PROBABILISTIC
ENGINEERING
MECHANICS

o Hee 7N
ELSEVIE Probabilistic Engineering Mechanics 15 (2000) 347—357
www.elsevier.com/locate/probengmech

Redundancy and robustness of systems of events

K. Ziha*

University of Zagreb, Faculty for Mechanical Engineering and Naval Architecture, Ilvanga s Zagreb, Croatia

Abstract

The article aims to add a new impetus to rational and objective probabilistic evaluation of redundancy and robustness, based on
uncertainties of systems and subsystems of events. An attempt is made to demonstrate the relevance of intuitive comprehension of
redundancy and robustness of engineering systems of events. An event-oriented system analysis of a number of random observable
operational and failure modes, with adverse probability distributions in a lifetime, may provide a deeper understanding of systems opera-
tional abundance and endurance. The system uncertainty analysis is based on the concept of entropy as defined in information theory and
applied to probability theory. The article relates reliability, uncertainty, redundancy and robustness of systems of events and their application
is illustrated in numerical example® 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction survival given if one component fails. The semi-probabil-
istic methods in redundancy assessment benefit from first-
Redundancy and robustness are inherent in the majorityorder reliability analysis. The optimisation of system redun-
of complex engineering systems and have been viewed indancy in order to increase reliability of a system, with
different ways. Both the redundancy and the robustness arenumber of components under possible restrictions, also
usually related to the system reliability and considered, on including cost functions, has been recognised as an effective
one hand, as a capacity of a system to operate even whemmethod in reliability improvement [4]. The system reli-
some of the physical components have failed or on the otherability can also be linked with the robustness of the system.
hand, as a system responsive to adverse conditions. RedunA system is considered reliable in terms of robustness if it is
dancy can be classified as either local or overall (e.g. for robust with respect to input and failure uncertainties, and
marine structural systems [1]). Whilst local redundancy consequently it has low reliability when even the small
refers to local reserve of operational capacity in system amounts of uncertainty entail the possibility of failure [5].
physical components, the overall redundancy can be The scope of this article does not cover the physical or
expressed as a system reserve capacity or a residual systemrobabilistic measures for redundancy and robustness with
capacity (e.g. for structural systems [2]). System reserve respect to the components of the system, since these
capacity is the margin between the design demand and itsproblems has been elaborated elsewhere (e.g. [4]). More-
limit state, or the ultimate capacity of the overall system to over, the article investigates probabilistic measures for
sustain the demands. The residual system capacity of operoperational abundance and endurance, associated with
ation is the remaining capacity after one or more com- engineering systems and subsystems of events.
ponents have failed or become non-operational. The The article demonstrates how system uncertainties,
redundancy of system’s operation can be quantified in deter-obtained as results of an event-oriented system analysis
ministic, probabilistic and semi-probabilistic terms (e.g. for [6], can be interpreted in terms of system redundancy and
structural systems [3]). The main disadvantage of determi- system robustness associated with the subsystems of oper-
nistic measures of redundancy is that they do not take into ational and failure modes [7]. Such an approach to system
consideration the statistical uncertainties of the system.analysis may provide a more comprehensive assessment of
Most widely used probabilistic measure of system redun- system performance and hopefully a better system design.
dancy is based on the conditional probability of system Intuition and common engineering reasoning are applied to
a system surplus of probabilities and a number of oper-
"% Tel.: +385-1-616-8132; fax: 385-1-615-6940. ational and failure modes. The simplest system provides
E-mail addresskziha@fsb.hr (K. Zha). only one operational and one failure mode, and does not
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operational modes, and how system robustness, contrary

Nomenclature to system redundancy, can be related to the uncertainty of
A,E random events in general the failure modes. System redundancy_and system rpbust—
H()  Shannon’s entropy of a system of events ness are defined as complementary bgsw chara(?terlstlcs ofa
HY(:)  Renyi's/Shannon’s entropy of order one system, apart from the system reliability and failure prob-
N,n  numbers of systems and of subsystems ab|I|ty._ Thg system uncertainties are expressed by.entropy
e ™ number of operational and failure subsystens @S defined in information theory [8—12] and as used in prob-
N, Ny number of operational and of failure events ability theory [13]. An example is given to illustrate the

n

p(-) probabilities of random events, (sub)systen application of an event-oriented system analysis to a redun-
P(%) probability of failure of the system dant and robust plane truss structure.

R(&) system reliability
RED(¥) system redundancy

ROB(¥) system robustness 2. Engineering systems and subsystems of operational

k% system of events in general and failure modes

g’ system of subsystems of events o o o

0, F subsystems of operational and of failure The probabilistic system analysis is bz_as_ed on §tat|st|cal
events data about physical components and their interactions (e.g.

[4,14—19]). In addition to the probabilistic system analysis,
an event-oriented system analysis can be performed on the
render any superfluity in operational capacities or in basis of known or observable lifetime events [6]. By opera-
responses to failures. If there are more operational and fail-tional modes and effects analysis, all, or at least all obser-
ure modes, with known probabilities, the system can be vable, event; of a system can be determined. Some of the
viewed as probabilistically ample in normal functions or eventsE; are operational modes, denotedZgstatus= O),

in necessary working conditions. Such a system is denotedand other events can be regarded as failure modes, denoted
as probabilistically redundant and robust with respect to with E! (status= F). The probabilities of possible modes
operational and failure modes. To the term redundancy, can be hopefully calculated by using quantitative methods.
the article assigns the notion of a probabilistic abundance They are denoted ag(E), i =1,2,...N. N is the total

in a number and probabilities of operational modes. Analo- number of all, or at least observable random events, consti-
gously, the word robustness, in terms of failure events tuting system of events’. A distribution of system mode
denotes an excessive capability to respond to all demandsprobabilities is presented in Fig. 1. Since the sequence of
by more adequate failure modes. The article argues howsystem modes is irrelevant in system performance analysis,
system redundancy can be related to the uncertainty ofthe operational modes are collected and presented on the

ProRability
1 Probability of unobservable events +
p(J‘)_: ............................... Sstemre/,ab,/,t ......................... P
R Y Y ‘f s
Operational modes

probability distribution

N

RS (E®) Maximum redundanc)

N, \ (uniform distribution)

Failure modes
probability distribution

Ma3ximum robustness //\K(E/ ) | P()

(uniform distribution) /| N,

E’ E} 0 E; E/ Ef-- E} Modes
L Il F |
Operational modes Failure modes

Fig. 1. Distribution of system mode probabilities.
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left-hand side of Fig. 1, and the failure modes are presented2.1. Engineering system uncertainties

in continuation, on the right-hand side of Fig. 1. The system )
presented as summation of two subsystemand #, as events.” and &' expresses the system uncertainties and

shown: can be determined as Renyi’'s/Shannon’s entropy of order
one, defined as follows:
E, E, o Ey ‘
s = =O+7) HN (%) = HY(0 + 7) = HY()
P(E1) p(E2) -+ P(En)
- . . . N N
The probability associated with the system of everitis as _|_ E)| E / E)— H() 5
ollows. ;p( ) log p(E) ;m V= o O
N
P =D p(E) D HIY)=HYO,7)
i=1
1 772 772
& is a complete system whét.#) = 1, and an incomplete = H(Y") = [-p(O)log p(¢) — p(F)log p(F)]
system whemp(&) < 1. H(!
The subsystenm®® comprises all of the random events p(O) + p(F)] = (- /) (6)
E’ i=12,...N, when the system is operating: P
= = = The maximal entropy of systens§ and.#”’ are obtained for
0= ( 5 5 (;’ ) N and for 2 equally probable events, as:
E E E,
pP(ED)  p(E2) P(En,) i~ N 1 p&) o ) _ o N -
The subsystem? consists of all the random evenk, N Jmax p(#) N 97N gp(y)
i =1,...,N; when the system fails:
1 p¢") p(s") 2
Ef e ... £ Loop! = _ P =
. ( & ) ) MBS e = =20 = 1095 = =log o ®
PE) pE) - pE) Note that through in the mathematical expressions the base
The total number of events is equal My + Ny = N. It of logarithm is usually two.

may also be noted that the sequence of the events of a
system or of subsystems is irrelevant with respect to relia-
bility and uncertainty considerations.

The reliability of the system, denoted aB(¥),  The redundancy in event-oriented system analysis is
corresponds to all of the outcomes when the System iSie\eq as a capability of a system to continue operations
operating and can be calculated as the probability of the )y, yerforming different random operational modes of given
subsystem of operational modpf’) as: probabilities in case of random failures of components.

3. Definition of the redundancy of the system of events

No Performing another operational mode, the system may be
R = p(0) = D p(ED). (2 brought on equal or on the reduced operational capacity.
i=1 The operational capacities can be viewed either as the prob-
The failure probability of the system denoted B.Y) abilities of operational modes or as the physical or technical

corresponds to all of the outcomes when the system fails working capacities of a damaged system. However, it is
and can be calculated as the probability of the subsystem ofintuited that a highly redundant system has more operational

failure modeg(#) as: modes of similar level of reliability (Fig. 1). If so, there is an
N uncertainty about which of the operational modes is to be

Pi(S) = p(F) = Zp(Eif) 3) performing. The operational capacities of alternative oper-
= ational modes are in general different from the principal

! of b f h idered operational mode and should also be taken into account in
A system” of two subsystems of events, each considere the assessment of system redundancy. Hence, the redun-

as acompound evept denotedor the system.operatlng and dancy of a system is only related to the operational modes
denotedZ for the failed system, can be defined as follows: of the system.

O F The intuitive expectations based on common engineering
00) p(F) reasoning on the measure of the redundancy of a system of

events are listed next:
Either for complete systems, whea’) = 1, or for incom- . ) .
plete systems, whem %) < 1, it holds: 1. REDUNDANCY (System/Operationadj O: If there is

no operational modes or if there is only one operational
p(O) + p(F) = p(L) = p(S") 4% mode or, if among a number of operational modes, one is

S =(0,F)=
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dominantly probable, i.e. sure, there is no redundancy at denoted a€), can be presented as follows:
all. In all other cases, the redundancy should be positive.

O 0 ) e O
2. REDUNDANCY  (System/Operationa maximum: ST Ex,/C
Redundancy is greatest if all the alternative operational #/0 = | pES9)  p(ED) p(ER,)
modes are of the same probability of occurrence and poO)y  plO©)  p)

possibly, of the same operational capacity. The maxi-
mum redundancy can be associated with the set of The uncertainty of the subsystem of operational mofies
equally probable alternative operational modes of the can be expressed as Shannon'’s entropy applied only to the
same level of operational capacity. If equally probable System¢ under the condition that it is operationat/.
alternative Operationa| modes of the same level of The condition that the Systelﬁ7 is WhO”y Operational with
operational capacity are considered, the larger a set ofProbability p(¢) is considered as a complete conditional
operational modes, the more redundancy is gained. ~ distribution.

3. REDUNDANCY (System/Operational) is independent According to the definition of the conditional entropy of
of the sequence of operational modes. The sequence ofperational modes, it follows:
the events within the system or within subsystems is

< PE) | PED)
irrelevant with respect to the redundancy. Hy, (S10) = — Z P (' log P r' 9)
4. REDUNDANCY (System/Operationay 1 (by the = PO 7 pO)

definition of a unit): The definition of the unit of redun-
dancy is not more or less arbitrary than the choice of the
unit of some physical quantity. E.g., it can be maintained
that the redundancy is equal to one if there are only two
equally probable operational modes.

The following relation expresses the differences between
the conditional entropy of a subsystetnrepresented by
partial distribution of¥ denoted as”/¢ and the entropy
of order one of a systenti viewed as an incomplete one:

Hy, (10) = Hy, (©) + log p(0) (10)

The intuitive description of the system redundancy based ) , . ,
on the set of operational modes is very reminiscent of the " Ed- (10), the following term is the Renyi's/Shannon’s
definition of the uncertainty of a system of events, which is Ntropy of order one, corresponding to the entropy of
denoted in the information theory as entropy. The principal incomplete system of events, which is defined as follows:
problem of the application of entropy on the_ definition of the H&IO(@) = Hy, (O)/p(0) (12
redundancy is that the entropy can be applied to complete or
incomplete systems of events, and that the subsystem ofin Eqg. (11), partial summa within the systerh correspond-
operational modes is obviously a partial distribution of ing to only operational modes is as shown:
probabilities of a subsystem of operational modes. In Ny
order to overcome this problem, let us consiq_er the sub- Hy, () = — Zp(EiO) log p(E?) (12)
system of operational modes under the condition that the i=1
system itself is operational, denoting the conditional oper-
ational events ag}/¢.

The probability distribution of operational modes
p(EY), i = 1,2, ... N, is considered as a partial distribution
of probabilities. The subsystem of operational modeis Ho (Z10)m = —N R(Y) log R(Y)
part of a distribution of probabilities of the entire system of ~ No'~ ©~ /max ° N, N,
events?. However, every partial distributiom E’) can be
assigned an ordinary or complete distribution by substitut-
ing p(E’/0) instead ofp(E). It may be interpreted as a
complete conditional distribution of probabilities with
respect to the conditions that the systefhof known i.e.
observable modes is operational with probabifity).

The maximum entropy of operational modes is attained for
N, equally probable events with probabilitiBs¥)/N,, Fig.
1, and amounts to:

=logN, (13)

Common characteristics of the entropy (e.g. [11-13])
applied only to the subsystem of operational modes consid-
ered as a complete conditional distribution with respect to
the condition that the system in a whole is operational are
resumed next:

It is clear thatp(EP/O)p(0) = p(EP). 1. H(%/0) = 0 if none or only one of operational modes
The subsystem of only operating modésan be viewed can occur;
under the condition that the system of all known modess 2. H(¥10) = Hpa if all the operational modes are equally
wholly operational. Let it be denoted &&/¢. It can be probable;

proven that the conditional probability of subsystem of 3. H(%/¢) does not depend on the sequence of the events;

operational modes?’/0, with respect to the conditions 4. H(%/0) = 1 definition of a unit is arbitrary; in general

that the system is wholly operational, depends only on the the base of the applied logarithm is used. For example,

probability of a subsystem of operational modeéstself. for logarithm base of two, the unit entropy 1 bit,

Obviously,p(£/0) = 1. corresponds to uncertainty associated with a system of
The system? under the condition that it is operational, two equally probable events.
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The intuitive expectations of redundancy measure system can provide more adequate failure modes to
comply with the characteristics of the conditional entropy adverse demands with more or less equal probabilities,
of the subsystem of operational modes considered as aFig. 1. A robust system can become non-operational at
complete conditional distribution with respect to the con- different levels of failure. The failure levels can be viewed
dition that the system in a whole is operational with known either as the probabilities of failure of alternative failure
probability. The above considerations show that the redun- modes or as the levels of physical or technical failures of
dancy of the system of events can be rationally and objec-the system. When the system responds to all demands
tively measured by the entropy of operational modes under uniformly, there is a high uncertainty about which of
the condition that the system of all known or observable the failure modes could occur. Hence, the system robust-
modes is operational and can be written succinctly as ness is related only to the failure modes of the system in
follows: the same manner, as the redundancy is related to the opera-

. tional modes.
REDUNDANCY (SystentOperational = RED(./() The intuitive expectations and common engineering
reasoning about the measure of the robustness of a system
of events are listed next:
Note that the redundancy optimisation has been recognised
earlier as the maximisation of the reliability of a series 1. ROBUSTNESS (system/fails) O: If there is no failure

= RED(Y) = Hy (¥70) (19

system composed o, independent redundant groups,

denoted as subsystems, by introducing additional redundant

components [4]. A redundant group is not necessarily a
separate part of a system. It may be a group of units of

or non-operational modes or if there is only one failure or
non-operational mode or, if among a number of failure or
non-operational modes, one is dominantly probable, i.e.
sure, there is no robustness at all. In all other cases, the

robustness should be positive.

ROBUSTNESS (system/fails) maximum: Robustness

is greatest if all the alternative failure or non-operational

modes are of the same probability of occurrence and

possibly of the same level of failure. The maximum

robustness can be associated with the set of equally prob-

able alternative failure or non-operational modes with the

N, same level of failure. If equally probable alternative fail-
[1 - p(RO)] ure or nop—operatlonal modes of the same level of failure

= are considered, the larger the set of failure modes, the

(15) more robustness is gained.

. 3. ROBUSTNESS (system/fails) is independent of the
In Eq. (15)R° =R}, Ry, ... R}, is a set of the system’s

_ o= ysSte sequence of the failure modes. The sequence of the
redundant groups of uni®’s andp(Ry) is the reliability events within the system or within the subsystems is
index of theith redundant groug,= 1,2, ...,N,. The reli-

ex . | N irrelevant with respect to robustness considerations.
ability index in Eq. (15) can be also presented in additive 4 ROBUSTNESS (system/fails) 1 (the definition of a

the same type, which uses the same redundant units. For
instance, in spare-parts problems a redundant group might2.
be a set of identical units allocated throughout the entire
system in different places. In this context, the system
reliability index can be expressed as the probability of
successful operation of a series system consisting of inde-
pendent groups of redundant units, as presented:

No
p(R%) = p(RL, R, ... R = [ [p(R) =1 -
i=1

form as: unit): The definition of the unit of robustness is arbitrary
N, just as it was in the definition of redundancy. Let us, for
L(R) = L(RY, RS, ... RR,) = —log p(R%) = > — log p(RY) example, agree that the robustness equals one, if there are
i=1 only two equally probable failure modes.

(16)

The intuitive description of the robustness of a system of
events based on the set of failure modes strongly reminds of
{he definition of redundancy defined on the set of oper-
ational modes. The same approach to the definition of
robustness can be applied as in the definition of redundancy.
The subsystem of only failure modeg can be viewed
under the condition that the system of all known moges
is failed, let it denotes’/# . It can be proven that the con-
ditional probability of the subsystem of failure mod&s7,

The principal difference between the robustness and thewith respect to the conditions that the system of known or
redundancy of a system of events as viewed in the event-observable modes is failed in a whole, depends only on the
oriented system analysis is that robustness is regarded as thprobability of the subsystem of failure mode® itself.
system’s capability to respond to all possible random fail- Obviously,p(¥/%) = 1.
ures uniformly. A robust behaviour is intuited when the  The system under the condition that it is failed,

The term (16) is used as a reliability measure in terms of
redundancy. However, such a measure does not account fo
the probability distribution of operational events and has an
entirely different meaning from the redundancy defined here
by the term (14).

4. Definition of the robustness of the system of events
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denoted as7, can be presented as follows: conditional entropy of the subsystem of failure modes, as
t £ pu it is presented earlier by consideration about the redun-
SN E:“f/'/ dancy. Presented considerations allow that the robustness
é- =
SNF p(ED  pEH p(ELf) ]?f'lthe systdem of Sve?rt]s can db(ta miﬁsgiﬁd by tthe gntrorp:yl of
D7) pF T p7) ailure modes under the condition that the system in whole

is non-operational. It can be written in condensed form as
The uncertainty of the subsystem of failure modegan be follows:

expressed as Shannon’s entropy applied only to the systems

& under the condition that it is non-operationél .7 . It is ROBUSTNESS SystenFails) = ROB(//7)
considered as a complete conditional distribution with
respect to the condition that the system fails with probability
p(&) and, according to the definition of the entropy of fail-
ure modes, it follows:

= ROB(S) = Hy (#17) (22)

5. The relation between the redundancy and the
a7 robustness and the system reliability

p(Ef p(Ef>
Z p(. 7 %)

The following relation expresses the differences between
the conditional entropy of a subsyste#n represented by

a partial distribution of” denoted as”/# and the entropy

of order one of a systen¥ viewed as an incomplete one,
where:

Hy, (S17) =

It can be proven that the following expressions bring into
the relation the system redundancy, the system robustness
and the overall uncertainty of the system and of the system
of operational and non-operational subsystem [6]. The
weighted summa of the entropy of the subsystemand
Z of the system¥’ can be represented, using mathematical
Hy (717) = HY, (F) + log p(#) (18 notation, as shown:

In Eq. (18), Renyi's/Shannon’'s entropy of order one, P(OH(L/0) + p(F)H(LIF)
corresponding to the entropy of incomplete system of

event, is defined as shown: = P(A)HE(S) — HA(SN)]
HR, (7) = Hy(Z)/p(F) 19 —H(O + 7) — H(O, F) (23)

In EqQ. (19), partial summa within the syster correspond-

. . . The same relation can also be expressed in terms of reli-
ing to only failure modes, is as follows:

ability, redundancy and robustness measures:
Ny
H(#) = = > p(EDlog p(E)) 20 RIREDS) + P(SHROBKT)

_ 1 oyl li
The maximum entropy of the failure modes is attained\for = PN = Ha (S

equally probable events with probabilitiesR{.¥)/N; (Fig.

1), and amounts to: =HO+7) - H,7) (24

HNf(ty/g?)max= —N;

P) log Pflsly) =logN, (2D
f

Nt

The common characteristics of entropy, now applied only to
the subsystem of failure modes considered as a complete pjore generally, there can be, groups of modes with
conditional distribution with respect to the condition that ¢gme operational capacities of groups of modes with

the system in whole is non-operational are resumed next: he same failure seriousness. Then the system of events
1. H(Z/7) = 0 if only one of the failure modes can occur; ¢an be decomposed into more than only two subsystems,
2. H(ZIF) = Hpay if all the failure modes are equally ~ With subscriptA denoting different system of subsystems

5.1. The subsystems of operational and failure modes

probable; S, Wheren = n, + g, as follows:
3. H(¥/7) does not depend on the sequence of the events; o> — (0, + @, + --- + On, 1+ Tt o+ Ty

4. H(&1#) = 1 definition of a unit is arbitrary; in general,
the base of applied logarithm is used. For example, for and
logarithm base of two, the unit entropy 1 bit, corresponds A
to uncertainty associated with a system of two equally
probable events. The subsystems of operational and failure modes are defined
as compounds of subsystems as

=(01,0p, ... On s T 1, F 3, s F ).

The intuitive expectations of the robustness measure of
systems of events comply with the characteristics of the ¢ = (0, + O, + - + Oy) F=(F 1+ T+ -+ T
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and (30) and (31) as shown:
Opn=(01,0p,...05),  Fn=(F1.F g, ... ). R()RED(Z/0) + RED(S4/0)]

The relation of the reliability, failure probability, redun- + P(9)[ROB(Y/.F) + RED(SLN.F)]
dancy and robustness of subsystems to the system uncertain-

ties can be expressed as follows: N ny
N . = Z R(OHRED(Z/0) + Z P{(Z)ROB(Z1F)  (32)
S ROHREXZ10) + S P(F)ROB(S1F) =t =t
i=1 i=1

= Hn (%) — Ha(SR) (25

The reliabilities and the failure probabilities in Eq. (25)

associated Wlth each of the groups are calculated as An event-oriented system analysis procedure will be
R = 3 p(E]) and Py(#) = ¥ p(E). demonstrated on a plane statically indeterminate truss struc-
The redundancy and the robustness of each of the groupsure [17] (Fig. 2) considering variations in component prob-
of modes of equal operational capacity and of equal failure apijlity distributions. The aim of the example is to assess the
seriousness in Eq. (25), are defined as follows: redundancy and the robustness of the system of events, as
Noj P(ED) | p(Eﬂ-’) well as their relations to the system reliability and system

o] 26 uncertainty.
2 py pay 0 ¢

6. Example: a redundant plane truss structure

RED(S/0}) = Hy (F10}) = —

6.1. System service modes and effects analysis

< pE) | pE)

Z p(Z)) lo p(Z)) @20 A system service modes and effects analysis is performed
first in order to identify all the modes and appropriate prob-

The relation among the system redundancy (14) and redun-abilities of occurrence.

dancies of the subsystem (26) is as follows: The structure fails if one of the edge elements 1, 2, 3, or 4

fails or if at least two of the remaining central elements 5, 6,

7, 8,9 and 10 fail (Fig. 2). The minimal cut set is presented

ROB(Y/7;) = Hy, (#177) = —
=1

R()RED(S/0) + RED(SA/O)]

No (28) in Fig. 3.
= > REL(¢)RED(Z/0}) There areN = 2!° = 1024 outcomes. Enumeration on a
i=1 digital computer determines all possible operational and

failure modes. There arbl, = 7 operational modes and
N; = 1017 failure modes.
Both the subsystems of operational modesand the

The relation among the system robustness (22) and robust-
ness of the subsystem (27) is as follows:

P{(S)[ROB(S/F) + ROB(SALF)] subsystem of failure modeg are collected in the system
y of events?.
_ Z P.(7)ROB(Z/7F) (29) The system of operational modés under the condition

that the system is operational, consists of the following

) ) ] events with appropriate probabilities:
In Egs. (28) and (29), following terms with the meaning of

the redundancy and robustness of the system of subsystems, EVO  EYO ... B0
are defined as follows: F10=| pED pEY p(E9)
RED(SA/0) = RED(SA) PO pO T p(o)
p(@_) Note thatA;, i = 1,2,...,10 are the events of operation of

= Ho (SHO) = Z P |

p(@) p(@) (30 ith component. The operational modes are defined on the

basis of the events of operations and failures of the
components, with following probabilities:

P(ED) = P(A)P(A2)P(A3)P(A4)P(As)P(A6)P(A7)P(Ae)P(A9)P(Aq0):

ROB(SA/F) = ROB(S4)

=Hy (PAF) = — (32
= p(e/ ) (J') o -
P(E2) = P(ADP(A2)P(A3)P(A4)P(As)P(Ag)P(A7)P(Ag)P(Ag)P(Ad0);

The relation among the redundancy and robustness of the

whole system to the redundanues and robustness of the
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10

5

Fig. 2. Plane truss structure.

P(E3) = P(ADP(A)P(A3)P(AL)P(As)P(A)P(A7)P(Ag)P(Ag)P(Arp);
P(E2) = P(ADP(A)P(A3)P(A1)P(As)P(A6)P(A7)P(Ag)P(Ag)P(Arp);
P(E]) = P(ADP(A2)P(A3)P(A1)P(As)P(A6)P(A7)P(Ag)P(Ag)P(Arp);

P(E?) = P(ADP(A2)P(A3)P(AL)P(As)P(A)P(A7)P(Ag)P(Ag)P(Ao);

The dominant operational mode with the highest reliability
is the first modeE? with all its elements operational, i.e.
with operational capacit® = 10/10. All other operational
modesE?, i = 2,3,...,7 have reduced operational capacity
O = 9/10, due to the failure of one of the central elements.
Due to a large number of failure modes, they are not
presented in the paper.

The system? is the complete system of events, since

1024
PY) =pO) +p(F) = > pE) = 10,
i=1

where
,
pO) => p(E)
i=1

and

1024

p7) = pED.

i=8

Furthermore, there is a range of potential views on the

system of events representing the plane truss structure in

Fig. 2. Let us consider the fully operational moBg with

all elements operating, as an outstanding mode, denoted as

subsystem®,; with only one mode. The remaining oper-
ational modeskE?, i = 2,3,...,7 represent the redundant
subsystem of six modes denoted(gs The two subsystems

K. Ziha / Probabilistic Engineering Mechanics 15 (2000) 347-357

of operational modes are:

E?
~(en)
p(E1)
and
0 ( ES ES ES E2 ES ES )
2= .
P(ED) p(E3) PpED pE3 pEY PpE?)

The system of event®’ can be now viewed as a compound
of three subsystem&’ = (01 + O, + &) and the system
built of subsystems aS§y = (04, 05, ). The subsystem
of operational modes itself can be viewed as a set of two
subsystemg = (O, + ») and as a subsystem built of sub-
subsystems a6y = (04, 0).

6.2. Redundancy and robustness analysis of a statically
indeterminate plane truss structure

The parametric study of a plane truss structure by the
variation of element’s reliability is to be performed next.
The edge elementd;, A, A;, andA, are assumed to be of
the same quality, also having identical reliabilities. The
central elementg\s;, As, A7, Ag, Ay and Ay are of another
quality, with the reliability different from the edge elements.

6.3. Discussion of the results of the event-oriented system
analysis

The investigation of the effects of component reliabilities
upon the system, for an assumed low target system reliability
of 0.99, is illustrated in Fig. 4, Table 1, and discussed below:

1. The increase of the reliability of edge elements over
0.9999 does not have significant effects on system char-
acteristics (Table 1).

. For the reliability of central elements under 0.9731, the
edge element reliability is unattainable.

. For the reliability of edge elements under 0.99749, the
central element reliability is unattainable.

. The target system reliability gf(®) = 0.99 is accom-

plished when all elements are of identical reliability of

0.9975142.

The redundancy RED) is an increasing function of the

edge element’s reliability. The maximum attainable redun-

dancy amounts to RED’)ax = 100, 7 = 2.8073 bits. It

can be of interest to express the maximum achieved redun-

dancy relative to the maximum attainable redundancy as it

follows: RED(Y)/RED(S ) max = 0.95462.8073= 0.34.

The maximal robustness RCB(is encountered for the

edge elements reliability equal to 0.9993 and the central

5.

6.

Fig. 3. Minimal cut set of the redundant plane truss structure on Fig. 1.



Table 1

Results of event-oriented system analysis for a given target system religbdlity= 0.99 and various reliabilities of elements for a redundant plane truss structure

1, 0)

RED(S

bits

H(S) — H(S"

bits

ROB(¥)

bits

RED(%)

bits

H(O0,7)

bits

H(O + 7)

bits

Operational modes

Reliabilities of elements

Eq. (30)

Eq. (22) Eq. (24)

Eq. (6) Eq. (14)

p(Oy) p(0y) Eq. (5)

Central

(0999959

Edge

0.0038
0.0164
0.0774
0.1108
0.2983
0.3326
0.4462
0.5063
0.5348
0.5519
0.5813
0.5874
0.5876
0.5887

0.0153
0.0403
0.1127
0.1701
0.4624
0.5574
0.7218
0.8339
0.8880
0.9164
0.9658
0.9864
0.9865
0.9868

2.0430
2.0594
2.1828
2.2791
32114

0.0049
0.0199
0.1018
0.1488
0.4346
0.5269
0.6861
0.7959
0.8500
0.8825
0.9408
0.9530
0.9543
0.9546

0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808
0.0808

0.1061
0.1211
0.2035
0.2509
0.5432
0.6382
0.8026
0.9147
0.9688
1.0072
1.0556
1.0672
1.0673
1.0674

0.0003
0.0015
0.0094
0.0146
0.0523
0.0607
0.0920
0.1110
0.1207
0.1267
0.1375
0.1398
0.1399
0.1403

0.9897
0.9885
0.9806
0.9754
0.9377
0.9293
0.8980
0.8790
0.8693
0.8633
0.8525
0.8502
0.8501
0.8497

0.997489
0.997491
0.9975

0.999752
0.9984

0.997514 |
0.9967
0.9882
0.9832

[0.997514
0.9978
0.998

3.6010
4.2602
4.5884
4.6470
4.6223
4.3452
4.1837
4.1555
4.1515

0.9985
0.999

0.9794
0.9774
0.9761
0.9738
0.9733
0.9732
0.9731

0.9993
0.9995
0.9999

0.99999

0.999999

0.9999999
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elements reliability of 0.9774. Then the entropy of failure
modes enriches the maximum value of 4.6470, indicating
that the probabilities of failure modes are maximally
uniformly distributed. The maximum attainable robustness
amounts to ROBY) .= 100, 1017= 9.9901 bits It can

be of interest also to express the maximum achieved robust-
ness relative to the maximum attainable robustness as
ROB(.%)/ROB(Y)max = 4.64709.9901= 0.4651

7. The system entrogy(¢ + )is anincreasing function
of the edge elements reliability. The maximum attain-
able system entropy equals toH(O + %)=
log 1024= 10 bits. The achieved system entropy is rela-
tively low with respect to the maximum entropy of the
system and amounts t¢l(0 + Z)H(O + F)max =
1.0674log 1024= 0.10674 indicating a low uncertainty.

8. The entropy of the system of operational and failure
subsystems is constant(®, #) = 0.0808 due to
the imposed system target reliability gb(¢) =
0.99. The maximum attainable entropy of the system
of subsystems equals td(0, %) =log 2= 1 bit. It
is apparent that there is a small uncertainty due to
high reliability, and only two subsystems of events.
The achieved entropy represents only a small
fraction of the maximum entropy, as shown:
H(O, #)H(O, F)max = 0.0808log 2 = 0.0808

9. The maximal system redundancy indicates the opti-
mal system operational abundance.

10. The maximal system robustness indicates the opti-
mal system endurance under distress.

6.4. Event oriented system analysis applied on the
subsystems of different operational capacities

The reliability of the fully operational mode?; is
changing significantly with the variation of element’s reli-
abilities even when the target system reliability is constant.
The system reliability increases by the increase of the
central element reliabilities (see Table 1). The system
redundancy changes too. The redundancy of the fully oper-
ational mode (), is RED(¥/0,) = Hi(¥/0,) = 0, since
there are no other modes with all elements operating. It is
apparent that the subgrodp is perfectly redundant in case
when all central elements are of the same reliability. The
redundancy of the subsystefi is equal to RERY/0,) =
Hg(#/0,) = log 6 = 2.5849 and attains the maximal value
due to the fact that all the probabilitieeE?), i = 2,3,...,7
of alternative failure modes are identical. Sildg”) is not
changed, the difference in system redundancy appears only
in H(¥)0) = RED(¥}) of Eq. (30), indicating that there
is an increase in the redundancy of the system, see last
column in Table 1. This increase in redundancy is the
consequence of the decrease in reliability of a fully
operational mode and the uniformity of the probabilities
of operational modes. The increase of the system
redundancy leads to the unification of the operational
modes probabilities, i.e.p(E}) reduces and the
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Fig. 4. Results of event-oriented system analysis for a given target system relipdility= 0.99 and various reliabilities of elements for a redundant plane

truss structure.

p(EY), i = 2,3,...7 increase. Note thaH(¥)\/O)max =
RED.YA)max = l0g 2 = 1 bit.

Engineering systems employing more operational and

7. Conclusion

failure modes, with known probabilities, are denoted in
the article as probabilistically redundant and robust with
respect to the operational and failure modes. The term
redundancy in the article is assigned the notion of probabil-
istic abundance in a number and in probabilities of oper-

The idea underlined in the article is to relate the redun- ational modes. Analogously, the word robustness in terms of
dancy and the robustness to the operational abundance anéhilure events denotes an excessive capability to respond to
failure endurance of systems of events. Such character-all the demands by a number of failure modes with adequate
isations, based on common engineering reasoning, areprobability distribution.

expected to be relevant from the engineering point of

Some of the consequences of the definitions of the redun-

view. These probabilistic system properties are either dancy and robustness of the systems of events for the
intuited or conceived by common engineering reasoning. engineering design can be summarised as follows:

If these intuited properties are properly chosen, then such
arguments can show the real relevance of definitions of
redundancy and robustness for engineering purposes. More-
over, it has been demonstrated how these properties are,
related to the uncertainties of a system of events. The redun-
dancy and the robustness were interpreted in terms of
uncertainties and expressed by entropy. In the axiomatic
treatment of entropy it is shown that only entropy has the

properties in full agreement with intuition about uncertain-

ties. Consequently, redundancy and robustness, defined by
entropy of operational and failure modes, are the only
rational measures for system operational abundance and
endurance to failures. The entropy as a measure of the
system uncertainty does not depend on anything else than
the possible events and in this sense is entirely objective.

Hence, the redundancy and robustness as defined in the

The system reliability and the system redundancy are two
independent system characteristics referring only to the
operational states of the system.

The system failure probability and system robustness are
two independent characteristics but referring only to the
failure modes of the system.

e The request for adequate system reliability leads to maxi-

mal attainable probabilities of operational modes, as well
as to minimal attainable probabilities of failure modes.

e The requests for high system redundancy and high

system robustness lead to maximally attainable unifor-
mity of the probability distributions of operational modes

and of failure modes, respectively, regardless of the
system reliability or failure probability.

The same system of events can be viewed in different

article by entropy are also objective measures of systemways. Some of the operational modes can be considered

operational abundance and endurance to failures.

more important from the designer’'s or from the user’'s
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point of view, for example when all elements operate, than redundancy of exisiting offshore structures. Ocean Engineering
all the other operational modes with reduced operational ’ (1399%;23&6):?%65 cov 1. In: Falk 3. editor. Propalistic reliabi
capabilities. On the other hand, some of the failure modes ! e:;nzzri?]g Now York Wi?éy Toge, o Tronabiisic Telabily
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systems there is usually a great number of operational and 10 ;‘EC*‘ J 194(':8E:27V-v W, The mathematical f _
failure modes. The presented approach allows to concen-I10 Shannon CE, Weaver W. The mathematical theory of communi-
. . cation. Urbana: University of lllinois Press, 1949.

trate the a'na|y3|3 On!y on the 'Observa'ble anq 'mpo'_'tam [11] Renyi A. Probablity theory. Amsterdam: North-Holland, 1970.
modes, being numerically feasible. It is not impossible [12] Aczel J, Daroczy Z. On measures of information and their character-
thatin the next future, thanks to an enormous increase innumer- isation. New York: Academic Press, 1975. _
ical capacities of new generations of computers, the redundancy13! $h'r|l‘_*|;” Al g"eﬁr_‘e”;_a“ca'lfgé‘;‘da“ons of information theory. New
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