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Abstract

The article aims to add a new impetus to rational and objective probabilistic evaluation of redundancy and robustness, based on
uncertainties of systems and subsystems of events. An attempt is made to demonstrate the relevance of intuitive comprehension of
redundancy and robustness of engineering systems of events. An event-oriented system analysis of a number of random observable
operational and failure modes, with adverse probability distributions in a lifetime, may provide a deeper understanding of systems opera-
tional abundance and endurance. The system uncertainty analysis is based on the concept of entropy as defined in information theory and
applied to probability theory. The article relates reliability, uncertainty, redundancy and robustness of systems of events and their application
is illustrated in numerical examples.q 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Redundancy and robustness are inherent in the majority
of complex engineering systems and have been viewed in
different ways. Both the redundancy and the robustness are
usually related to the system reliability and considered, on
one hand, as a capacity of a system to operate even when
some of the physical components have failed or on the other
hand, as a system responsive to adverse conditions. Redun-
dancy can be classified as either local or overall (e.g. for
marine structural systems [1]). Whilst local redundancy
refers to local reserve of operational capacity in system
physical components, the overall redundancy can be
expressed as a system reserve capacity or a residual system
capacity (e.g. for structural systems [2]). System reserve
capacity is the margin between the design demand and its
limit state, or the ultimate capacity of the overall system to
sustain the demands. The residual system capacity of oper-
ation is the remaining capacity after one or more com-
ponents have failed or become non-operational. The
redundancy of system’s operation can be quantified in deter-
ministic, probabilistic and semi-probabilistic terms (e.g. for
structural systems [3]). The main disadvantage of determi-
nistic measures of redundancy is that they do not take into
consideration the statistical uncertainties of the system.
Most widely used probabilistic measure of system redun-
dancy is based on the conditional probability of system

survival given if one component fails. The semi-probabil-
istic methods in redundancy assessment benefit from first-
order reliability analysis. The optimisation of system redun-
dancy in order to increase reliability of a system, with
number of components under possible restrictions, also
including cost functions, has been recognised as an effective
method in reliability improvement [4]. The system reli-
ability can also be linked with the robustness of the system.
A system is considered reliable in terms of robustness if it is
robust with respect to input and failure uncertainties, and
consequently it has low reliability when even the small
amounts of uncertainty entail the possibility of failure [5].

The scope of this article does not cover the physical or
probabilistic measures for redundancy and robustness with
respect to the components of the system, since these
problems has been elaborated elsewhere (e.g. [4]). More-
over, the article investigates probabilistic measures for
operational abundance and endurance, associated with
engineering systems and subsystems of events.

The article demonstrates how system uncertainties,
obtained as results of an event-oriented system analysis
[6], can be interpreted in terms of system redundancy and
system robustness associated with the subsystems of oper-
ational and failure modes [7]. Such an approach to system
analysis may provide a more comprehensive assessment of
system performance and hopefully a better system design.
Intuition and common engineering reasoning are applied to
a system surplus of probabilities and a number of oper-
ational and failure modes. The simplest system provides
only one operational and one failure mode, and does not
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render any superfluity in operational capacities or in
responses to failures. If there are more operational and fail-
ure modes, with known probabilities, the system can be
viewed as probabilistically ample in normal functions or
in necessary working conditions. Such a system is denoted
as probabilistically redundant and robust with respect to
operational and failure modes. To the term redundancy,
the article assigns the notion of a probabilistic abundance
in a number and probabilities of operational modes. Analo-
gously, the word robustness, in terms of failure events
denotes an excessive capability to respond to all demands
by more adequate failure modes. The article argues how
system redundancy can be related to the uncertainty of

operational modes, and how system robustness, contrary
to system redundancy, can be related to the uncertainty of
the failure modes. System redundancy and system robust-
ness are defined as complementary basic characteristics of a
system, apart from the system reliability and failure prob-
ability. The system uncertainties are expressed by entropy
as defined in information theory [8–12] and as used in prob-
ability theory [13]. An example is given to illustrate the
application of an event-oriented system analysis to a redun-
dant and robust plane truss structure.

2. Engineering systems and subsystems of operational
and failure modes

The probabilistic system analysis is based on statistical
data about physical components and their interactions (e.g.
[4,14–19]). In addition to the probabilistic system analysis,
an event-oriented system analysis can be performed on the
basis of known or observable lifetime events [6]. By opera-
tional modes and effects analysis, all, or at least all obser-
vable, eventsEi of a system can be determined. Some of the
eventsEi are operational modes, denoted asEo

i (status�O),
and other events can be regarded as failure modes, denoted
with Ef

i (status� F). The probabilities of possible modes
can be hopefully calculated by using quantitative methods.
They are denoted asp�Ei�; i � 1; 2;…;N: N is the total
number of all, or at least observable random events, consti-
tuting system of eventsS. A distribution of system mode
probabilities is presented in Fig. 1. Since the sequence of
system modes is irrelevant in system performance analysis,
the operational modes are collected and presented on the
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Nomenclature

Ai, Ei random events in general
H(·) Shannon’s entropy of a system of events
H1(·) Renyi’s/Shannon’s entropy of order one
N, n numbers of systems and of subsystems
no, nf number of operational and failure subsystems
No, Nf number of operational and of failure events
p(·) probabilities of random events, (sub)systems
Pf(S) probability of failure of the system
R(S) system reliability
RED(S) system redundancy
ROB(S) system robustness
S system of events in general
S 0 system of subsystems of events
O, F subsystems of operational and of failure

events

Fig. 1. Distribution of system mode probabilities.



left-hand side of Fig. 1, and the failure modes are presented
in continuation, on the right-hand side of Fig. 1. The system
of eventsS is a finite scheme [13], and can also be
presented as summation of two subsystemsO and F, as
shown:

S �
E1 E2

… EN

p�E1� p�E2� … p�EN�

 !
� �O 1 F�

The probability associated with the system of eventsS is as
follows:

p�S� �
XN
i�1

p�Ei� �1�

S is a complete system whenP�S� � 1; and an incomplete
system whenp�S� , 1:

The subsystemO comprises all of the random events
Eo

i ; i � 1;2;…;No when the system is operating:

O �
Eo

1 Eo
2

… Eo
No

p�Eo
1� p�Eo

2� … p�Eo
No
�

 !
The subsystemF consists of all the random eventsEf

i ,
i � 1;…;Nf when the system fails:

F �
Ef

1 Ef
2

… Ef
Nf

p�Ef
1� p�Ef

2� … p�Ef
Nf
�

0@ 1A
The total number of events is equal toNo 1 Nf � N: It
may also be noted that the sequence of the events of a
system or of subsystems is irrelevant with respect to relia-
bility and uncertainty considerations.

The reliability of the system, denoted asR(S),
corresponds to all of the outcomes when the system is
operating and can be calculated as the probability of the
subsystem of operational modesp(O) as:

R�S� � p�O� �
XNo

i�1

p�Eo
i �; �2�

The failure probability of the system denoted asPf(S)
corresponds to all of the outcomes when the system fails
and can be calculated as the probability of the subsystem of
failure modesp(F) as:

Pf �S� � p�F� �
XNf

i�1

p�Ef
i � �3�

A systemS 0 of two subsystems of events, each considered
as a compound event denotedO for the system operating and
denotedF for the failed system, can be defined as follows:

S 0 � �O;F� �
O F

p�O� p�F�

 !
Either for complete systems, whenp�S� � 1; or for incom-
plete systems, whenp�S� , 1; it holds:

p�O�1 p�F� � p�S� � p�S 0� �4�

2.1. Engineering system uncertainties

The entropy of complete or of incomplete systems of
eventsS and S 0 expresses the system uncertainties and
can be determined as Renyi’s/Shannon’s entropy of order
one, defined as follows:

H1
N�S� � H1�O 1 F� � H1�S�

� 2
XN
i�1

p�Ei� log p�Ei�
" #�XN

i�1

p�Ei� � H�S�
p�S� �5�

H1
2�S 0� � H1�O;F�

� H1�S 0� � �2p�O�log p�O�2 p�F�log p�F��

=�p�O�1 p�F�� � H�S 0�
p�S 0� �6�

The maximal entropy of systemsS andS 0 are obtained for
N and for 2 equally probable events, as:

H1
N�S�max� 2N

1
p�S�

p�S�
N

log
p�S�

N
� log

N
p�S� �7�

H1
2�S 0�max� 22

1
p�S 0�

p�S 0�
2

log
p�S 0�

2
� log

2
p�S 0� �8�

Note that through in the mathematical expressions the base
of logarithm is usually two.

3. Definition of the redundancy of the system of events

The redundancy in event-oriented system analysis is
viewed as a capability of a system to continue operations
by performing different random operational modes of given
probabilities in case of random failures of components.
Performing another operational mode, the system may be
brought on equal or on the reduced operational capacity.
The operational capacities can be viewed either as the prob-
abilities of operational modes or as the physical or technical
working capacities of a damaged system. However, it is
intuited that a highly redundant system has more operational
modes of similar level of reliability (Fig. 1). If so, there is an
uncertainty about which of the operational modes is to be
performing. The operational capacities of alternative oper-
ational modes are in general different from the principal
operational mode and should also be taken into account in
the assessment of system redundancy. Hence, the redun-
dancy of a system is only related to the operational modes
of the system.

The intuitive expectations based on common engineering
reasoning on the measure of the redundancy of a system of
events are listed next:

1. REDUNDANCY (System/Operational)� 0: If there is
no operational modes or if there is only one operational
mode or, if among a number of operational modes, one is
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dominantly probable, i.e. sure, there is no redundancy at
all. In all other cases, the redundancy should be positive.

2. REDUNDANCY (System/Operational)�maximum:
Redundancy is greatest if all the alternative operational
modes are of the same probability of occurrence and
possibly, of the same operational capacity. The maxi-
mum redundancy can be associated with the set of
equally probable alternative operational modes of the
same level of operational capacity. If equally probable
alternative operational modes of the same level of
operational capacity are considered, the larger a set of
operational modes, the more redundancy is gained.

3. REDUNDANCY (System/Operational) is independent
of the sequence of operational modes. The sequence of
the events within the system or within subsystems is
irrelevant with respect to the redundancy.

4. REDUNDANCY (System/Operational)� 1 (by the
definition of a unit): The definition of the unit of redun-
dancy is not more or less arbitrary than the choice of the
unit of some physical quantity. E.g., it can be maintained
that the redundancy is equal to one if there are only two
equally probable operational modes.

The intuitive description of the system redundancy based
on the set of operational modes is very reminiscent of the
definition of the uncertainty of a system of events, which is
denoted in the information theory as entropy. The principal
problem of the application of entropy on the definition of the
redundancy is that the entropy can be applied to complete or
incomplete systems of events, and that the subsystem of
operational modes is obviously a partial distribution of
probabilities of a subsystem of operational modes. In
order to overcome this problem, let us consider the sub-
system of operational modes under the condition that the
system itself is operational, denoting the conditional oper-
ational events asEo

i =O:
The probability distribution of operational modes

p�Eo
i �; i � 1;2;…;No is considered as a partial distribution

of probabilities. The subsystem of operational modesO is
part of a distribution of probabilities of the entire system of
eventsS. However, every partial distributionp�Eo

i � can be
assigned an ordinary or complete distribution by substitut-
ing p�Eo

i =O� instead ofp�Eo
i �: It may be interpreted as a

complete conditional distribution of probabilities with
respect to the conditions that the systemS of known i.e.
observable modes is operational with probabilityp(O).

It is clear thatp�Eo
i =O�p�O� � p�Eo

i �:
The subsystem of only operating modesO can be viewed

under the condition that the system of all known modesS is
wholly operational. Let it be denoted asS=O: It can be
proven that the conditional probability of subsystem of
operational modesS=O; with respect to the conditions
that the system is wholly operational, depends only on the
probability of a subsystem of operational modesO itself.
Obviously,p�S=O� � 1:

The systemS under the condition that it is operational,

denoted asO, can be presented as follows:

S=O �
Eo

1=O Eo
2=O … Eo

No
=O

p�Eo
1�

p�O�
p�Eo

2�
p�O�

… p�Eo
No
�

p�O�

0BB@
1CCA

The uncertainty of the subsystem of operational modesO
can be expressed as Shannon’s entropy applied only to the
systemS under the condition that it is operationalS=O:
The condition that the systemS is wholly operational with
probability p(O) is considered as a complete conditional
distribution.

According to the definition of the conditional entropy of
operational modes, it follows:

HNo
�S=O� � 2

XNo

i�1

p�Eo
i �

p�O� log
p�Eo

i �
p�O� �9�

The following relation expresses the differences between
the conditional entropy of a subsystemO represented by
partial distribution ofS denoted asS=O and the entropy
of order one of a systemO viewed as an incomplete one:

HNo
�S=O� � H1

No
�O�1 log p�O� �10�

In Eq. (10), the following term is the Renyi’s/Shannon’s
entropy of order one, corresponding to the entropy of
incomplete system of events, which is defined as follows:

H1
No
�O� � HNo

�O�=p�O� �11�
In Eq. (11), partial summa within the systemS, correspond-
ing to only operational modes is as shown:

HNo
�O� � 2

XNo

i�1

p�Eo
i � log p�Eo

i � �12�

The maximum entropy of operational modes is attained for
No equally probable events with probabilitiesR�S�=No; Fig.
1, and amounts to:

HNo
�S=O�max� 2No

R�S�
No

log
R�S�

No
� log No �13�

Common characteristics of the entropy (e.g. [11–13])
applied only to the subsystem of operational modes consid-
ered as a complete conditional distribution with respect to
the condition that the system in a whole is operational are
resumed next:

1. H�S=O� � 0 if none or only one of operational modes
can occur;

2. H�S=O� � Hmax if all the operational modes are equally
probable;

3. H�S=O� does not depend on the sequence of the events;
4. H�S=O� � 1 definition of a unit is arbitrary; in general

the base of the applied logarithm is used. For example,
for logarithm base of two, the unit entropy 1 bit,
corresponds to uncertainty associated with a system of
two equally probable events.
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The intuitive expectations of redundancy measure
comply with the characteristics of the conditional entropy
of the subsystem of operational modes considered as a
complete conditional distribution with respect to the con-
dition that the system in a whole is operational with known
probability. The above considerations show that the redun-
dancy of the system of events can be rationally and objec-
tively measured by the entropy of operational modes under
the condition that the system of all known or observable
modes is operational and can be written succinctly as
follows:

REDUNDANCY �System=Operational� � RED�S=O�
� RED�S� � HNo

�S=O� �14�
Note that the redundancy optimisation has been recognised
earlier as the maximisation of the reliability of a series
system composed ofNo independent redundant groups,
denoted as subsystems, by introducing additional redundant
components [4]. A redundant group is not necessarily a
separate part of a system. It may be a group of units of
the same type, which uses the same redundant units. For
instance, in spare-parts problems a redundant group might
be a set of identical units allocated throughout the entire
system in different places. In this context, the system
reliability index can be expressed as the probability of
successful operation of a series system consisting of inde-
pendent groups of redundant units, as presented:

p�Ro� � p�Ro
1;R

o
2;…;Ro

No
� �

YNo

i�1

p�Ro
i � � 1 2

XNo

i�1

�1 2 p�Ro
i ��

�15�
In Eq. (15) Ro � Ro

1;R
o
2;…;Ro

No
is a set of the system’s

redundant groups of unitsRo
i s andp�Ro

i � is the reliability
index of theith redundant group,i � 1;2;…;No. The reli-
ability index in Eq. (15) can be also presented in additive
form as:

L�Ro� � L�Ro
1;R

o
2;…;Ro

No
� � 2log p�Ro� �

XNo

i�1

2 log p�Ro
i �

�16�
The term (16) is used as a reliability measure in terms of
redundancy. However, such a measure does not account for
the probability distribution of operational events and has an
entirely different meaning from the redundancy defined here
by the term (14).

4. Definition of the robustness of the system of events

The principal difference between the robustness and the
redundancy of a system of events as viewed in the event-
oriented system analysis is that robustness is regarded as the
system’s capability to respond to all possible random fail-
ures uniformly. A robust behaviour is intuited when the

system can provide more adequate failure modes to
adverse demands with more or less equal probabilities,
Fig. 1. A robust system can become non-operational at
different levels of failure. The failure levels can be viewed
either as the probabilities of failure of alternative failure
modes or as the levels of physical or technical failures of
the system. When the system responds to all demands
uniformly, there is a high uncertainty about which of
the failure modes could occur. Hence, the system robust-
ness is related only to the failure modes of the system in
the same manner, as the redundancy is related to the opera-
tional modes.

The intuitive expectations and common engineering
reasoning about the measure of the robustness of a system
of events are listed next:

1. ROBUSTNESS (system/fails)� 0: If there is no failure
or non-operational modes or if there is only one failure or
non-operational mode or, if among a number of failure or
non-operational modes, one is dominantly probable, i.e.
sure, there is no robustness at all. In all other cases, the
robustness should be positive.

2. ROBUSTNESS (system/fails)�maximum: Robustness
is greatest if all the alternative failure or non-operational
modes are of the same probability of occurrence and
possibly of the same level of failure. The maximum
robustness can be associated with the set of equally prob-
able alternative failure or non-operational modes with the
same level of failure. If equally probable alternative fail-
ure or non-operational modes of the same level of failure
are considered, the larger the set of failure modes, the
more robustness is gained.

3. ROBUSTNESS (system/fails) is independent of the
sequence of the failure modes. The sequence of the
events within the system or within the subsystems is
irrelevant with respect to robustness considerations.

4. ROBUSTNESS (system/fails)� 1 (the definition of a
unit): The definition of the unit of robustness is arbitrary
just as it was in the definition of redundancy. Let us, for
example, agree that the robustness equals one, if there are
only two equally probable failure modes.

The intuitive description of the robustness of a system of
events based on the set of failure modes strongly reminds of
the definition of redundancy defined on the set of oper-
ational modes. The same approach to the definition of
robustness can be applied as in the definition of redundancy.
The subsystem of only failure modesF can be viewed
under the condition that the system of all known modesS
is failed, let it denoteS=F: It can be proven that the con-
ditional probability of the subsystem of failure modesS=F;

with respect to the conditions that the system of known or
observable modes is failed in a whole, depends only on the
probability of the subsystem of failure modesF itself.
Obviously,p�S=F� � 1:

The systemS under the condition that it is failed,
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denoted asF, can be presented as follows:

S=F �
Ef

1=F Ef
2=F … Ef

Nf
=F

p�Ef
1�

p�F�
p�Ef

2�
p�F� …

p�Ef
Nf
�

p�F�

0BB@
1CCA

The uncertainty of the subsystem of failure modesF can be
expressed as Shannon’s entropy applied only to the systems
S under the condition that it is non-operationalS=F: It is
considered as a complete conditional distribution with
respect to the condition that the system fails with probability
p(F) and, according to the definition of the entropy of fail-
ure modes, it follows:

HNf
�S=F� � 2

XNf

i�1

p�Ef
i �

p�F� log
p�Ef

i �
p�F� �17�

The following relation expresses the differences between
the conditional entropy of a subsystemF represented by
a partial distribution ofS denoted asS=F and the entropy
of order one of a systemF viewed as an incomplete one,
where:

HNf
�S=F� � H1

Nf
�F�1 log p�F� �18�

In Eq. (18), Renyi’s/Shannon’s entropy of order one,
corresponding to the entropy of incomplete system of
event, is defined as shown:

H1
Nf
�F� � HN�F�=p�F� �19�

In Eq. (19), partial summa within the systemS, correspond-
ing to only failure modes, is as follows:

HNf
�F� � 2

XNf

i�1

p�Ef
i �log p�Ef

i � �20�

The maximum entropy of the failure modes is attained forNf

equally probable events with probabilities ofPf �S�=Nf (Fig.
1), and amounts to:

HNf
�S=F�max� 2Nf

Pf �S�
Nf

log
Pf �S�

Nf
� log Nf �21�

The common characteristics of entropy, now applied only to
the subsystem of failure modes considered as a complete
conditional distribution with respect to the condition that
the system in whole is non-operational are resumed next:

1. H�S=F� � 0 if only one of the failure modes can occur;
2. H�S=F� � Hmax if all the failure modes are equally

probable;
3. H�S=F� does not depend on the sequence of the events;
4. H�S=F� � 1 definition of a unit is arbitrary; in general,

the base of applied logarithm is used. For example, for
logarithm base of two, the unit entropy 1 bit, corresponds
to uncertainty associated with a system of two equally
probable events.

The intuitive expectations of the robustness measure of
systems of events comply with the characteristics of the

conditional entropy of the subsystem of failure modes, as
it is presented earlier by consideration about the redun-
dancy. Presented considerations allow that the robustness
of the system of events can be measured by the entropy of
failure modes under the condition that the system in whole
is non-operational. It can be written in condensed form as
follows:

ROBUSTNESS�System=Fails� � ROB�S=F�
� ROB�S� � HNo

�S=F� (22)

5. The relation between the redundancy and the
robustness and the system reliability

It can be proven that the following expressions bring into
the relation the system redundancy, the system robustness
and the overall uncertainty of the system and of the system
of operational and non-operational subsystem [6]. The
weighted summa of the entropy of the subsystemsO and
F of the systemS can be represented, using mathematical
notation, as shown:

p�O�H�S=O�1 p�F�H�S=F�

� p�S��H1
N�S�2 H1

2�S 0��

� H�O 1 F�2 H�O;F� �23�
The same relation can also be expressed in terms of reli-
ability, redundancy and robustness measures:

R�S�RED�S�1 Pf �S�ROB�S�

� p�S��H1
N�S�2 H1

2�S 0��

� H�O 1 F�2 H�O;F� �24�

5.1. The subsystems of operational and failure modes

More generally, there can beno groups of modes with
same operational capacities ornf groups of modes with
the same failure seriousness. Then the system of events
can be decomposed into more than only two subsystems,
with subscriptA denoting different system of subsystems
S0A; wheren� no 1 nf ; as follows:

S � �O1 1 O2 1 …1 Ono
1 F1 1 F2 1 …1 Fnf

�
and

S 0
A � �O1;O2;…;Ono

;F1;F2;…;Fnf
�:

The subsystems of operational and failure modes are defined
as compounds of subsystems as

O � �O1 1 O2 1 …1 Ono
� F � �F1 1 F2 1 …1 Fnf

�
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and

O 0A � �O1;O2;…;Ono
�; F 0

A � �F1;F2;…;Fnf
�:

The relation of the reliability, failure probability, redun-
dancy and robustness of subsystems to the system uncertain-
ties can be expressed as follows:Xno

i�1

R�Oi�RED�S=Oi�1
Xnf

i�1

Pf �Fi�ROB�S=Fi�

� HN�S�2 Hn�S 0
A� �25�

The reliabilities and the failure probabilities in Eq. (25)
associated with each of the groups are calculated as
R�Oi� �

Pno;i
j�1 p�Eo

ij � and Pf �Fi� �
Pno;i

j�1 p�Ef
ij �:

The redundancy and the robustness of each of the groups
of modes of equal operational capacity and of equal failure
seriousness in Eq. (25), are defined as follows:

RED�S=Oi� � Hno;i
�S=Oi� � 2

Xno;i

j�1

p�Eo
ij �

p�Oi� log
p�Eo

ij �
p�Oi� �26�

ROB�S=Fi� � Hnf ;i
�S=Fi� � 2

Xnf ;i

j�1

p�Ef
ij �

p�Fi� log
p�Ef

ij �
p�Fi� �27�

The relation among the system redundancy (14) and redun-
dancies of the subsystem (26) is as follows:

R�S��RED�S=O�1 RED�S 0
A=O��

�
Xno

i�1

REL�Oi�RED�S=Oi�
�28�

The relation among the system robustness (22) and robust-
ness of the subsystem (27) is as follows:

Pf �S��ROB�S=F�1 ROB�S 0
A=F��

�
Xnf

i�1

Pf �Fi�ROB�S=Fi� �29�

In Eqs. (28) and (29), following terms with the meaning of
the redundancy and robustness of the system of subsystems,
are defined as follows:

RED�S 0
A=O� � RED�S 0

A�

� Hno
�S 0

A=O� � 2
Xno

i�1

p�Oi�
p�O� log

p�Oi�
p�O� �30�

ROB�S 0
A=F� � ROB�S 0

A�

� Hnf
�S 0

A=F� � 2
Xnf

i�1

p�Fi�
p�F� log

p�Fi�
p�F� �31�

The relation among the redundancy and robustness of the
whole system to the redundancies and robustness of the
groups of modes can be derived by the summation of Eqs.

(30) and (31) as shown:

R�S��RED�S=O�1 RED�S 0
A=O��

1 Pf �S��ROB�S=F�1 RED�S 0
A=F��

�
Xno

i�1

R�Oi�RED�S=Oi�1
Xnf

i�1

Pf �Fi�ROB�S=Fi� (32)

6. Example: a redundant plane truss structure

An event-oriented system analysis procedure will be
demonstrated on a plane statically indeterminate truss struc-
ture [17] (Fig. 2) considering variations in component prob-
ability distributions. The aim of the example is to assess the
redundancy and the robustness of the system of events, as
well as their relations to the system reliability and system
uncertainty.

6.1. System service modes and effects analysis

A system service modes and effects analysis is performed
first in order to identify all the modes and appropriate prob-
abilities of occurrence.

The structure fails if one of the edge elements 1, 2, 3, or 4
fails or if at least two of the remaining central elements 5, 6,
7, 8, 9 and 10 fail (Fig. 2). The minimal cut set is presented
in Fig. 3.

There areN � 210 � 1024 outcomes. Enumeration on a
digital computer determines all possible operational and
failure modes. There areNo � 7 operational modes and
Nf � 1017 failure modes.

Both the subsystems of operational modesO and the
subsystem of failure modesF are collected in the system
of eventsS.

The system of operational modesO, under the condition
that the system is operational, consists of the following
events with appropriate probabilities:

S=O �
Eo

1=O Eo
2=O … Eo

7=O

p�Eo
1�

p�O�
p�Eo

2�
p�O� …

p�Eo
7�

p�O�

0B@
1CA

Note thatAi ; i � 1; 2;…;10 are the events of operation of
ith component. The operational modes are defined on the
basis of the events of operations and failures of the
components, with following probabilities:

p�Eo
1� � p�A1�p�A2�p�A3�p�A4�p�A5�p�A6�p�A7�p�A8�p�A9�p�A10�;

p�Eo
2� � p�A1�p�A2�p�A3�p�A4�p� �A5�p�A6�p�A7�p�A8�p�A9�p�A10�;

p�Eo
3� � p�A1�p�A2�p�A3�p�A4�p�A5�p� �A6�p�A7�p�A8�p�A9�p�A10�;
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p�Eo
4� � p�A1�p�A2�p�A3�p�A4�p�A5�p�A6�p� �A7�p�A8�p�A9�p�A10�;

p�Eo
5� � p�A1�p�A2�p�A3�p�A4�p�A5�p�A6�p�A7�p� �A8�p�A9�p�A10�;

p�Eo
6� � p�A1�p�A2�p�A3�p�A4�p�A5�p�A6�p�A7�p�A8�p� �A9�p�A10�;

p�Eo
7� � p�A1�p�A2�p�A3�p�A4�p�A5�p�A6�p�A7�p�A8�p�A9�p� �A10�;

The dominant operational mode with the highest reliability
is the first modeEo

1 with all its elements operational, i.e.
with operational capacityO� 10=10: All other operational
modesEo

i ; i � 2; 3;…;7 have reduced operational capacity
O� 9=10; due to the failure of one of the central elements.
Due to a large number of failure modes, they are not
presented in the paper.

The systemS is the complete system of events, since

p�S� � p�O�1 p�F� �
X1024

i�1

p�Ei� � 1:0;

where

p�O� �
X7
i�1

p�Eo
i �

and

p�F� �
X1024

i�8

p�Ef
i �:

Furthermore, there is a range of potential views on the
system of events representing the plane truss structure in
Fig. 2. Let us consider the fully operational modeEo

1 with
all elements operating, as an outstanding mode, denoted as
subsystemO1 with only one mode. The remaining oper-
ational modesEo

i ; i � 2;3;…;7 represent the redundant
subsystem of six modes denoted asO2. The two subsystems

of operational modes are:

O1 �
Eo

1

p�Eo
1�

 !
and

O2 �
Eo

2 Eo
3 Eo

4 Eo
5 Eo

6 Eo
7

p�Eo
2� p�Eo

3� p�Eo
4� p�Eo

5� p�Eo
6� p�Eo

7�

 !
:

The system of eventsS can be now viewed as a compound
of three subsystemsS � �O1 1 O2 1 F� and the system
built of subsystems asS0A � �O1;O2;F�: The subsystem
of operational modes itself can be viewed as a set of two
subsystemsO � �O1 1 O2� and as a subsystem built of sub-
subsystems asO 0A � �O1;O2�:
6.2. Redundancy and robustness analysis of a statically
indeterminate plane truss structure

The parametric study of a plane truss structure by the
variation of element’s reliability is to be performed next.
The edge elementsA1, A2, A3, andA4 are assumed to be of
the same quality, also having identical reliabilities. The
central elementsA5, A6, A7, A8, A9 and A10 are of another
quality, with the reliability different from the edge elements.

6.3. Discussion of the results of the event-oriented system
analysis

The investigation of the effects of component reliabilities
upon the system, for an assumed low target system reliability
of 0.99, is illustrated in Fig. 4, Table 1, and discussed below:

1. The increase of the reliability of edge elements over
0.9999 does not have significant effects on system char-
acteristics (Table 1).

2. For the reliability of central elements under 0.9731, the
edge element reliability is unattainable.

3. For the reliability of edge elements under 0.99749, the
central element reliability is unattainable.

4. The target system reliability ofp�O� � 0:99 is accom-
plished when all elements are of identical reliability of
0.9975142.

5. The redundancy RED(S) is an increasing function of the
edge element’s reliability. The maximum attainable redun-
dancy amounts to RED�S�max� log2 7� 2:8073 bits. It
can be of interest to express the maximum achieved redun-
dancy relative to the maximum attainable redundancy as it
follows: RED�S�=RED�S�max� 0:9546=2:8073� 0:34:

6. The maximal robustness ROB(S) is encountered for the
edge elements reliability equal to 0.9993 and the central
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Fig. 2. Plane truss structure.

Fig. 3. Minimal cut set of the redundant plane truss structure on Fig. 1.



elements reliability of 0.9774. Then the entropy of failure
modes enriches the maximum value of 4.6470, indicating
that the probabilities of failure modes are maximally
uniformly distributed. The maximum attainable robustness
amounts to ROB�S�max� log2 1017� 9:9901 bits: It can
be of interest also to express the maximum achieved robust-
ness relative to the maximum attainable robustness as
ROB�S�=ROB�S�max� 4:6470=9:9901� 0:4651:

7. The system entropyH�O 1 F� is an increasing function
of the edge elements reliability. The maximum attain-
able system entropy equals toH�O 1 F� �
log 1024� 10 bits. The achieved system entropy is rela-
tively low with respect to the maximum entropy of the
system and amounts toH�O 1 F�=H�O 1 F�max�
1:0674=log 1024� 0:10674; indicatinga lowuncertainty.

8. The entropy of the system of operational and failure
subsystems is constantH�O;F� � 0:0808 due to
the imposed system target reliability ofp�O� �
0:99: The maximum attainable entropy of the system
of subsystems equals toH�O;F� � log 2� 1 bit: It
is apparent that there is a small uncertainty due to
high reliability, and only two subsystems of events.
The achieved entropy represents only a small
fraction of the maximum entropy, as shown:
H�O;F�=H�O;F�max� 0:0808=log 2� 0:0808:

9. The maximal system redundancy indicates the opti-
mal system operational abundance.

10. The maximal system robustness indicates the opti-
mal system endurance under distress.

6.4. Event oriented system analysis applied on the
subsystems of different operational capacities

The reliability of the fully operational modeO1 is
changing significantly with the variation of element’s reli-
abilities even when the target system reliability is constant.
The system reliability increases by the increase of the
central element reliabilities (see Table 1). The system
redundancy changes too. The redundancy of the fully oper-
ational modeO1 is RED�S=O1� � H1�S=O1� � 0; since
there are no other modes with all elements operating. It is
apparent that the subgroupO2 is perfectly redundant in case
when all central elements are of the same reliability. The
redundancy of the subsystemO2 is equal to RED�S=O2� �
H6�S=O2� � log 6� 2:5849 and attains the maximal value
due to the fact that all the probabilitiesp�Eo

i �; i � 2;3;…; 7
of alternative failure modes are identical. SinceH(S) is not
changed, the difference in system redundancy appears only
in H�S 0

A=O� � RED�S 0
A� of Eq. (30), indicating that there

is an increase in the redundancy of the system, see last
column in Table 1. This increase in redundancy is the
consequence of the decrease in reliability of a fully
operational mode and the uniformity of the probabilities
of operational modes. The increase of the system
redundancy leads to the unification of the operational
modes probabilities, i.e. p�Eo

1� reduces and the
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p�Eo
i �; i � 2;3;…7 increase. Note thatH�S 0

A=O�max �
RED�S 0

A�max � log 2 � 1 bit:

7. Conclusion

The idea underlined in the article is to relate the redun-
dancy and the robustness to the operational abundance and
failure endurance of systems of events. Such character-
isations, based on common engineering reasoning, are
expected to be relevant from the engineering point of
view. These probabilistic system properties are either
intuited or conceived by common engineering reasoning.
If these intuited properties are properly chosen, then such
arguments can show the real relevance of definitions of
redundancy and robustness for engineering purposes. More-
over, it has been demonstrated how these properties are
related to the uncertainties of a system of events. The redun-
dancy and the robustness were interpreted in terms of
uncertainties and expressed by entropy. In the axiomatic
treatment of entropy it is shown that only entropy has the
properties in full agreement with intuition about uncertain-
ties. Consequently, redundancy and robustness, defined by
entropy of operational and failure modes, are the only
rational measures for system operational abundance and
endurance to failures. The entropy as a measure of the
system uncertainty does not depend on anything else than
the possible events and in this sense is entirely objective.
Hence, the redundancy and robustness as defined in the
article by entropy are also objective measures of system
operational abundance and endurance to failures.

Engineering systems employing more operational and
failure modes, with known probabilities, are denoted in
the article as probabilistically redundant and robust with
respect to the operational and failure modes. The term
redundancy in the article is assigned the notion of probabil-
istic abundance in a number and in probabilities of oper-
ational modes. Analogously, the word robustness in terms of
failure events denotes an excessive capability to respond to
all the demands by a number of failure modes with adequate
probability distribution.

Some of the consequences of the definitions of the redun-
dancy and robustness of the systems of events for the
engineering design can be summarised as follows:

• The system reliability and the system redundancy are two
independent system characteristics referring only to the
operational states of the system.

• The system failure probability and system robustness are
two independent characteristics but referring only to the
failure modes of the system.

• The request for adequate system reliability leads to maxi-
mal attainable probabilities of operational modes, as well
as to minimal attainable probabilities of failure modes.

• The requests for high system redundancy and high
system robustness lead to maximally attainable unifor-
mity of the probability distributions of operational modes
and of failure modes, respectively, regardless of the
system reliability or failure probability.

The same system of events can be viewed in different
ways. Some of the operational modes can be considered
more important from the designer’s or from the user’s
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Fig. 4. Results of event-oriented system analysis for a given target system reliabilityp�O� � 0:99 and various reliabilities of elements for a redundant plane
truss structure.



point of view, for example when all elements operate, than
all the other operational modes with reduced operational
capabilities. On the other hand, some of the failure modes
can endanger systems much more than any other of the
failure modes. The presented approach allows separate
and joined analysis of different groups of operational and
failure modes of special interest, as well as their relations.

Computational problems involved in redundancy and
robustness assessment of large systems arise from the
complexity of the probability calculations of all the oper-
ational and failure modes. For highly redundant and robust
systems there is usually a great number of operational and
failure modes. The presented approach allows to concen-
trate the analysis only on the observable and important
modes, being numerically feasible. It is not impossible
that in the next future, thanks to an enormous increase in numer-
ical capacities of newgenerations of computers, the redundancy
and robustness of systems of events will be taken into consid-
eration in the assessment of overall system effectiveness.

References

[1] Nikolaidis E, Kapania RK. System reliability and redundancy of
marine structures: a review of the state of the art. J Ship Res
1990;34(1):1990.

[2] Feng YS, Moses F. Optimum Design, redundancy and reliability of
structural systems. Computers and Strctures 1986;24(2):1986.

[3] Chen K, Zhang S. Semi-probabilistic method for evaluating system

redundancy of exisiting offshore structures. Ocean Engineering
1996;23(6):1996.

[4] Gnedenko B, Ushakov I. In: Falk J, editor. Probabilistic reliability
engineering, New York: Wiley, 1995.

[5] Ben Haim Y. A non-probabilistic measure of reliability of linear
systems based on expansion of convex models. Structural Safety
1995;17:1995.
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