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ABSTRACT The event oriented analysis of technical objects is in general accomplished by 
representing them as complete or incomplete systems and subsystems of events. It is argued in the 
article how the compound engineering systems of events can be partitioned by inclusion-exclusion 
expansion into individual and common cause modes. The event analysis is based on the random 
variable model and employs the results of operational modes and effect analysis, of the reliability 
analysis and of the uncertainty analysis. The system redundancy and robustness are considered as 
uncertainties, due to the fact that really a number of events are possible, expressed by the entropy 
concept in probability theory, conditioned by operational and failure modes, respectively. Relative and 
average uncertainty measures are introduced to facilitate uncertainty interpretations in engineering 
problems. It is investigated how the sensitivity analysis of reliability measures can be applied to the 
assessments of system uncertainties. Numerical examples presented in the article illustrate the 
application of event oriented system analysis to series structural systems with common cause failures. 
Additionally, system performance presentation and optimization with constraints, as well as potential 
improvements in system analysis, design and maintenance are investigated. 
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1. Introduction 
 
The goal of an engineering modes analysis applied to a lifetime service of complex objects is to 
determine all, or at least the most important observable operational and failure modes, as well as their 
relations [e.g. Barlow and Proschan 1965, Kapur and Lamberson 1966, Gnedenko, Belyayev and 
Solovyev 1969, Rao 1992]. Semiquantitative and quantitative numerical and simulation methods 
founded on random variable models can be applied to predict the probabilities of a safe operation or 
the occurrence of accidents [e.g. Madsen, Krenk and Lind 1986, Ditlevsen and Madsen 1996]. By 
considering the hierarchical structure of failure modes collected into subsystems of events, the 
difficulty in assessing the higher order dependencies among events may be substantially reduced [Cui 
and Blockley 1991]. The service modes and effects analysis, including the relations among common 
cause events, is an essential step for understanding the behavior of complex engineering systems. 
The entropy concept in probability theory expresses the uncertainties of systems of events [e.g. 
Khinchin 1957, Kullback 1959]. Entropy of incomplete systems of events, as well as the entropy of 
mixtures of distributions, are important theoretical extensions [e.g. Renyi 1970]. Moreover, the 
maximal entropy principle [Jaynes 1982] is proposed in engineering to derive the form of minimally 
prejudiced probability distributions of random variables [e.g. Baker 1990]. There are probability 
distributions leading to the global and unconditional maximum of entropy of unconstrained systems 
and subsystems of events [e.g. Tribus 1969], or the resulting probabilities are as flat or as platykurtic 
as the constraints allow. 
The uncertainty expressed by conditional entropy is useful in understanding problems partitioned into 
subsystems of events [Žiha 1998]. The Event Oriented System Analysis (EOSA) combines the system 
reliability and the uncertainty of complete or incomplete engineering systems and subsystems of 
operational and failure modes [Žiha 2000-b]. In some engineering problems it may be more 
appropriate to express the uncertainty either relative to the maximal attainable value [Žiha 1999] or by 
the average uncertainty of a system [Žiha 2000-a]. 



The article considers series systems due to their importance in engineering. Series systems do not 
possess redundant capacities, but their robustness is always desired, moreover, it is often a requested 
property. Colloquially, robustness concerns strength and sturdiness. However, there is not a generally 
agreed definition of structural robustness. The basic comprehension of robustness implies that the 
product’s functional characteristics are not sensitive to noise factors [Taguchi, Elsayed and Hsiang 
1995]. In the non-probabilistic structural reliability approach, the robustness is viewed as a structural 
ability to tolerate a large amount of uncertainty before occurrence of a failure [Ben-Haim 1995]. In the 
theory of structural vulnerability, robustness is the opposite to vulnerability, viewed as a physical 
ability of the structural form and connectivity, denoted as “well-formedness”, in withstanding all 
failure events, independent of loading action [Lu, Yu, Woodman and Blockley 1999]. The term 
robustness in the article denotes an excessive capability to respond to all demands by a number of 
adequate failure modes with the maximally attainable uniform probability distribution in order to 
eliminate the disproportionate consequences from the modes with adverse failure probabilities [Žiha 
2000-c]. The aim is to demonstrate how the system robustness, defined by the conditional entropy of 
failure modes, can be practically applied in the analysis and design of series structural systems as an 
additional decisive attribute, independent of the system reliability, weight or cost. 
Furthermore, the article investigates how the dispersion of semiprobabilistic and deterministic safety 
measures can be used in the assessment of system uncertainties with respect to failure modes. 
The article also elaborates the sensitivities of uncertainty measures, due to their importance in the 
structural system analysis, particularly in design procedures or in problems involving optimization. 
Finally, the benefits of the application of EOSA to structural problems are investigated in the examples 
of system performance analysis and optimization of a well-known one-store, one-bay plane frame 
structure. 
 

2. The mode uncertainty assessment by random variables 
 
Finite number nv of random variables represented by the random vector ),...,,( 21 vnXXX=X  defines 
m individual modes. The limit state functions appropriate to all the modes, k=1,2,...,m, are defined as 

. Since the design variables are considered random, individual operational modes are 
random events too, denoted as . 
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The failure probability of an individual mode is given as a complement to reliability as shown: 
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These two complementary events are sometimes jointly denoted as simple alternatives. 
The joint probability distribution function f(X) of the random vector X in (1) comprises the engineering 
knowledge about statistical uncertainties. The integration domain D is defined by limit state functions 
and consists of the engineering comprehension and experience about the physical properties of the 
considered object. The notional probabilities of individual modes can be practically assessed by 
Advanced First Order Reliability Method (AFORM), Second Order Reliability Methods (SORM) and 
by Monte-Carlo Simulation (MCS) [e.g. Madsen, Krenk and Lind 1986, Ditlevsen and Madsen 1996]. 
 
3. The system uncertainty assessment by random events 
 
Boolean logic based on elementary set algebra can be used to relate the individual modes. 
An ideal parallel system fails if all of its modes fail, therefore:  
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An ideal series system fails if any of its modes fails, therefore: 
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It is commonly held that AFORM and SORM are sufficiently accurate for system reliability 
assessments. Additionally, MCS can be used for checking the results of non-typical problems. 
 

3.1. Service modes and effects analysis 
 
Methods, such as enumeration, event-tree analysis, fault-tree analysis and failure path approach, make 
use of the available component operational data to represent the more complex systems or subsystems 
in terms of possible operational and failure events and predict the probabilities of operation or failure 
[e.g. Barlow and Proschan 1965, Kapur and Lamberson 1966, Gnedenko, Belyayev and Solovyev 
1969, Thoft-Christiansen and Murotsu 1986, Rao 1992]. 
The series system functions if at least one of the minimal series path structures functions, and the 
system can be seen as a parallel arrangement of the minimal series path structures and represented as: 
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The index set { }gjj ⋅⋅⋅1  in (5) represents the minimal path (tie) set and mp indicates that the interaction 
is taken by minimal path (tie) sets. 
Since the system fails if just one of the minimal parallel cut structures fails, the system can be 
represented as a series arrangement of the minimal parallel cut structures, as shown: 
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The index set { }gjj ⋅⋅⋅1  in (6) represents the minimal cut set and mc indicates that the interaction is 
taken over the minimal cut sets. 
 
4. Event oriented analysis of series systems 
 
The operation of series systems can be presented by a subsystem O   with only one mode: 
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The failure of series systems can be presented by a subsystem F   of all the failure modes: 
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The system of events S  with total number of events equal to N=Nf+1 , can also be presented as a 
compound of the subsystem O  of operational modes and the subsystem F  of failure modes, as shown: 
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The reliability of the system S  implies all the outcomes when the system is operating and can be 
calculated as the probability of the subsystem of operational modes p(O  ) as: 
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The failure probability of the system S  takes into account all the outcomes when the system fails and 
can be calculated as the probability of the subsystem of failure modes p(F  ) as: 
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A system S '  consists of subsystems of operational and of failure modes, as presented: 
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The probability associated with the system of events S , not necessarily equal to unity, is as follows: 
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4.1. Partitioning of series systems of events 
 
Different approximations are used in system reliability analysis to solve the problems for events 
neither fully exclusive nor fully inclusive. For fully exclusive events, see Venn diagram in Fig. 1.a., 
which are also denoted as fully independent or uncorrelated failure modes, the subsystem of failure 
modes is represented as shown: 
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For fully inclusive events, see Venn diagram on Fig 1.b., which are also denoted as fully dependent or 
correlated failure modes, complements of successive failure events in increasing order of failure 
probabilities can be used as the basic failure events, as presented next: 
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The Cornell’s lower and upper probability bounds on union of events are defined on the basis of the 
fully exclusive and fully inclusive partitioning of series systems, Fig. 1.a-b., as follows: 
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The joint failure probabilities between the two events Ei and Ej, with known safety indices βi and βj, 
are calculated by employing numerical integration of the bivariate normal probability density functions 
ϕ, over the range of mode correlation coefficient γij, defined as the directional cosine between two 
limit state tangent hyperplanes, as follows: 
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In addition to the correlation between two modes, a degree of dependence [Cui and Blockley 1990] is 
regarded as a more general concept representing a measure of their weighted overlap, as shown: 
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The improvement in reliability and uncertainty analysis by introducing joint probabilities of three or 
more events appears small in practice. The Ditlevsen’s probability bounds in a bimodal representation 
can be defined more closely of the bound in (10), as: 
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It is reasonable to apply the inclusion-exclusion expansion of union of failure events up to the second 
order. The failure probabilities can be represented in a two dimensional symmetric Nf by Nf probability 
matrix as follows: 
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The expansions for diagonal terms are obtained as complements to individual failures with respect to 
the joint probabilities with all other events, see Venn diagram on Fig. 1.c., as follows. 
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The off-diagonal terms of the lower triangle of the probability matrix are simply the intersections of 
appropriate events, Fig. 1.c., and can be calculated according to (11) as follows: 
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A failure set in such a bimodal partitioning can be written as follows: 
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In the above notation, p and q represent arbitrary combinations out of all  possibilities. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

fN

The sum of the elements of the subsystem of failure modes F  represents the lower probability value 
according to Ditlevsen’s bounds and it reads as follows: 
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More generally, for intersections of an arbitrary number of elementary random events m, the principle 
of inclusion-exclusion, known for more than a hundred years [e.g. Hall, 1967], can give  
disjoint failure modes as shown: 
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)(),...,1( icc ii     is the j th combination of all i out of m components 
)(),...,1( imll ii −  is a complementary set of indices qandpallforqcpl ii ),()( ≠ . 

Hence, a compound failure set can be disjointed into individual modes when just the considered mode 
can occur and into a number of intersections with all the other failure modes constituting the failure 
set, Fig. 1.c. Note that some intersections may be practically impossible. 
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4.2. Evaluation of system and subsystem uncertainties 
 
The entropy of complete or of incomplete systems of events S and S ’ expresses the uncertainties and 
in general can be determined as the limiting case of the Renyi’s entropy of order α, for α→1: 
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The article uses the notation Renyi's/Shannon’s entropy of order one, since for p(S )=1, the terms (18) 
and (19) are by definition equal to the Shannon’s entropy. 
The system S  under the condition that it is operational O , can be presented as follows: 
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The uncertainty of the subsystem of operational modes is considered as a complete conditional 
distribution with respect to the condition that the system S /O   is operational with probability p(O  ).. 
According to the definition of the entropy of operational modes, it follows: 
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It can be argued that the conditional entropy of a subsystem of operational modes (20) expresses the 
redundancy of a system of events viewed as the capacity of a system to continue operations by 
performing adverse operational modes in case of random component failures [Žiha 2000-c]. 
An alternative notation for redundancy is proposed: 
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Since the series systems have only one operational mode, the operational uncertainty vanishes: 
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The system S  under the condition that it is failed F  can be presented as follows: 
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The uncertainty of the subsystem of failure modes F  can be expressed as the Shannon’s entropy 
applied only to the systems S  under the condition that it is non-operational S /F.  The subsystem is 
considered as a complete conditional distribution with respect to the condition that the system in whole 
is non-operational with probability p(F ) and, according to the definition of the entropy of failure 
modes, it follows: 
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A robust behavior is intuited when the system can provide more adequate failure modes to adverse 
demands with more uniform failure probabilities, Fig. 2. When the system responds to all demands 
uniformly, there is a high uncertainty about which of the failure modes could occur. Hence, the system 
robustness is related only to the failure modes of the system. It can be argued that the conditional 
entropy (23) expresses the robustness of a system of events regarded as the system’s capability to 
respond uniformly to all possible random failures [Žiha 2000-c]. 
An alternative notation for robustness is proposed: 
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The conditional entropy H(S /S ’ ) of series system S  with respect to the system of subsystems S ’ 
provides a  relation between system failure probability and system robustness, as follows: 
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The failure set can also be partitioned by nf=m subsets of failures of different levels of joining, or of a 
different level of failure seriousness, like fatalities, collapse, serviceability failures or with some other 
common characteristics of interest, as presented next: 
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The relation of the robustness of the subsystems to the robustness of the system is expressed as: 
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The following relation between any pair of subsystems having some failure modes in common holds: 
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The conditional entropy of the system of subsystems having some modes in common is defined as: 

[ ] )(log)(log)()(log)()(log)(
)(

1)/( jijjjijjii
ji

jj ppppppp
p

H FFFFFFFFFF
FF

FF'S ∪∩∩
∪

∪ −⋅+⋅−⋅−=  (28) 

 

 7 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

fE1 ⋅⋅⋅fE 2
f

N f
E⋅⋅⋅

FFailure modes

f

f

N
P )(S

Maximum robustness 
(uniform distribution) 

)( fEp

Failure modes 
probability distribution

)(SfP

f
iE

Probability of failure 

 
Fig. 2. Distribution of the probabilities of failure modes 

 

4.3. Relative uncertainty measures 
 
The important feature of entropy is not in the scale of units in which it is measured, but rather it is the 
meaning of the function. The relative measure of uncertainty will be denoted with small letters hn,N(S ), 
instead of the capitals for entropy by definition HN(S ). The index n emphasizes the number of events 
in the considered system or subsystem. The index N is the number of events in a reference system or 
subsystem relative to which the uncertainty is to be expressed. Superscripts “1”, when used, emphasize 
that the entropy is related to Renyi's/Shannon’s entropy of order one. The relative measure of 
uncertainty can be expressed in dimensionless form with respect to any reference system as: 
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The term (29) can be viewed as the application of a logarithm of base B=N/p(S  ) instead of base B=2 
in the entropy calculation. 
The value of hn,N(S  ) represents the fraction of the maximal attainable entropy, equal to the entropy of 
the system of N equally probable events and it expresses how many times the entropy of the 
considered system is less than the maximal attainable entropy of the target system. The relative 
entropy of a subsystem of mi events with respect to an incomplete system of N events, is defined as: 
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By substitution of definition (29) and (30) into the relation (26), a useful expression is obtained: 
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=
nnNN

n

i
immi hpnhpNphmp

ii
                     (31) 

The relative redundancy and robustness can be expressed with respect to their maximal values, 
denoted with small letters, as follows: 
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log
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,
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O S
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) /()() /(
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,

S
F S

F S
FSSF S ====                                             (33) 

The following relation among reliability, failure probability, redundancy and robustness holds for 
complete and incomplete systems of events: 

[ ])())(/log()())(/log()()(log)()(log)( 1
,

1
, SSSSSSSSS ′⋅−⋅⋅=⋅⋅+⋅⋅ nnNNffo hpnhpNprobNPredNR   (34) 

 
4.4. Average uncertainty measures 
 
The Renyi’s/Shannon’s entropy of order one denoted H1

N(S ) can be written as follows: 

( )
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i i
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SSS                          (35) 

The average probability of occurrence GN(S ) in (35) [e.g. Aczel and Daroczy 1975] and the average 
number of events FN(S ) in (35) can be defined for either complete or incomplete systems of events as: 

∏
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(36) 
The average probability and the average number of events of a subsystem is related to the probability 
of the event under the condition that the subsystem itself occurs, and can be written as follows: 
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The relation of the average conditional probabilities of events of subsystems in (37) to the average 
probability of events of the system defined by (36), can be expressed for both the incomplete and 
complete systems of events, as the weighted geometric mean of terms, as follows: 
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The average probability of a complete system of events is maximal and amounts to unity, when one of 
the events is a “sure” event, i.e. has the probability of one, and all the other probabilities equal zero. 
The average probability is minimal and amounts to 1/N when all the probabilities are equal. 
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The average number of events of a complete system is maximal when all the events are of the same 
probability and it amounts exactly to N, i.e. the number of events of the basic system. The minimal 
average number of events is equal to 1, if there is only one “sure” event. 
The average probability represents such a probability, which, if considered as equal for all events, 
gives the same entropy for the average number of events, as it is the entropy of the basic system. The 
last statement can easily be proven both for complete and incomplete systems as follows: 

)(2log22)(log)()( 1)()()( 111

SSSS SSS
N

HHH
NNN HGGF NNN =⋅−=⋅− −−                                             (39) 

The redundancy and robustness can also be intuited as the average numbers of operational modes 
 and failure modes,  respectively. )/( OS

oNF )/( FS
fNF

 

4.5. Assessment of uncertainties due to unobservable events 
 
If 1)()()( <+= FOS ppp , there are some missing or forgotten or undefined or unaccounted for or 
simply unknown or unobservable events and the system S  is an incomplete one. A system built up of 
only bimodal joint events, as it is the case in AFORM and in SORM, is clearly not a complete system 
of events. The joint failure probabilities of three or more modes are neglected and the joint events of 
higher order may be considered as unobservable events. The number of unobservable events Nu can be 
found from a service mode analysis, but their probabilities in most cases remain unknown. 
The number of unobservable events, Nu , and the probability of their occurrence, p(U ), increases the 
uncertainties, due to the lack of knowledge about all the possible modes. An additional subsystem of 
missing events can be imagined; let it be denoted as U , with events Ui, i=1,2,...,Nu. For a known or 
assumed distribution of probabilities of missing events, the following relation holds: 

∑
=

=−−=−=
uN

i
iUppppp

1
)()()(1)(1)( FOSU                                                                                 (40) 

The system S  , enlarged with a complementary subsystem U  , can now be written as system S u : 

⎟⎟
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)(...)()(
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N
u UpUpUp

UUU
EpEpEp

EEE
USS . 

Consider the system S u' as a system of incomplete subsystems S  and U  of missing events: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==′

)(1)()()(
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SS
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US
US

USS
ppppu . 

The systems S u and S u' are by definition complete systems of events due to 1)()( =+ US pp . 
The relation between the complete system S u  and the incomplete system S  is as follows: 

)(log)()()()(log)()(log)()(
1

1

11
i

N

i
iNi

N

i
ii

N

i
iuNN UpUpHpUpUpEpEpH

uu

u
⋅−⋅=⋅−⋅−= ∑∑∑

===
+ SSS  (41) 

[ ] [ ])(1log)(1)(log)()(2 SSSSS ppppH u −⋅−−⋅−=′                                                                        
(42) 
The following relation between the incomplete distribution and missing event approach holds: 

)()()/()()/()( uuuu HHHpHp SSUSUSSS ′−=⋅+⋅                                                                      (43) 
For a single missing event, Nu=1, and 0)/( =US uH . 
Since unobservable events are in question, it is not likely that their probability distribution is known. 
The simplest assumption about their uniform distribution, i.e. p(Ui)=p(U )/Nu, leads to a maximal 
increase of system uncertainty which can be calculated for Nu>1 as . uu NH log)/( =US
In a more detailed calculation the system S  can be composed of three subsystems O , F  and U   and 
can be represented as )( UFOS ++=u  and considered also as the system S u' of subsystems 

. The following entropy can be calculated: ),,( UFOS =′u
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)(log)()(log)()(log)()( UUFFOOS ppppppH u ⋅−⋅−⋅−=′                                                         (44) 
When the missing events are assumed by their probabilities, the following relation holds: 

)()()/()()/()/()/()( uuuuuu HHHpHpHp SSUSUFSFSOSO ′−=⋅+⋅+⋅                               (45) 
 
Note that )()/(),()/()/()/(),/()/( uuuu FFSOOSFSFSOSOS ppppandHHHH ==== . 
 
4.5. Sensitivity analysis with respect to uncertainties 
 
The sensitivity analysis of different reliability measures with respect to sample characteristics, 
distributional parameters, parameters of limit state functions [e.g. Madsen , Krenk and Lind 1986, 
Karamchandani and Cornell 1992] as well as to correlation [Žanić and Žiha 1998], are well-established 
efficient, numerical procedures of great importance in structural engineering. 
The sensitivity is viewed as the rate of change of the uncertainty measure with respect to selected 
parameters Ωk, k=1,...,np , and can be calculated as the partial derivatives. 

The chain rule in general form as p
k

nk
Parameter

measureliability
measureliability

measureUncertnty ,...1,)(Re
)(Re
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∂
∂ S
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, 

provides specific expressions for sensitivity factors of uncertainty measures for series systems: 
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The calculations of sensitivities of uncertainties require the derivatives of system and component 
failure probabilities commonly provided by AFORM, SORM and MCS procedures without 
recalculation of the design model, which are specifically related for series systems as shown: 

∑
= Ω∂
∂

=
Ω∂

∂ fN

i k

f
i

k

f EpP

1

)()(S
                                                                                                                          (50) 

 

5. A plane frame structure example 
 
For illustration purposes EOSA tackles one-store, one-bay, plane frame structure, Fig.3., as a typical 
series system with common cause failure modes. Plastic hinge mechanisms leading to a collapse of the 
frame are analyzed by elastic-plastic stress-strain relations [e.g. Baker and Heyman 1969]. All plastic 
moment capacities Mi, i=1,2,3,4,5 are log-normally distributed with mean values of 134.9 kNm and 
standard deviations of 13.49 kNm, (COVM=0.10). The horizontal concentrated load Fh is log-normally 
distributed with mean value of 50 kN and standard deviation of 15 kN, COVF=0.3. The vertical 
concentrated load Fv is log-normally distributed with mean value of 40 kN and standard deviation of 
12 kN, COVF=0.3. The geometric parameter h=5 m is considered constant. 
 
The principle of virtual work gives three linear limit state functions, as shown: 

hvh FhMMMMFFMMMMMg ⋅−+++= 5421543211 ),,,,,,(  

vhvh FhFhMMMMFFMMMMMg ⋅−⋅−+⋅+⋅+= 5431543212 22),,,,,,(  

vvh FhMMMFFMMMMMg ⋅−⋅+⋅+= 432543213 22),,,,,,( . 
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Fig. 3. Plane frame structure with three plastic failure mechanisms 
 
Some results of the reliability analysis reported earlier [e.g. Madsen , Krenk and Lind 1986] are 
repeated for comparative purposes. 
 
5.1. System partitioning into the basic modes 
 
Reliability analysis for partitioning of series systems of events uses a range of approximations. 
The simplest approximations based on the full exclusiveness of events, Fig. 1.a., is as shown: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅
−

=
−−− 994359.01091.21099.11036.3 433

321321
ffffff AAAIAAA ∪∪

S . 

Another approximation based on full inclusiveness of events, Fig. 1.b., is as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅
−−−

=
−−− 996639.01091.21070.11037.1 433

133221
ffffff AIAAAAA

S . 

 
The fully exclusive and fully inclusive modes corresponds to Cornell’s lower and upper failure 
probability bounds on union of events according to (10), as follows: 

33 1064.5)(1036.3 −− ⋅≤≤⋅ SfP . 
 
The next approximation is closer to reality but still does not account for all reliability model 
inaccuracies, Fig. 1.c. Supposing that all basic events are pairways mutually independent, the 
probabilities of all the modes can be expressed as follows: 

3/3:,99436.0)()()()( 3211 OApApApEp oooo =⋅⋅=  
3/1:,1035.3)()()()( 3

3212 FApApApEp ooff −⋅=⋅⋅=  
3/1:,1098.1)()()()( 3

3213 FApApApEp ofof −⋅=⋅⋅=  
3/1:,1089.2)()()()( 4

3214 FApApApEp foof −⋅=⋅⋅=  
3/2:,1068.6)()()()( 6

3215 FApApApEp offf −⋅=⋅⋅=  
3/2:,1076.9)()()()( 7

3216 FApApApEp foff −⋅=⋅⋅=  
3/2:,1077.5)()()()( 7

3217 FApApApEp ffof −⋅=⋅⋅=  
3/3:,1095.1)()()()( 9

3218 FApApApEp ffff −⋅=⋅⋅= . 
The corresponding system of eight events can be presented as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅⋅⋅⋅⋅
=

−−−−−−− 9776433
87654321

1095.11077.51076.91068.61089.21098.11035.399436.0

fffffffo EEEEEEEE
S . 

The failure probability of such a system is equal to: 
3

8

2
1064.5)()( −

=

⋅==∑
i

f
if EpP S . 
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Next, the more accurate joint failure probabilities of any combination of modes for the prototype are 
considered. AFORM provides only the joint failure probabilities of up to two joint events. After 
neglecting the intersection of three or more events, the following seven modes for the prototype, Fig. 
1.c., are encountered: 

ffffffo EEEEEEE 7654321 1 −−−−−−=  
ffffffffff EEAAAAAAEE 3,12,11312111,12 −−=−−== ∩∩  
ffffffffff EEAAAAAAEE 3,22,12322122,23 −−=−−== ∩∩  
ffffffffff EEAAAAAAEE 3,23,13323133,34 −−=−−== ∩∩  

ffff AAEE 212,15 ∩==  
ffff AAEE 313,16 ∩==  
ffff AAEE 323,27 ∩== . 

The failure probability matrix is as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅⋅
⋅⋅

⋅
=

−−−

−−

−

456

34

3

1047.21025.41014.1
...1002.11024.9

...1043.2 sym
P . 

The system of events corresponding to the prototype frame, based on the inclusion-exclusion 
expansion of up to two joint events with probabilities obtained by an AFORM analysis, is shown next: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅⋅⋅⋅
=

−−−−−− 99534.01025.41014.11024.91047.21002.11043.2 564433
13,23,12,13,32,21,1
offffff EEEEEEE

S . 

The only unaccounted event in this example is . The Ditlevsen’s lower bound is 
obtained as the summa of diagonal terms and the elements of the lower triangle of the probability 
matrix P according to (16), as follows: 

fff AAA 321 ∩∩

3
3

1

3

1066.4)()( −

= =

⋅=≥∑∑
i ij

f
ijf EpP S . 

The Ditlevsen’s bounds, according to (16), differ only for , therefore, let us assume the 
probability of unobservable modes amounts to . 

)( 31
ff AAp ∩

6
31 1014.1)()( −⋅== ff AApp ∩U

As there is only one operational mode, there is no redundancy of the system S  , i.e., RED(S  )=0. 
The prototype’s safety indices are: β1=2.71, β2=2.55 and β3=3.44 and COVβ=0.1036. 
The system uncertainties are calculated according to (18) and (19) as follows: 

bitsHandbitsH )0301.1,0428.0,1(0428.0)()0358.1,0181.0,8073.2(0508.0)( =′= SS . 
Note the maximal and relative values, as well as the average number of events in paranthesis. 
 
The robustness can be calculated according to (24) as: 

bits
p

Ep
p

Ep
HROB

f
i

i

f
i

N f
)2978.3,6659.0,5849.2(7215.1

)(
)(

log
)(
)(

)/()(
6

1
=⋅−== ∑

= FF
FSS . 

The system robustness relative to its maximal attainable value, according to (33) is as shown: 
rob(S  )= ROB(S  )/log(6)=1.7215/2.5849=0.6659. 
The conditional entropy of system S  with respect to S ’ is calculated according to (25) as follows: 

bitsROBPH f )0056.1,0028.0,8073.2(0080.0)()()/( =⋅=′ SSSS . 
The average probabilities and average number of events are calculated according to (36, 37) as: 

2978.3
)/(

1)/(,0301.1
)(

1)(,0358.1
)(

1)(
2

2 ===
′

=′==
FS

FS
S

S
S

S
f

f
N

N
N

N G
F

G
F

G
F . 

The results are summarized in Table 1. 
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5.2. Robustness optimization 
 
Let us suppose that the mean values of random plastic moment capacities Mi, i=1,2,3,4,5,  are free 
design variables of a robustness optimization problem for the given reliability, stated as follows: 
 

99534.0)()( =SS RtosubjectedROBMax . 
 
The results of intensive optimization with respect to plastic moment capacities, using AFORM within 
a general nonlinear programming procedure, led to the family of design mean values of plastic moment 
capacities defined by M1=in range from 0 to165 kNm, by M2=115 kNm, M3=35 kNm, M4=290 kNm 
and by M5=in range 165-M1 kNm . The coefficients of variations of all design variables were constant 
through the entire optimization process of COVMi=0.1. 
The safety indices of the optimized frame structure are β1=2.88, β2=2.84 and β3=2.99 and the 
appropriate coefficient of variation of safety indices is COVβ=0.0218. 
The mode correlation matrix and the matrix of degrees of dependencies for optimized frame with 
respect to robustness are as follows: 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1550.0039.0
...1847.0

...1 sym

ijγ                                            [ ] . 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1111.0003.0
...1388.0

...1 sym

ijρ

The following system of events for the optimized frame is obtained: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅⋅⋅⋅
=

−−−−−− 99534.01050.11096.31069.71021.11032.11021.1 464333
13,23,12,13,32,21,1
offffff EEEEEEE

S . 

The Ditlevsen’s lower bound of failure probability amounts to the same value as for the prototype: 
3

3

1

3

1066.4)()( −

= =

⋅=≥ ∑∑
i ij

f
ijf EpP S . 

The maximum robustness of the optimized system is, according to (24), ROB(S  )=2.1229 bits and it is 
significantly greater than for the initial prototype system. The system robustness relative to its 
maximal attainable value of rob(S  )=0.8212 indicates that the optimized system utilizes a greater part 
of robustness capacity of the prototype, Table 1. Put succinctly, the plane frame optimized with respect 
to robustness for the same reliability level of 0.99534 is 1.23 times more robust than the prototype. 
 
 
5.3. Weight optimization 
 
The lightest frame, assuming proportional cross-sections, with the given reliability, is defined by the 
following nonlinear programming model: 
 

99534.0)()(
5

1

3
2

=∑
=

SRtosubjectedMMin
i

i . 

It became evident, on the basis of a number of successive optimizations, that the lightest frame with 

weight equal to ( ) 24.108
5

1

3
2
=∑

=i
iMMin , belongs to the set of solutions with maximal robustness for 

the given reliability level, providing, therefore, identical probability distribution. 
Moreover, it is evident that the prototype frame, which is certainly a heavy structure, is 22% heavier 
than the lightest frame, which is in the same time maximally robust. The reduction in weight of the 
frame structures optimized with respect to robustness is a consequence of a more uniform distribution 
of failure probabilities pertaining to increasing robustness. 
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Fig. 4. Plane frame robustness optimization for equal weight structures 

 
5.4. Checking by Monte-Carlo simulation 
 
The AFORM reliability and uncertainty calculations for the frame optimized with respect to robustness 
are checked by intensive Monte-Carlo simulation using Latin hypercube sampling plan [Žiha 1995] 
and the following system of events is obtained: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅⋅⋅⋅
=

−−−−−− 99516.01042.01025.31004.11089.01062.11087.0 363333
13,23,12,13,32,21,1
offffff EEEEEEE

S . 

The robustness of the system based on failure probabilities calculated by MCS is, according to (24), 
ROB(S  )=2.2108(2.5849,0.8552) bits, the generalized safety indices are β1=2.89, β2=2.74 and 
β3=3.00 and the appropriate coefficient of variation of safety indices is COVβ=0.0370. 
 
5.5. System performance optimization 
 
The structural preferences of series systems are the high system reliability and high system robustness. 
The alternative reliability and uncertainty optimization problems within reasonable bounds on design 
variableso f , assuming that the weight of structures are equal, are defined 
by two criteria, as:  

5,...,1,25050 =<< iM i

)(max.2

1
9.1345

1:)(max.1
3
2

5

1

S

S

ROB

MtosubjectedR
i

i =⎟
⎠
⎞

⎜
⎝
⎛∑

=  
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The imposed nonlinear constraint in the above defined optimization task substitutes the condition of 
equal weights of structural components, assuming proportional shapes of cross sectional areas. The 
results of AFORM calculations within nonlinear programming procedure are presented in Table 2. 
 
The safety indices and systems of events corresponding to the two optimization procedures are 
presented next in order to illustrate the differences in reliabilities and probability distributions of 
systems with various robustness, namely, 
1. : β)(max SR 1=3.20, β2=3.42 and β3=3.44 and COVβ=0.0324. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅⋅⋅⋅
=

−−−−−− 99888.01001.11071.21058.11078.21047.11025.5 574444
13,23,12,13,32,21,1
offffff EEEEEEE

S . 

2. : β)(max SROB 1=2.76, β2=2.72 and β3=2.86 and COVβ=0.0211. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅⋅⋅⋅
=

−−−−−− 99307.01049.21016.61013.11087.11092.11075.1 463333
13,23,12,13,32,21,1
offffff EEEEEEE

S . 

Note that different measure of dispersion statistics, such as range, mean deviation, variance, standard 
deviation and coefficient of variation of a set of consistent semiprobabilistic or deterministic safety 
measures, can be used to assess system robustness heuristically. From an engineering point of view, 
high robustness can be associated with the small coefficient of variation of safety indices, as it is 
evident for optimized frames. 
 
Moreover, COVβ=0 can be attained in the case of equal weight frames, Table 2., employing 
minimization procedure on COVβ, with safety indices and probabilities as: 
3. : ββCOVmin 1=2.90, β2=2.90 and β3=2.90 and COVβ=0. The system of events is as shown: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅⋅⋅⋅
=

−−−−−− 99530.01043.11077.31069.61069.11003.11016.1 463333
13,23,12,13,32,21,1
offffff EEEEEEE

S . 

 
Next by repeated optimizations, the manner in which the function  depends on the 
system reliability, is presented in Fig. 4. 
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5.6. Robustness of disjoint subsystems at different levels 
 
Various system subdivision schemes in general as k out of n events, can be of special interest (Žiha 
2000-b). Let us consider the frame optimized with respect to robustness for given reliability. 
The subsystem of the failure modes is first partitioned into the subsystem F 1 of individual events and 
into the subsystem F 2 of common cause modes, presented as follows: 
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The compound system of subsystems of failure modes can be written as: 
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21 FF
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The system robustness according to (24) may now be viewed in two components: 
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Each component robustness above indicates system endurance with respect to the considered 
subsystems. The robustness of the system and the system of subsystems can be calculated as follows: 
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According to (26) it is easy to verify the relation among subsystem and system robustness. 
 
5.7. Robustness of the unions of subsystems with common cause failure modes 
 
Let us consider again the frame optimized with respect to robustness for given reliability by 
partitioning the system of events into the three inclusive subsystems with common cause modes, as 
follows: 
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The subsystem of all failure modes can be presented as the union of the subsystems listed above, as 
. ( )321 FFFF ∪∪=

The failure probabilities associated with such subsystems consisting of individual modes together with 
all the common cause failures with respect to all other modes are equal to: 
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The robustness of each of the considered subsystems, is calculated as follows: 
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Let us consider the 

subsystems built as pairways unions and intersections of inclusive subsystems having common cause 
failure modes with failure probabilities equal to following amounts: 
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The robustness of pairways unions of events are calculated as follows: 
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Since the pairways intersections comprise of only one event, the appropriate robustness vanishes: 
0)/(,0)/(,0)/( 323121 === FFSFFSFFS ∩∩∩ ROBROBROB . 

The conditional entropy of the systems of subsystems having some modes in common according to 
(28), are as shown: 

7373.0)/(,9537.0)/(,3839.0)/( 323121 =′=′=′ FFSFFSFFS ∪∪∪ HHH . 
The relation (27) between any pair of subsystems can be easily verified by this example. 
Finally, let us consider the system of the unions of all three subsystems. The probability of the union of 
all three events is equal to the robustness of the entire system as calculated earlier: 

3
231312332211321 1066.4)()()()()()()()( −⋅=+++++== ffffff

ff EpEpEpEpEpEpPP FFFF ∪∪ . 
The robustness of the union of all three events is equal to the robustness of the entire system as 
calculated above: 

bitsROBROBROB )3557.4,8212.0,5849.2(1229.2)/()/()( 321 === FFFSFSS ∪∪ . 
 
 
 

5.8. Sensitivity calculations 
 
The sensitivity calculations with respect to the variable means and standard deviations are performed 
on the prototype basis using the analytical procedure given in the article and presented in Table 3. 
 
For example, by using the sensitivity factors in the range of plastic moment capacities from 130 to 
140, the variant of the frame with maximal robustness amounting to ROB(S )=1.9058 is assessed for 
M=(140, 140, 130, 130, 140). The assessed uncertainties are H(S )=0.0488, H(S ’)=0.00437 and  
Pf(S )•ROB(S )=0.0835 . For comparison, the appropriate AFORM results are ROB(S )=1.8664 and 
H(S )=0.0495, H(S ’)=0.00412 and Pf(S )•ROB(S  )=0.0832. 
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Table 1. Uncertainties for different approximation methods of a plane frame 
Approximation       Nf  No   p(O  )     p(F )    H(O +F )   H(O ,F )    ROB(S )   F(S/ O )  H(S )-H(S  ’ )   COVβ

methods                                                           bits        bits         bits           -            bits 
                                           Eqn(7)   Eqn(8)  Eqn(18)  Eqn(19)  Eqn(24)  Eqn(36)  Eqn(25) 
Exclusive modes      3 1  0.99436  0.00564   0.0570   0.0502   1.1961    2.2912  0.0067      0.1036 
                                  Maximal values              2             1            1.5849    3          2 
                                  Relative values              0.0285   0.0502     0.7546   1.3093  0.0033 
Inclusive modes       3 1  0.99664  0.00336   0.0369   0.0324    1.3307   2.5152   0.0044      0.1036 
                                  Maximal values              2             1            1.5849    3           2 
                                  Relative values              0.0184   0.0324     0.8396   1.1927   0.0022 
Independent modes 7 1  0.99437  0.00563   0.0569   0.0501    1.2107   2.3145    0.0068      0.1036 
                                  Maximal values              3            1             2.8073    7            3 
                                  Relative values              0.0190   0.0501     0.4312   3.0244    0.0022 
Correlated modes    6 1  0.99534  0.00466   0.0508   0.0428    1.7215    3.2978    0.0080       0.1036 
                                  Maximal values             2.8073    1             2.5849    6            2.8073 
                                  Relative values              0.0181   0.0428    0.6660    1.8193    0.0028 
Optimal robustness  6 1  0.99534  0.00466  0.0526   0.0427    2.1229    4.3557    0.0098      0.0218 
(based on AFORM)   Maximal values            2.8073    1             2.5849    6             2.8073 
(Also least weight)    Relative values             0.0187   0.0427     0.8212  1.3775    0.0035 
Optimal robustness  6 1  0.99516  0.00484  0.0549   0.0442     2.2108   4.6293    0.0108      0.0370 
(checked by MCS)    Maximal values             2.8073    1             2.5849    6            2.8073 
                                   Relative values             0.0195   0.0442     0.8552    1.2961   0.0038 
 
 
Table 2. Results of different optimization procedures applied to a plane frame structure 
Procedure   R(S )   ROB(S )  rob(S )   F6(S / F )  H7(S  )     h2(S  )        M1      M2     M3    M4    M5      COVβ 

                                     Eqn(24)  Eqn(33)  Eqn(36)  Eqn(18)  Eqn(29)             V   a   r   i   a   b   l   e   s 

Prototype  0.99534  1.7215   0.6659   3.2978  0.0508  0.0181     134     134  134  134   134     0.1036 
Rmax           0.99888  1.8590    0.7192   3.6276  0.0146  0.0052   50-250 150  150  150  251-M1  0.0324 
ROBmax      0.99307  2.1334   0.8253   4.3875   0.0745  0.0265  50-250  112  147    50  386-M1 0.0211 
COVβmin=0 0.99530  2.0711   0.8012   4.2020   0.0528   0.0188    244     110  116   118   100   0.0000 

 
 
Table 3. Results of sensitivity analysis applied to the prototype plane frame structure 
Sensitivity factors Eqn.      M1            M2           M3           M4            M5            FH             FV     units 

µ∂∂ /)(SH              (46)     -7.57⋅10-4     -5.70⋅10-4    -6.84⋅10-4    -1.10⋅10-3     -7.56⋅10-4    +2.75⋅10-3    +1.46⋅10-3    bits 
σ∂∂ /)(SH              (46)    +2.42⋅10-4    +2.00⋅10-4   +3.18⋅10-4   +4.52⋅10-4    +2.36⋅10-4    +1.65⋅10-2    +5.03⋅10-3      bits 

µ∂′∂ /)(SH             (47)     -6.30⋅10-4     -4.85⋅10-4    -4.92⋅10-4    -8.74⋅10-4     -6.30⋅10-4    +2.40⋅10-3    +9.00⋅10-4      bits 
σ∂′∂ /)(SH            (47)    +1.93⋅10-4    +1.69⋅10-4    +2.97⋅10-4   +3.49⋅10-4    +1.93⋅10-4    +1.34⋅10-2    +3.84⋅10-3     bits 

µ∂∂ /)(SROB         (48)    +2.83⋅10-3    +5.15⋅10-3     -1.85⋅10-2    -7.28⋅10-3    +2.96⋅10-3     -4.17⋅10-2     +7.64⋅10-2   bits 
σ∂∂ /)(SROB        (48)    +1.35⋅10-3     -1.35⋅10-3     -9.80⋅10-3   +5.30⋅10-3    +9.10⋅10-5    +1.45⋅10-2     +7.20⋅10-2  bits 

µ∂∂ /)(SROBPf    (49)     -1.27⋅10-4    -8.41⋅10-5       -1.95⋅10-4    -2.28⋅10-4    -1.26⋅10-4     +3.41⋅10-4    +5.55⋅10-4   bits 

σ∂∂ /)(SROBPf   (49)    +4.92⋅10-5   +3.14⋅10-5     +2.06⋅10-5    +1.02⋅10-4    +4.34⋅10-5    +3.05⋅10-3    +1.19⋅10-3   bits 

µ∂∂ /)(SfP             (50)     -8.14⋅10-5    -6.26⋅10-5      -6.35⋅10-5      -1.13⋅10-4     -8.14⋅10-5    +3.10⋅10-4   +1.16⋅10-4

σ∂∂ /)(SfP             (50)   +2.49⋅10-5    +2.18⋅10-5    +3.84⋅10-5     +4.51⋅10-5    +2.49⋅10-5    +1.73⋅10-3    +4.96⋅10-4
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6. Conclusion 
 
Complex engineering systems can be subjected to service modes and effects analysis for identification 
of the events and their relations which can occur at the component, subsystem and system levels. The 
aim of a probabilistic event oriented analysis is to assess the effects of known operational and failure 
modes on the overall behavior of a system. In addition to global probabilistic system analysis, the 
analysis of the hierarchical structure of failure modes presented by subsystems and groups of events of 
special interests, such as collapse modes and serviceability failures, can be of interest to designers and 
users of the system. 
The article investigates how the difficulties in the application of the EOSA to engineering objects 
involving complex relations among events can be consistently resolved by employing failure modes 
analysis accompanied by inclusion-exclusion expansion of union of events and completed by 
reliability and uncertainty analysis. 
The EOSA relates the event space with governing probability and information theory, to the physical 
aspects of engineering objects by employing the random variable design model, based on technical 
knowledge and on engineering experience. The reliability in the event space does not appear to be the 
only decisive attribute effecting the series system performance. The conditional entropy of failure 
modes defines the system robustness independently of the system reliability as the structural endurance 
providing uniform distribution of failure probabilities. It is demonstrated how the system robustness 
for the same reliability level can be increased by redistribution of component characteristics. The 
dispersion of semiprobabilistic and deterministic safety measures is used to assess heuristically the 
uncertainty of a number of failure modes. 
The application of EOSA provides additional objectives and constraints, defined by reliability and 
robustness, as independent optimization criteria, leading to more appropriate designs of series 
structural systems. Sensitivity analysis of system uncertainty measures without additional structural 
response and reliability evaluations is sufficiently accurate for design uncertainty assessments in a 
reasonable range of extrapolations, and can be applied as an useful procedure for many engineering 
considerations. 
The EOSA requires more engineering and computational practice than the mere traditional reliability 
analysis. The relevance of failure modes and their relations depends on whether the circumstances of 
their occurrence do or do not jeopardize operations, and to which extent they determine the collapse or 
serviceability failures of the system. The selection of modes, groups and subsystems by their 
importance depends on the engineering experience and there is a certain freedom of choice within the 
limits of possibilities. 
The event oriented system analysis is feasible if modern powerful computational means and efficient 
probabilistic numerical and simulation methods are used. Moreover, the conditioning of probabilities 
and entropy with respect to significant operational and failure modes allows a separate consideration of 
each particular group or subsystem of relevant events, as well as their relations within complete or 
incomplete systems of events. Significantly, the application of EOSA to selected parts of systems and 
subsystems with a manageable number of events is appealing for the evaluation of large-scale systems. 
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List of symbols 
 
Ai, Ei     Random events in general 
F(•)       Average number of events of a system of events 
G(•)       Average probability of a system of events 
H(•)       Shannon’s entropy of a system of events 
H1(•)      Renyi’s/Shannon’s entropy of order one 
h(•)        Entropy relative to highest value 
N, n        Number of systems and subsystems 
no, nf      Number of operational and failure subsystems 
No, Nf     Number of operational and failure events 
p(•)        Probabilities of random events and sub)systems 
P            Bimodal probability matrix 
Pf(S )      Probability of a failure of a system 
R(S )       System reliability 
RED(S )  System redundancy 
ROB(S )  System robustness 
red(S )    System redundancy relative to the highest value 
rob(S )    System robustness relative to the highest value 
S             System of events in general 
S  '          System of the subsystems of events 
O  , F      Subsystems of operational and failure events 
β            Safety indices 
γ             Bimodal dependencies 
ρ            Bimodal correlations 
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