would have. As
expected, the distance metric yields more access nodes
than the travel time metric (a factor 2–3) since not only
junctions on very fast roads (which are rare) qualify
as access point. The fact that we have to increase the
neighbourhood size from level to level in order to achieve
an effective shrinking of the highway networks leads to
comparatively high preprocessing times for the distance
metric.

Table 7 summarises the average case performance
of transit node routing. For the travel time metric,
the generous variant achieves average query times more
than two orders of magnitude lower than highway

layer 1 [%] layer 2 [%] layer 3 [%]
metric variant correct stopped correct stopped correct stopped query time

USA
time

eco 99.86 98.87 99.9936 99.7220 – – 11.5 µs
gen 99.89 99.20 99.9986 99.9862 99.99986 99.99984 4.9 µs

dist eco 98.43 91.90 99.9511 97.7648 – – 87.5 µs

EUR
time

eco 99.46 97.13 99.9908 99.4157 – – 13.4 µs
gen 99.74 98.65 99.9985 99.9810 99.99981 99.99972 5.6 µs

dist eco 95.32 81.68 99.8239 95.7236 – – 107.4 µs

Table 7: Performance of transit node routing with respect to 10 000 000 randomly chosen (s, t)-pairs. Each query
is performed in a top-down fashion. For each layer i, we report the percentage of the queries that is answered
correctly in some layer ≤ i and the percentage of the queries that is stopped after layer i (i.e., ¬Li(s, t)).

hierarchies alone [17]. At the cost of a factor 2.4 in
query time, the economical variant saves around a factor
of two in space and a factor of 3.5 in preprocessing time.

Finding a good locality filter is one of the biggest
challenges of a highway hierarchy based implementation
of transit node routing. The values in Tab. 7 indicate
that our filter is suboptimal: for instance, only 0.0064%
of the queries performed by the economical variant in
the US network with the travel time metric would re-
quire a local search to answer them correctly. However,
the locality filter L2 forces us to perform local searches
in 0.278% of all cases. The high-quality layer-2 filter
employed by the generous variant is considerably more
effective, still the percentage of false positives is about
90%.

For the distance metric, the situation is worse. Only
92% and 82% of the queries are stopped after the top
layer has been searched (for the US and the European
network, respectively). This is due to the fact that we
had to choose the cores of levels 6 and 4 as layers 1
and 2 since the shrinking of the highway networks is
less effective so that lower levels would be too big. It
is important to note that we concentrated on the travel
time metric—since we consider the travel time metric
more important for practical applications—, and we
spent comparatively little time to tune our approach
for the distance metric. For example, a variant using a
third layer (namely levels 6, 4, and 2 as layers 1, 2, and
3), which is not yet supported by our implementation,
seems to be promising. Nevertheless, the current version
shows feasibility and still achieves an improvement of
a factor of 71 and 56 (for the US and the European
network, respectively) over highway hierarchies alone [3,
Tab. 5, with distance table optimisation].

The remainder of this section refers to the travel
time metric. Since the overwhelming majority of all
cases are handled in the top layer (about 99% in case of
the US network), the average case performance says lit-
tle about the performance for more local queries which
might be very important in applications. Therefore we

use the method developed in [16] to get more detailed in-
formation about the query time distributions for queries
ranging from very local to global. Figure 4 gives for each
variant (economical/generous) and for each value r on
the x-axis a distribution for 1 000 queries with random
starting point s and the target node t with Dijkstra
rank rks(t) = r. The distributions are represented as
box-and-whisker plots [15]: each box spreads from the
lower to the upper quartile and contains the median, the
whiskers extend to the minimum and maximum value
omitting outliers, which are plotted individually.

For the generous approach, we can easily recognise
the three layers of transit node routing with small tran-
sition zones in between: For ranks 218–224 we usually
have ¬L(s, t) and thus only require cheap distance table
accesses in layer 1. For ranks 212–216, we need addi-
tional lookups in the table of layer 2 so that the queries
get somewhat more expensive. In this range, outliers
can be considerably more costly, indicating that occa-
sional local searches are needed. For small ranks we
usually need local searches and additional lookups in the
table of layer 3. Still, the combination of a local search
in a very small area and table lookups in all three layers
usually results in query times of only about 20µs.

In the economical approach, we observe a high
variance in query times for ranks 215–216. In this range,
all types of queries occur and the difference between the
layer-1 queries and the local queries is rather big since
the economical variant does not make use of a third
layer. For smaller ranks, we see a picture very similar
to basic highway hierarchies with query time growing
logarithmically with Dijkstra rank.

Table 8 deals with the traversal of a complete de-
scription of the shortest path based on the implemen-
tation described in Section 5.5. We give the additional
preprocessing time and the additional disk space for the
hidden paths and the unpacking data structures. Fur-
thermore, we report the additional time that is needed
to determine a complete description of the shortest path

Dijkstra Rank

Q
ue

ry
 T

im
e

[µ
s]

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

5
10

20
40

10
0

30
0

10
00

5
10

20
40

10
0

30
0

10
00

economical
generous

Figure 4: Query times for the USA with the travel time metric as a function of Dijkstra rank.

and to traverse5 it summing up the weights of all edges
as a sanity check—assuming that the distance query has
already been performed. That means that the total av-
erage time to determine a shortest path is the time given
in Tab. 8 plus the query time given in Tab. 7.

preproc. space query # hops
[min] [MB] [µs] (avg.)

USA 4:04 193 258 4 537
EUR 7:43 188 155 1 373

Table 8: Additional preprocessing time, additional disk
space and query time that is needed to determine a
complete description of the shortest path and to traverse
it summing up the weights of all edges—assuming that
the query to determine its lengths has already been
performed. Moreover, the average number of hops—i.e.,
the average path length in terms of number of nodes—is
given. These figures refer to experiments on the graphs
with the travel time metric using the generous variant.

6 Conclusions and Future Work

We have demonstrated that query times for quickest
paths in road networks can be reduced by another
two orders of magnitude compared to the best previ-
ous techniques—highway hierarchies and reach based
routing. Building on highway hierarchies, this can be
achieved using a moderate amount of additional storage

5Note that we do not traverse the path in the original graph,

but we directly scan the assembled description of the path.

and precomputation but with an extremely low query
time. The geometric grid approach on the other hand
allows for very low space consumption at the cost of
slightly higher preprocessing and query times. Paradox-
ically, the biggest problem for the application of transit
node routing may be that it is far too fast for classical
route planning. Already the previous best techniques
had query time comparable to the time needed for just
traversing the quickest path, let alone communicating
or drawing it. Still, in applications like traffic simula-
tion or optimisation problems in logistics, we may need
a huge number of shortest path distances and only few
actual shortest paths. We also consider the proof that
few access nodes suffice for all long distance quickest
paths to be an interesting insight into the structure of
road networks.

Although conceptually simple, an efficient imple-
mentation of transit node routing has so many ingredi-
ents that there are many further optimisations opportu-
nities and a large spectrum of trade-offs between query
time, preprocessing time, and space usage. For reduc-
ing the average query time, we could try to precompute
information analogous to edge flags or geometric con-
tainers [12, 13, 23] that tells us which access nodes lead
to which regions of the graph.

There are many interesting ways to choose transit
nodes. For example nodes with high node reach [9, 6]
could be a good starting point. Here, we can directly
influence |T |, and the resulting reach bound might help
defining a simple locality filter. However, it seems that

geometric reach or travel time reach do not reflect the
inhomogeneous density of real world road networks.
Hence, it would be interesting if we could efficiently
approximate reach based on the Dijkstra rank.

Another interesting approach might be to start with
some locality filter that guarantees uniformly small local
searches and to view it as an optimisation problem to
choose a small set of transit nodes that cover all the
local search spaces.

Parallel processing can easily be used to accelerate
preprocessing, or to execute many queries in parallel.
With very fine grained multi-core parallelism it might
even be possible to accelerate an individual query.
Forward local search, backward local search, and each
table lookup are largely independent of each other.

Acknowledgements. We would like to thank Timo
Bingmann for work on visualisation tools and an anony-
mous referee for numerous constructive comments and
suggestions.

References

[1] 9th DIMACS Implementation Challenge. Shortest
Paths. http://www.dis.uniroma1.it/∼challenge9/,
2006.

[2] H. Bast, S. Funke, and D. Matijevic. TRANSIT—
ultrafast shortest-path queries with linear-time prepro-
cessing. In 9th DIMACS Implementation Challenge [1],
2006.

[3] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Highway hierarchies star. In 9th DIMACS Implemen-
tation Challenge [1], 2006.

[4] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959.

[5] J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. In
42nd IEEE Symposium on Foundations of Computer
Science, pages 232–241, 2001.

[6] A. Goldberg, H. Kaplan, and R. Werneck. Reach
for A∗: Efficient point-to-point shortest path algo-
rithms. In Workshop on Algorithm Engineering & Ex-
periments, pages 129–143, Miami, 2006.

[7] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A∗ meets graph theory. In 16th ACM-
SIAM Symposium on Discrete Algorithms, pages 156–
165, 2005.

[8] A. V. Goldberg and R. F. Werneck. An efficient ex-
ternal memory shortest path algorithm. In Workshop
on Algorithm Engineering and Experimentation, pages
26–40, 2005.

[9] R. Gutman. Reach-based routing: A new approach to
shortest path algorithms optimized for road networks.
In 6th Workshop on Algorithm Engineering and Exper-
iments, pages 100–111, 2004.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal
basis for the heuristic determination of minimum cost
paths. IEEE Transactions on System Science and
Cybernetics, 4(2):100–107, 1968.

[11] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and
D. Wagner. Computing many-to-many shortest paths
using highway hierarchies. In Workshop on Algorithm
Engineering and Experiments, 2007.

[12] U. Lauther. An extremely fast, exact algorithm for
finding shortest paths in static networks with geo-
graphical background. In Geoinformation und Mo-
bilität – von der Forschung zur praktischen Anwen-
dung, volume 22, pages 219–230. IfGI prints, Institut
für Geoinformatik, Münster, 2004.

[13] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner,
and T. Willhalm. Partitioning graphs to speed up
Dijkstra’s algorithm. In 4th International Workshop
on Efficient and Experimental Algorithms, pages 189–
202, 2005.

[14] K. Müller. Design and implementation of an efficient
hierarchical speed-up technique for computation of ex-
act shortest paths in graphs. Master’s thesis, Uni-
verstät Karlsruhe, 2006. supervised by D. Delling, M.
Holzer, F. Schulz, and D. Wagner.

[15] R Development Core Team. R: A Language and
Environment for Statistical Computing. http://www.

r-project.org, 2004.
[16] P. Sanders and D. Schultes. Highway hierarchies

hasten exact shortest path queries. In 13th European
Symposium on Algorithms, volume 3669 of LNCS,
pages 568–579. Springer, 2005.

[17] P. Sanders and D. Schultes. Engineering highway hier-
archies. In 14th European Symposium on Algorithms,
volume 4168 of LNCS, pages 804–816. Springer, 2006.

[18] P. Sanders and D. Schultes. Robust, almost constant
time shortest-path queries in road networks. In 9th
DIMACS Implementation Challenge [1], 2006.

[19] F. Schulz, D. Wagner, and C. D. Zaroliagis. Using
multi-level graphs for timetable information. In 4th
Workshop on Algorithm Engineering and Experiments,
volume 2409 of LNCS, pages 43–59. Springer, 2002.

[20] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. In 42nd
IEEE Symposium on Foundations of Computer Sci-
ence, pages 242–251, 2001.

[21] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM, 51(1):1–24, Jan 2005.

[22] U.S. Census Bureau, Washington, DC. UA Census
2000 TIGER/Line Files. http://www.census.gov/

geo/www/tiger/tigerua/ua tgr2k.html, 2002.
[23] D. Wagner and T. Willhalm. Geometric speed-up

techniques for finding shortest paths in large sparse
graphs. In 11th European Symposium on Algorithms,
volume 2832 of LNCS, pages 776–787. Springer, 2003.

[24] D. Wagner and T. Willhalm. Drawing graphs to speed
up shortest-path computations. In 7th Workshop on
Algorithm Engineering and Experiments, 2005.

