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Abstract

In the minimum-cost k-hop spanning tree (k-hop MST) problem, we are given a set S of n points in a metric space,
a positive small integer k£ and a root point r € S. We are interested in computing a rooted spanning tree of minimum
cost such that the longest root-leaf path in the tree has at most k edges. We present a polynomial-time approximation
scheme for the plane. Our algorithms is based on Arora’s et al. [4] techniques for the Euclidean k-median problem.
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1. Introduction

We are given set S of n points in d-dimensional
Euclidean space with the distance function d(-), a
fixed positive integer k and a root node r € S. The
k-hop spanning tree of S is a tree T rooted at r
and spanning all points of S, such that number of
edges on any root-leaf path is not greater than k.
The cost of T' is the sum of its edge weights. In this
paper we consider the k-hop spanning tree problem
of minimum cost (k-hop MST).

Based on the methods of Arora et al. [4] for
the Euclidean k-median problem, we present a
polynomial-time approximation scheme for the k-
hop MST problem in the plane, when k is a constant.

As a byproduct of our algorithm, we also provide
a polynomial-time approximation scheme for the ge-
ometric versions of the following more general prob-
lems:

The multi-level concentrator location problem.
Here, we are given a set S of nodes, a set C' C S of
clients and a k sets of facilities FF = F;U...UF, C S
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with the opening facility costs f; for each facility
j € F. The task is to open subsets of facilities
FE! C F;, 1 < i < k and assign each client to the
closest level one facility in F], and assign each of
the level (¢ — 1) facilities to the closest level 4 facil-
ities F}, such that the opening facilities costs plus
the sum of the distances is minimized.

The bounded depth minimum Steiner tree problem.
Given a set S of nodes, a set D of Steiner points and a
root noder € S, the task is to construct a minimum
cost tree of depth k, rooted at r that spans the set
S and possibly using some Steiner points from the
set D.

It is not difficult to see that the k-hop MST is
just a special case of the above two problems, and
any solutions for them would immediately imply a
solution for the k-hop MST problem.

Motivation

Minimum-cost spanning trees are pervasive
and their efficient construction appears important
in many practical applications. For example, in
multicast-routing problem in the area of computer
networks (see, e.g. [7,6]) a number of clients and a
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server are connected by a common communication
network. The server wishes to transmit identical in-
formation to all client nodes. Most solutions to the
multicast problem involve computing a tree rooted
at the server and spanning the client nodes. The
server then transmits the data to its immediate
children in the tree and intermediate nodes forward
incoming data to their respective descendants in the
tree. Tree-routing schemes allow for fast data deliv-
ery while keeping the total network load low. Kom-
pella et al. [13] consider the problem of computing
multicast-trees that minimize the overall network
cost as well as the maximum transmission latency
on any path in the tree connecting the server to a
client node. It is not hard to see that a multi-hop
transmission with too many hops will increase the
latency of the communication. Moreover, transmis-
sion with too many hops will inevitably increase
the probability of a link failure. Thus, assuming
that all links in the network have roughly the same
transmission delay (which is a reasonable assump-
tion in local area networks), limiting the number
of hops in the transmission to some small integer k
helps in achieving fast and reliable communication
protocols.

Related Work

In the classic metric facility location problem, we
are given a set of clients C' and a set of facilities F’
with metric edge costs c;;, for all i € F,j € C' and
opening cost f; for all facilities ¢ € F. The goal is
to open subset of facilities F' C F such that the
sum of opening facility costs, plus the sum of the
costs of assigning each client to its closest facility
in F' is minimized. The best known approximation
algorithm is by Mahdian et al. [14] that achieves
1.52 approximation ratio. Note that the 2-hop MST
is a special case of the facility location problem, e.g.
replace each facility cost f; by the distance from i to
the root r. Thus, all the approximation results for
facility location problem apply immediately to the
2-hop MST. Guha and Khuller [9] proved that the
existence of a polynomial time 1.463-approximation
algorithm for the metric facility location problem
would imply that P = NP. This hardness result also
applies for the 2-hop MST problem.

For the Euclidean facility location problem a ran-
domized PTAS based on Arora’s [3] technique for the
Euclidean TSP is presented in [4], for the points in
the plane. Unfortunately, for d-dimensional geomet-

ric instances and d > 2, the algorithms runs only in
quasi-polynomial time. However, Kolliopoulos and
Rao [11] were able to construct a nearly linear time
randomized PTAS for facility location problem for
any d-dimensional Euclidean space. The small errors
in this paper were fixed by the authors in [12].

Zhang [15] gives a 1.77-approximation algorithm
for the metric two-level concentrator location prob-
lem which is a generalization of the 3-hop MST.

The first constant factor approximation for the
bounded depth steiner tree problem and likewise
for the k-hop MST in general metric spaces is pre-
sented by Kantor and Peleg in [10]. The approxima-
tion ratio of their algorithm is rather high, though.
More precisely, they construct a polynomial time
approximation algorithm with approximation ratio
1.52 - 92 for complete graphs whose weight func-
tion is a metric.

Althaus at el. [2] present an approximation algo-
rithm that computes a k-hop spanning tree in gen-
eral metric spaces of total expected cost O(logn)
times the cost of the optimal k-hop MST. They ap-
proximate the metric space into a tree metric using
the result by Fakcharoenphol et al. [8] who showed
that any metric space can be probabilistically ap-
proximated by a family of tree metrics such that the
expected stretch in the cost is at most O(logn). Al-
thaus at el. develop an exact algorithm for the k-hop
MST in the special case when the cost function is
induced by a tree.

Clementi at el. [5] present an algorithm that com-
putes with high probability a constant approxima-
tion for constant k for random instances on the
plane.

Our Contribution

In this work we present the first PTAS for the
k-hop MST problem in the plane. We extend the
technique of Arora et al. [4] for the Euclidean k-
median problem and show that the (1 + €) solution
for the k-hop MST problem can be computed in
polynomial time.

In Section 2 we review the quadtree dissection
from [4] and show that there exists a (1 +€) solution
to the k-hop MST problem with respect to the given
dissection. Furthermore, in Section 3 we show how
to compute such an approximate solution with a
dynamic programming algorithm in time (%)O(k/ 9,

We also extend our algorithm to the multi-level
concentrator location problem and the bounded depth



minimum Steiner tree problem in Section 4.

2. Preliminaries

In this part we describe the quadtree dissection
from [4] and show the existence of approximately
optimal solutions with a simple structure based on
a given dissection. Let S denote a set of n points
in the plane. The bounding box is the smallest axis-
aligned square that contains all points of S. We as-
sume without loss of generality that the bounding
box of the points has side-length L = n/e and all
points of S lie on gridpoints of the unit grid defined
on the bounding box. Note that the cost increase of
the optimum is negligible since moving each point
to the closest grid point will increase the minimum
cost k-hop MST by at most € - OPT.

A dissection of a box is a recursive partition of
the box into lower level boxes. More precisely, we
view the dissection as a hierarchical decomposition
of the plane into boxes. A box in a dissection is
any box that can be obtained by a recursive split-
ting process that starts with the bounding box and
generally splits an existing dissection box by 2 axis-
orthogonal lines passing through its center into 4
identical subboxes. Such a decomposition naturally
defines a 4-ary tree. Each line is assigned a level.
There are 2¢ level i lines that partition level ¢ boxes
into level ¢ + 1 boxes. The size of a box is its side
length. A nice property of the dissection boxes is
that any two boxes either have disjoint interiors or
one is contained inside the other. Note that there
are O(L?) nodes in the tree and its depth is log L =
O(log(n/e)).

We randomize the levels in the dissection of the
bounding box the same way as in [3,4]. Namely, ran-
domly pick two integers 0 < a,b < L. The (a,b)-
shift of the dissection is defined by shifting z and y
coordinates of all lines by a and b respectively, and
then reducing modulo L.

Note that the solution to the k~-hop MST problem
consists of collections of line segments. We will only
allow the segments to bend and pass through a set
of prespecified points called portals. More precisely,
place 2¥m equally spaced portals on each level i line.
Moreover, at the corner of each dissection box place
a portal. Note that each level i 4+ 1 box in the dissec-
tion has m portals on its two level i + 1 edges and
strictly less than m portals on its two level 7 edges.
In general, any box in the dissection has at most 4m
portals.

A solution to the k-hop MST problem is called
portal-respecting if it crosses a dissection box only
at portals.

Suppose we are given the optimal set of line seg-
ments that describe an optimal k-hop MST solution.
To make the solution portal-respecting, we need to
deflect each edge that crosses a side of a box in the
dissection to the nearest portal. Note that if the size
of the box is I, we need to deflect each edge by at
most {/m to make it pass through a portal.

Since the shifts @ and b are chosen randomly,
we have that the probability that each verti-
cal/horizontal line [ in the grid is from the level i:
Pr[l is at level i] = 2¢/L. Using this fact, Arora at
el. [4] show the following Structure theorem:
Lemma 1 For any collection of line segments, ran-
dom shifts a and b and m > 1, the bending process
will, with probability at least 1/2, deflect the segments
by at most O(log L/m) times the sum of the length
of the line segments.

Since the above Lemma 1 holds for any set of line

segments, it also implies the following;:
Corollary 2 Letr € S denote the root node and let
shifts a and b be chosen uniformly at random. Let
m = 0 (M) for any € > 0. Then, with prob-
ability of at least 1/2 the cost of the optimal portal-
respecting solution for the k-hop MST problem is at
most (1+¢€) - OPT, where OPT denotes the optimal
cost of the k-hop MST.

3. The Algorithm

In this section we will describe the algorithm to
compute an optimal portal-respecting k-hop MST
which is, with probability of at least 1/2, a (1 + €)-
approximation to the optimal k-hop MST.

Consider any optimal k-hop MST. We assign each
node a level depending on the number of hops to
the root r, where r is assigned level 0, its immediate
neighbors are assigned 1 and so on. We also assign
levels to the edges. An edge from a level i — 1 node to
a level 7 node is assigned the level i. Hence, we have
nodes from level 0 to k£ and edges from level 1 to k.

Consider now a box in the dissection as described
in the previous section. Remember that edges are
only allowed to cross the boundary of the box at
portals. The optimal solution inside the box is fully
determined if we know for each portal and each level
i the distance from the portal to the nearest node
of level i outside the box. Conversely, the optimal
solution outside this box is fully determined if we



know for each portal and each level 7 the distance
from the portal to the nearest node of level ¢ inside
this box.

Hence, if we fix all distances at the portals of a
box to all nearest nodes of levels 0 to £ — 1, only
the solution inside this box with minimal cost can
be part of an optimal solution. This enables us to
design the following dynamic program.

We store in the table

Table(B, insideg, . . ., insideg_1 , outsideo, . . . , outside,_1)

the cheapest solution for box B that respects the
given inside and outside function, where inside; de-
notes the distance function on the portals to the clos-
est node of level ¢ inside box B. outside; is defined
analogously. In other words inside; describes what
box B can provide to the outside and outside; de-
scribes what can be provided to box B from outside.
For the distance function inside; we can still allow
an additional additive error of I/m as the distance
between two neighboring portals is already I/m. Re-
member, that the size of box B is | and we have
placed m portals on its boundary. Thus, we have
inside;(p) € {0,1/m,2l/m,...,2l,00} for a portal p
and two neighboring portals differ by at most I/m.
We assign oo as a value for inside;(p), if no node of
level i is inside the corresponding box. Hence, we
have at most 2m - 3*™ possible assignments per box
for each inside; function.

A slightly different reasoning holds for the
outside; functions. Here, the maximal distance
from a portal to an outside node can be at most
2L. Again, we can allow an additional addi-
tive error of I/m. Hence, we have outside;(p) €
{0,1/m,2l/m,...,2L,00}. This sums up to at most
2Lm/1 different values and at most 2Lm/l - 3™
possible assignments per box for each outside; func-
tion. This could be reduced by making the gap be-
tween two consecutive values larger as the distance
becomes larger, since for larger distances we any-
way have a larger additional error due to a larger
interportal distance, but we omit this here. In total
we have T' = 4Lm? - 33™F entries in table Table per
box B.

Computing the table

We compute the table Table bottom up. There
are two different base cases:
1. The root r is inside the box B. We set
Table(B, insideg, . ..,inside_1, outsideg, . ..,outsidex_1)

to cost 0 if the following two conditions both hold
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Figure 1. All nodes actually lie on top of each other and
the edges pass through one portal.

o e
°

Figure 2. All nodes actually lie on top of each other and
the dotted lines have length 0.

(i) insideg(p) is the distance from each portal p to
the root r, and
(ii) inside;(p) for i > 1 is oo for all p.
Should at least one of the above conditions not hold
we set its corresponding Table entry to co.

2. The box B contains at least one node but no root.

Note, that all nodes lie in the center of box B and
thus on top of each other due to the initial perturba-
tion. Let one of these nodes be node ¢. If inside;(p) is
the distance between the nodes in the box and each
portal p for all p and some i > 1 and insidey (p) = oo
for all i’ # 4 and all portals p we then connect node ¢
to the portal p’ such that dist(g, p’) + outside;_1 (p)
is minimal among all portals of this box. We store
this cost in the corresponding Table entry. If how-
ever, all inside;(p) is oo for all 7 and all p, i.e. this
box does not provide any reachable node to the out-
side, we have to distinguish two cases. In the first
case it is cheaper to connect all nodes to alevel k—1
node as depicted in Figure 1. In the second case, it
is cheaper to connect one node ¢ to a node of level
at most k — 2 and then connecting all other nodes
inside the box to this node ¢ as in Figure 2. Which
case we have can be determined by looking at the
corresponding outside; functions. We store the cost
in the corresponding Table entry. In all other cases,
i.e. the inside; and outside; functions do not fully
satisfy one of the above cases, we set the correspond-



ing Table entry to oo, since such a configuration can
never be satisfied.

If we are not in the base case, the entry of
Table(B, insideg, . . ., insideg_1 , outsideo, . . . , outsidey_1)
can be computed from the corresponding table en-

tries

Table(B;, inside(()j), e ,insidegcj_)1 outside(()j), e ,outside,(cj_)l),

for 1 < j <4, where By, Bs, Bs and By are the four
sub-boxes of B and inside!”) and outside!’ are the
corresponding inside and outside functions of level
i of sub-box B;. Once all inside; and outside; func-
tions are fixed we go through all possible insidezw
and outsidegj ) functions that comply with distance
functions of box B. As we only have approximate
distances stored we again introduce an additive er-
ror of at most [/m per line segment. However, this
error is at most the error that occurs while making
an edge portal-respecting for this box and hence,
can be neglected here. We sum up the corresponding
costs for By, By, B3 and B4 and store the minimal

in the corresponding

Table(B, insideg, . . ., insideg_1 , outsideo, . . . , outside_1)
entry. The time spend per box then amounts to
O(T?3).

As there are L2 boxes in the dissection the total
running time amounts to O(L? - T%) = (%)O(k/e).
We conclude with the main theorem
Theorem 3 The k-hop minimum spanning tree
problem in the Euclidean plane admits a polynomial
time approxzimation scheme for any fized k.

4. Generalizations
The bounded depth minimum Steiner tree problem

Our approach easily generalizes to the shallow
Steiner tree problem. Here, one is also allowed to use
Steiner points in the bounded-hop MST. We just
have to change the base case in our algorithm. If we
only have Steiner points inside a box we have two
options. Either use the Steiner point or do not use
it. This can be easily decided based on the distance
functions on the portals.

The multi-level concentrator location problem

If we assign levels to the Steiner points and also
opening costs for using a Steiner point we are left
with the multi-level concentrator location problem.
This problem can also be solved using our approach.

We just have to add the opening cost to the corre-
sponding Table entry. For the initial perturbation it
suffices to have a lower bound on the optimal cost
which is polynomial in the number of nodes n. The
corresponding k-level facility location problem obvi-
ously is an n-approximation. Aardal et al. [1] showed
how to compute a 3-approximation for this problem.
Hence, the initial bounding box has size L = 3n?/e
and the running time adapts accordingly.

5. Conclusions and Open Problems

We provided the first polynomial time approxima-
tion scheme for the k-hop minimum spanning tree
and related problems in the plane. The algorithm
follows along the lines of Aroraet al. [4]. Thus, the al-
gorithm can be generalized to higher dimensions but
with only quasi-polynomial running time. It would
be interesting to find a PTAS also for higher dimen-
sions. As mentioned before, Kolliopoulos and Rao
in [12] construct a randomized PTAS for k-median
problem in the d-dimensional Euclidean space. How-
ever, their Structure theorem and algorithm is based
on an adaptive dissection that guesses at every level
the solution to the optimal facility assignment. Un-
fortunately, it is not obvious how to adapt their dis-
section to the problems like k-hop MST.
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