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Abstract

This article presents an attempt towards a probabilistic event oriented system analysis in engineering. Engineering systems are represented
as either complete or incomplete systems of events and as compounds of various subsystems of events. The event oriented system analysis
investigates important subsystems in engineering systems, such as operational modes and failure modes and their interrelations. The analysis
is also applicable to engineering systems with various relations among the sets of events, such as mutually exclusive and inclusive sets.
Further, the systems and subsystems are subjected to probability and uncertainty analysis. The system uncertainty analysis is based on
entropy. General relations among the probability, uncertainty of the system and uncertainties of the subsystems are derived by using
information theory. Specific mathematical aspects and available methods in the uncertainty modelling of systems and subsystems are
summarised. Numerical examples confirm the relevance of the event oriented system analysis and indicate potential improvements in
system design.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Each object can be viewed as a system in different ways.
An object is often a part or subsystem of a more complex
system. The object itself can consist of many components
and possibly of more subsystems. Systems in engineering
are often viewed as objects of many discrete interacting
components with uncertain capabilities. Moreover, systems
are subjected to uncertain external demands. Sometimes, the
components are grouped into a number of subsystems, each
of them pertaining to some specific characteristic function
of the system. Subsequently, many systems can be assumed
to depend only on the current states of their components.

Complex engineering systems can be subjected to service
modes and effects analysis in order to identify the events
that can occur at the component, subsystem and system
levels. The goals of such an analysis are to determine the
effects of known operational and failure modes on the over-
all behaviour of the systems [3,8,11]. In addition to opera-
tional modes and effects analysis, semiquantitative and
quantitative methods can be applied to predict the probabil-
ities of safe operation or the accidents [10]. Redundancies
[5,6] and robustness [4] can also be considered. Service
modes and effects analysis is an essential step towards
understanding complex systems without which reliability
and uncertainty analysis cannot be performed.

The procedures presented in this article are applied in
addition to the traditional system analysis for the solution
of practical numerical examples in engineering. The aim is

to demonstrate the usefulness of the event oriented system
analysis as a tool for assessment of system performances
and improvements of engineering system design with
respect to system uncertainties.

2. Uncertainty modelling

There are many uncertainties concerning systems and
various methods of analysis. However, in the usually
adopted random variable model, the uncertainties of the
components are due to statistically uncertain capabilities
regarding the geometry, the material properties, the work-
manship, different uncertain demands, operational conditions
and loads, as well as modelling and subjective uncertainties.
The probabilistic system analysis is based on the application
of probability theory to basic stochastic events, which can
be defined by random design variables. Such an analysis
provides system reliability or system failure probability
using the usually set algebra.

The traditional probabilistic approach to discrete
engineering systems (mechanical, structural, electrical,
aerospace, nuclear, marine, etc.), with uncertain capabilities
and operating under uncertain conditions, takes into account
the random physical and technical characteristics of the
components of the system and the stochastic environmental
effects.

Moreover, systems may be considered at another level. In
the event oriented system analysis, a system is defined not
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only by its physical and/or technical components, but also
by its all, or at least known or important states. Primarily,
the states of the engineering system can be considered as
operational or inoperational. The majority of the states are
observable, but there may be some unobservable, undefined,
unknown or less important states as well. Some of the states
can be in common with several system features. The states
of a system are represented by a system and by subsystems
of random events in different relations and on various levels.

The word “uncertainty” in the context of engineering
system of events should be given a more precise meaning
[14]. The notion of uncertainty, applied to a system of
events, is an uncertainty in the objective sense due to the
fact that actually several events are possible. It is not the
uncertainty in the mind of observers concerning the
outcomes of an experiment [13]. The uncertainty arises
from the number of events and the unpredictability of the
events or subsystems.

In connection with the notion of uncertainty, the concept
of information has to be mentioned. The uncertainty
diminishes with the reception of relevant information. The
uncertainty with respect to outcome may be considered
equal to the information furnished by the occurrence of
this outcome. Thus, uncertainty can also be measured.
Terminology often alternates. The concept of entropy in
the information theory was first applied to transmission of
various information. Later, it was extended to the prob-
ability theory and engineering systems, providing more
comprehensive definitions of system characteristics by
introducing system uncertainties. A strong connection also
exists between the notion of entropy in thermodynamics and
the information theory.

The basic idea in this article is to make use of Shannon’s
entropy or information [12] to assess the uncertainty of
systems and subsystems. In addition to the basic definition
of entropy given by Shannon and Weaver for complete
systems, Renyi’s entropy [13] can be used to assess the
uncertainty of incomplete system of events. The entropy
can be considered both as the measure of the uncertainty,

which prevailed before the experiment was accomplished,
and as a measure of the information expected from an
experiment. The theorem about the entropy associated
with the mixture of distributions [13], and the theorem
about dependent systems [9] can be used to assess the uncer-
tainty of subsystems.

Possible ambiguities in a complex system reliability
assessment can be resolved by uncertainty analysis. Such
problems arouse when, for example, systems with the same
reliability but different probability distributions of a number
of operational and failure modes are evaluated.

3. Uncertainty measures

The uncertainty of a single stochastic eventA with a
known probabilityp� p�A� ± 0 plays a fundamental role
in the information theory. The entropy of a single stochastic
event is defined asE � H1�p� � 2log2 p�A� [15], and can
be interpreted either as a measure of how unexpected the
event was, or as a measure of the information yielded by
the event [1].

More important than single stochastic events are the
systems of events. Events are considered as abstract
concepts and the relations among events are characterised
axiomatically.

The algebraic structure of the set of event turns to the
Boolean algebra [13].

A system of events:E1;E2;…;En is called a complete
system of events if the following relations in the events
space hold:

Ek ± B �k � 1;2;…;n� �1�

EjEk � B �for j ± k� �2�

E1 1 E2 1 …1 En � I �3�

• The “B” in Eqs. (1) and (2) means an impossible event.
• The fact thatEj andEk are exclusive is expressed in Eq.

(2).
• Eq. (3) denotes that at least one of the eventsEk;

k � 1;2;…;n; occurs.
• The I denotes a definite event.

The definitions of complete and incomplete systems of
events in probability space imply the following:

• A system of eventsEk; k � 1;2;…;n; is said to be
complete if for i ± j; AiAj � B; and if the occurrence
of an eventEk is “almost sure”, i.e. if it has the property
p�Pk Ek� �

P
k p�Ek� � 1:

The definition also involves that one and only one event
must occur in each trial.

• If some outcomes of an ‘experiment’ are not known, or
their probabilities cannot be determined, or if only some
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Nomenclature

Ai ; Ei Random events in general
H(·) Entropy of a system of events
H1(·) Entropy of a system of events of order one
N, n Numbers of systems and of subsystems
No, Nf Number of operational events and of failure

events
p(·), pi Probabilities of random events, (sub)systems
S System of events in general
S 0 System of subsystems of events
Si Subsystem of events in general
O, F Subsystems of operational and of failure

events



of all possible events are taken into account because only
they are observable, an incomplete probability distribution
pk can be considered. If forpk�pk . 0; k � 1;2;…; n�
there is

P
k pk , 1 and not necessarily

P
k pk � 1; the

system is incomplete.

3.1. Uncertainty associated with a complete system of events

For a quantitative analysis of a system of events, e.g. in
mathematics, the presentation of a system of events only in
terms of probability space, i.e. by the distribution of prob-
abilities of events, is sufficient. However, for more complex
qualitative analysis of systems, as is usually the case in
engineering, the systems and the subsystems of events can
be presented both by the notion of events and by the appro-
priate probabilities associated with each of the events,
denoted as a finite scheme [9]. Let us consider a system
S, constituted by the eventsEi ; i � 1;2;…;n; and with
the appropriate probabilities associated with each of the
eventspi � p�Ei�; presented as a finite scheme:

S �
E1 E2 … En

p1 p2 … pn

 !

The entropy of the complete system of eventsS [12] is
supposed to depend only on the probability distribution of
considered eventsP � �p1;p2;…;pn� and can be denoted in
different equivalent ways, as shown:

H�S� � Hn�S� � Hn�p1;p2;…;pn� � Hn�P�

� 2
Xn
i�1

pi log pi �
Xn
i�1

pi log
1
pi

�4�

The quantity (4) is called the entropy of the complete
probability distribution or the entropy of the complete
system of events. It is known as Shannon’s entropy or
Shannon’s information.

3.2. Uncertainty associated with incomplete systems of
events

Another measure of uncertainty is Renyi’s entropy of
ordera , which is defined fora ± 1; as:

Ha
n �S� � Ha�S� � 1

1 2 a
log2

Xn
i�1

pai =
Xn
i�1

pi

 !
�5�

The quantity (5) may also be viewed as a measure of the
amount of uncertainty corresponding to either complete or
incomplete distribution of probabilities pertaining to the
system of eventsS.

The entropy of an incomplete system of eventsS can be
viewed as the limiting case of (5) fora! 1 and can be
viewed as the arithmetic mean (expected value) of the single
entropies2log pi with weightspi : Renyi himself denoted

this quantity as the Shannon’s entropy of order one [13]:

H1
n�S� � H1�S� � 2

Xn
i�1

pi log pi

 !
=
Xn
i�1

pi �6�

Note that the entropy defined by Eq. (6) is often denoted as
Renyi’s entropy of order one [1]. This paper uses the
notation Renyi’s/Shannon’s entropy of order one.

3.3. Properties of uncertainty measures

Some definitions and properties of entropy important in
engineering are summarised.

• The definition of the unit of uncertainty is not more and
not less arbitrary than the choice of the unit of some
physical quantity. For example, if the logarithm applied
in Eqs. (4)–(6) is of base two, the unit of entropy is
denoted as one “bit”. One bit is the uncertainty of a
system of two equally probable events. If the natural
logarithm is applied, the unit is denoted as one nit.

• Outcomes with zero probability do not change the uncer-
tainty. By convention, 0 log 0� 0:

• The entropyHn�S� is equal to zero, when the state of the
systemS can be surely predicted, i.e. no uncertainty
exists at all. This occurs when one of the probabilities
ofeventspi ; i � 1;2;…;n isequal toone, let ussaypk;and
all the other probabilities are equal to zero,pi � 0; i ± k:

• The entropy is maximal when all events are equally prob-
able, and the probability of failure is equal topi � 1=n; for
i � 1;2;…;n; and it amounts toHn�S�max� log n [7].
Hartley’s entropy corresponds to the Renyi’s entropy of
order 0 [1].

• The entropy increases as the number of events increase.
• The entropy does not depend on the sequence of events:

Hn�p1;p2;…; pn� � Hn�pk�1�;pk�2�;…;pk�n��; wherek is an
arbitrary permutation on�1;2;…;n�:

• The entropy is the only function appropriate for the uncer-
tainty measure (the uniqueness theorem) [2,9].

There are other important properties of the entropy concern-
ing composite events.

• For two independent systems of events,A �
�A1;A2;…;Am� andB � �B1;B2;…;Bn�; where the prob-
ability of the occurrence of two states of the systems is
defined by p�Ai > Bj� � p�Ai�p�Bj�; the entropy of a
system which is called the direct product of distributions
denoted asAB, is defined as follows (additivity of
entropy):

H�AB� � H�A�1 H�B� �7�

• If the systems of events,A � �A1;A2;…;Am� andB �
�B1;B2;…;Bn�; are dependent, where the probability of
the occurrence of two states is defined byp�Ai > Bj� �
p�Ai�p�Bj =Ai�; the entropy of the compound system
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denoted asAB [9], is defined as follows:

H�AB� � H�A�1 H�B=A� �8�
H(B/A) in Eq. (8) is the average entropy of the systemB
with respect to the systemA and represents the conditional
entropy of systemB with respect to the systemA:

H�B=A� �
X

i

p�Ai�·H�B=Ai� �9�

H�B=Ai� in Eq. (9) is the conditional entropy of systemB
with respect to the eventAi in systemA.

4. Subsystems of events

Let us consider a systemS of N disjoint eventsEij ; with
appropriate probabilitiesp�Eij �:

S �
E11 … E1m1

… Ei1 … Eimi
…

p�E11� … p�E1m1
� … p�Ei1� … p�Eimi

� …

 

En1 … Enmn

p�En1� … p�Enmn
�

!

The events of systemS can be grouped regardless of the
ordering of events into subsystems of eventsSi ; i �
1; 2;…;n; each containingEij ; j � 1;2;…;mi elements, as
presented:

Si �
Ei1 … Eij … Eimi

p�Ei1� … p�Eij � … p�Eimi
�

 !
The probabilityp�Si� associated with each of the subsys-
temsSi ; i � 1; 2;…;n; is as follows:

p�Si� �
Xmi

j�1

p�Eij � �10�

Neither the probability nor the entropy depends on the
sequence of events within the subsystemSi. Note that the
subsystemsSi can be either exclusive or inclusive, having
some common events.

The systemS can be in general presented as a union of
subsystems of eventsSi, as follows:

S � �S1 < …< Si < …< Sn�
For strictly disjoint subsystems of eventsSi, the systemS
can be presented as:

S � �S1 1 …1 Si 1 …1 Sn�
The probability associated with systemS is defined as:

p�S� � p�
[n
i�1

Si� �
Xn
i�1

Xmi

j�1

p�Eij � �11�

The probability distributionp�Eij � associated to a subsystem
Si is considered as a partial distribution of probabilities
of the entire systemS. To every partial probability

distribution, there can be assigned an ordinary probability
distribution by the substitution ofp�Eij =Si� instead ofp�Eij �;
which may be interpreted as a complete conditional distri-
bution of probabilities with respect to the condition that the
systemSi occurs with probabilityp�Si�: It is obvious that
p�Eij =Si�·p�Si� � p�Eij �:

Each subsystemSi can also be viewed under the condi-
tion that in the system of all known modesS, only the
subsystemSi occurs. The conditional probability of system
p�S=Si� depends only on the probability of subsystem
itself, i.e.p�S=Si� � p�Si�: Obviously,p�Si =Si� � 1:

If the systemS is not a complete system of events, i.e.
p�S� , 1; an incomplete system of events has to be consid-
ered. The appropriate uncertainty of the incomplete system
S should be presented by the Renyi’s/Shannon’s entropy of
order one as follows:

H1
N�S� � HN�S�=p�S� �12�

The systemS can also be considered under the condition
that only the observable events are of interest. The condi-
tional entropy of systemS can be obtained as follows:

HN�S=S� � 2
XN
i�1

p�Ei�
p�S� log

p�Ei�
p�S� � H1

N�S�1 log p�S�

�13�
The summa applied in Eq. (12) is calculated as shown:

HN�S� � 2
Xn
i�1

Xmi

j�1

p�Eij � log p�Eij � �
Xn
i�1

Hmi
�Si� �14�

The maximal attainable entropy of systemsS for either
complete or incomplete systems, is obtained forN �Pn

i�1 mi equally probable events in amount ofH1
N�S�max�

log�N=p�S��:

4.1. Uncertainty associated with subsystems of events

The theorem about the entropy associated with mixture of
distributions [13] can be applied to assess the uncertainty of
a subsystem of events. A mixing distribution may be
reinterpreted in terms of subsystems. Subsystems of events
are considered to be associated with a mixture of partial
distributions [16]. The uncertainty of the subsystemSi,
regardless of its exclusiveness or inclusiveness with respect
to other subsystems, can be expressed as the Shannon’s
entropy applied only to the partial probability distribution
of the systemS considered under the condition that the
subsystemSi occurs. Such a condition entropy does not
depend on the system probabilityp(S), being independent
of whether the systemS is complete or incomplete.

According to the definition of the entropy (4), and using
conditional probabilities of the occurrence of subsystems, it
follows:

Hmi
�S=Si� � 2

Xmi

j�1

p�Eij �
p�Si� log

p�Eij �
p�Si� �15�
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The entropies of the subsystems in Eq. (15) depend only on
the states of the subsystemsSi itself, not on any other states
of the systemS and on the systemS itself.

The following relation expresses the loss of the entropy of
a subsystemSi considered as a partial distribution, with
respect to the entropyH1�Si� of a systemSi viewed as
an incomplete system:

Hmi
�S=Si� � H1

mi
�Si�1 log p�Si� �16�

The Renyi’s/Shannon’s entropy of order oneH1
mi�Si� in

Eq. (16) correspond to the entropy of incomplete system of
event defined as:

H1
mi
�Si� � Hmi

�Si�=p�Si� �17�
The partial summaHmi�Si� in Eqs (14) and (17) within

the systemS corresponds to the partial probability distribu-
tion of subsystem of eventsSi, and can be calculated as:

Hmi
�Si� � 2

Xmi

j�1

p�Eij � log p�Eij � �18�

The maximal attainable conditional entropy of the subsystem
Si is obtained formi equally probable events and amounts as:

Hmi
�S=Si�max� log mi �19�

4.2. The relation of the uncertainties of the system and of
disjoint subsystems

The system ofS can be viewed also as a compound ofn
subsystemsS1;S2;…;Sn; denoted asS 0:

S 0 � �S1;…;Si ;…;Sn�

�
S1 … Si … Sn

p�S1� … p�Si� … p�Sn�

 !
The probability associated with systemS 0 is p�S 0� �Pn

i�1 p�Si� � p�S� � Pn
i�1

Pmi
j�1 p�Eij �:

The maximal attainable entropy of systemS 0 for either
complete or incomplete systems, is obtained forn equality
probable events asH1

n�S 0�max� log�n=p�S 0��:
If the systemS 0 is not complete systems of events, i.e.

p�S 0� , 1; then incomplete systems of events have to be
considered. The appropriate uncertainty of the incomplete
systemS 0 should be presented by the Renyi’s/Shannon’s
entropy of order one as follows:

H1
n�S 0� � Hn�S 0�=p�S 0� �20�
The systemS 0 can also be considered under the condi-

tion that only the observable subsystems of events are of
interest. The conditional entropy of systemS 0 can be
obtained as follows:

Hn�S 0
=S 0� � 2

Xn
i�1

p�Si�
p�S� log

p�Si�
p�S�

� H1
n�S 0�1 log p�S� �21�

The summa applied in Eq. (20) is calculated as:

Hn�S 0� � 2
Xn
i�1

p�Si� log p�Si� �22�

The general relation of the probabilities and conditional
entropies of complete or incomplete system and those of
the disjoint subsystems, can be derived by taking the
weighted summa of all the conditional entropies of subsys-
tems [16], as follows:

Xn
i�1

p�Si�·Hmi
�S=Si� � p�S�·�HN�S=S�2 Hn�S 0

=S 0��

� p�S�·�H1
N�S�2 H1

n�S 0�� (23)

The expression (23) may be considered as a straightforward
application of the theorem about the entropy associated with
a system of disjoint subsystems. The average of the entropy
of the subsystemsSi, with weights equal to the associated
probabilitiesp�Si�; is equal to the entropy of the system of
eventsS, reduced for the entropy of the system of subsys-
temsS 0.

The reduction in the entropy of systemS is a conse-
quence of the knowledge about its partitioning into subsys-
tems. The relation (23) does not depend on whether the
systemsS and S 0 are complete systems, i.e.p�S� �
p�S 0� � 1; HN�S� � H1

N�S� and Hn�S 0� � H1
n�S 0�; or

incomplete systems due top�S� � p�S 0� , 1; HN�S� �
H1

N�S�1 log p�S� andHn�S 0� � H1�S 0�1 log p�S 0�:
The expression (23), can be also be rewritten in terms of

entropies of incomplete systems as follows:

Xn
i�1

p�Si�·H1
mi
�Si� � p�S�·H1

N�S� �24�

4.2.1. The relation of the uncertainties of k out of n disjoint
subsystems

In more general terms, the relation among anyk out of n
disjoint subsystems of events can be derived as:

Xk
i�1

p�Si�·H�S=Si� �
Xk
i�1

p�Si�·{ H�S=�S1 1 S2 1 …

1 Sk��2 H�S=�S1;S2;…;Sk��}

�
Xk
i�1

p�Si�·�H1�S1 1 S2 1 …1 Sk�

2 H1�S1;S2;…;Sk��

� H�S1 1 S2 1 …1 Sk�2 H�S1;S2;…;Sk� (25)
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The terms in Eq. (25) are defined as follows:

H�S=S1 1 S2 1 …1;Sk�

� 2
Xk
i�1

Xmi

j�1

p�Eij �Xk
m�1

p�Sm�
log

p�Eij �Xk
m�1

p�Sm�

� H1�S1 1 S2 1 …1 Sk�1 log
Xk
i�1

p�Si� �26�

H1�S1 1 S2 1 …1 Sk� � H�S1 1 S2 1 …1 Sk�Xk
i�1

p�Si�

�

Xk
i�1

H�Si�
Xk
i�1

p�Si�
(27)

H�S1 1 S2 1 …1 Sk� � 2
Xk
i�1

Xmi

j�1

p�Eij � log p�Eij �

�
Xk
i�1

H�Si� �28�

H�S=S1;S2;…;Sk� � 2
Xk
i�1

p�Si�Xk
m�1

p�Sm�
log

p�S�Xk
m�1

p�Sm�

� H1�S1;S2;…;Sk�1 log
Xk
i�1

p�Si� (29)

H1�S1;S2;…;Sk� � H�S1;S2;…;Sk�Xk
i�1

p�Si�
�30�

H�S1;S2;…;Sk� � 2
Xk
i�1

p�Si� log p�Si� �31�

The weighted summa on the left-hand side in Eq. (25) does
not depend on whetherS andS 0 are complete or incom-
plete systems.

The relation (25) can be also be rewritten in terms of

entropies of incomplete systems as follows:

Xk
i�1

�p�Si�·H1
mi
�Si�� �

Xk
i�1

p�Si�
" #

·H1
k �S1 1 S2 1 …

1 Sk� �32�

4.2.2. The relation of the uncertainties of the disjoint
subsystems on arbitrary partitioning level

Some may be interested in uncertainties associated
with subsystems at an optional level of system or subsystem
partitioning. Let us suppose that any of the subsystemsSi of
ni eventsE can be built up ofmi disjoint sub-subsystems.
Sij, each consisting ofnij ; j � 1;2;…;ni ; appropriate
basic eventsE as defined earlier. Such a subsystem
can be presented as a subsystem of subsystemS 0

i as
follows:

S 0
i �

Si1 … Sij … Simi

p�Si1� … p�Sij � … p�Simi
�

 !
The uncertainty of the sub-subsystemSij can be
expressed as the Shannon’s entropy applied only to
the partial distribution of the subsystemSi considered
under the condition that the subsystemSij occurs. Such
a conditional entropy does not depend on the probability
p�Si�; also being independent of whether the systemS
is complete or incomplete. According to Eq. (4), it
follows:

H�Si =Sij � � 2
Xnij

j�1

p�Eij �
p�Sij � log

p�Eij �
p�Sij �

� H1�Sij �1 log p�Sij � �
H�Sij �
p�Sij � 1 log p�Sij �

�33�
The relation among the uncertainties of sub-subsystems
can be derived analogously to the relation (23), and it
represents the conditional entropy of subsystemSi with
respect to subsystemS 0

i as:

H�Si =S
0
i� �

Xmi

j�1

p�Sij �·H�Si =Sij �

� p�Si��H1�Si�2 H1�S 0
i��

� p�Si�·�H�S=Si�2 H�S 0
=S 0

i�� �34�
The relation (34) for subsystemSi, as a partial distri-
bution of a known complete or incomplete distribution,
does not depend on the other states of the systemS
which are not inSi.

In general, the uncertainty of the subsystems of events at
any level, considered under the condition that only the
events constituting the subsystem occur, depends only on
the events pertaining to the subsystem itself, and not on the
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other events of the system. The relation (34) can also be
rewritten in terms of entropies of incomplete systems as:Xmi

j�1

p�Sij �·H1�Sij � � p�Si�·H1�Si� �35�

The Renyi’s/Shannon’s entropy of order oneH1(S) can be
applied instead of the Shannon’s entropyH(S), for both
complete and incomplete systems. Forp�S� � 1; since
all the relations are the same, regardless of whether the
considered system is either a complete or an incomplete
one.

4.2.3. Uncertainty associated with dependent systems of
events

Another interpretation can be given to the relation of the
entropy of system and disjoint subsystems. Consider
systems S 0 � �S1;S2;…;Sn� and S � �S1 1 S2 1
…1 Sn� as dependent.

The entropy of two dependent systems can be obtained
according to Eq. (8) as follows:

H�S 0S� � H�S 0�1 H�S=S 0� �36�
The conditional entropyH�S=S 0� of systemS with

respect to systemS 0 in Eq. (36) is on the basis of Eq. (9),
equals to the following term:

H�S=S 0� � p�S1�·H�S=S1�1 p�S2�·H�S=S2�1 …

1 p�Sn�·H�S=Sn�

�
Xn
i�1

p�Si�·H�S=Si� �37�

In Eq. (37), the termsH�S=Si�; i � 1;2;…; n are the
entropy of systemS under the condition that subsystems
Si occur. In the case when the states of systemS 0 are
entirely defined by states of systemS, as it is in these
considerations, the following relation holds:H�S 0S� �
H�S�:

Finally, using the theorem about dependent systems
according to Eqs. (8) and (9), the same result for the
relation of the uncertainties of the system and of the
subsystems is obtained by using the theorem about mixture
of distributions for complete systems of events in Eq. (23),
as given next:

H�S=S 0� � p�S1�·H�S=S1�1 p�S2�·H�S=S2�1 …

1 p�Sn�·H�S=Sn�

� H�S�2 H�S 0� �38�

The term (38) can also be viewed as a conditional entropy of
a partial system�S1 1 S2 1 …Sk� with respect to the

system �S1;S2;…;Sk�, and can also be denoted as
H��S1 1 S2 1 …1 Sk�=�S1;S2;…;Sk��:
4.3. Uncertainties of inclusive subsystems of events

Let us suppose that the system of eventsS contains two
subsystems with some common events. The first subsystem
is denoted asSp, containing elementsEpl; l � 1;2;…;mp

and the second is denoted asSq, containing elements
Eqk; k � 1; 2;…;mq; as presented next:

Sp �
Ep1 … Epl … Epmp

p�Ep1� … p�Epl� … p�Epmp
�

0@ 1A

Sq �
Eq1 … Eql … Eqmq

p�Eq1� … p�Eql� … p�Eqmq
�

0@ 1A
The systemS can be presented more generally as a union of
more subsystem of events as shown:

S � �S1 < …< Sp < Sq < …< Sn�

The probabilitiesp�Sp� and p�Sq� associated with the
subsystemsSp andSq, are calculated as

p�Sp� �
Xmp

l�1

p�Epl� and p�Sq� �
Xmq

l�1

p�Eql�:

The conditional entropies of the systemS with respect to
the subsystemsSp andSq, are calculated according to Eq.
(15) as follows:

Hmp
�S=Sp� � 2

Xmp

l�1

p�Epl�
p�Sp� log

p�Epl�
p�Sp� �39�

Hmq
�S=Sq� � 2

Xmq

l�1

p�Eql�
p�Sq� log

p�Eql�
p�Sq� �40�

The conditional entropies of the systemS with respect to
the subsystemsSp andSq in Eqs. (39) and (40) depend only
on the states of the subsystems, and not on any other state of
the system.

Let us suppose that there arer � 1; 2;…;mpq common
events denoted asEps�r� � Eqt�r�; where s and t are
appropriate selections of common events. The subsystem
containing common events is a subsystem too, and is to
be considered as an intersection of two events as follows:

Sp > Sq �
Eps�1� � Eqt�1� … Eps�l� � Eqt�l� …

p�Eps�1� � Eqt�l�� … p�Eps�l� � Eqt�l�� …

 

p�Eps�mij � � Eqt�mij ��
Eps�mij � � Eqt�mij �

1A
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The systemS can be presented as a summa of disjoint
subsystems of events as follows:

The probability of the intersection of two subsystemsSp

andSq, can be defined as

p�Sp > Sq� �
Xmij

l�1

p�Eps�l� � Eqt�l��

The conditional entropy of the systemS with respect to the
intersection of two subsystems of eventsSp and Sq, is
calculated based on Eq. (15) as follows:

Hmpq
�S=Sp > Sq�

� 2
Xmpq

l�1

p�Eps�l� � Eqt�l��
p�Sp > Sq� log

p�Eps�l� � Eqt�l��
p�Sp > Sq� �41�

It is of interest to find out the entropy of a union of subsys-
tems considered as a system ofm� mp 1 mq 2 mpq

elements. The probability of the union of two subsystems
can be defined as

p�Sp < Sq� � p�Sp�1 p�Sq�2 p�Sp > Sq�:

By taking the weighted summa of all the conditional entro-
pies of systemS with respect to the subsystemsSp andSq,
as well as their intersection, the following relation to the
probability and uncertainty of the union of events can be
derived:

p�Sp�·�Hmp
�S=Sp�2 log p�Sp��1 p�Sq�·�Hmq

�S=Sq�

2 log p�Sq��2 p�Sp > Sq�·�Hmpq
�S=Sp > Sq�

2 log p�Sp > Sq��
� p�Sp < Sq�·�Hmpq

�S=Sp < Sq�2 log p�Sp < Sq��
�42�

The next term may be denoted as the conditional entropy of

the system of subsystem denoted asS 0 with respect to the
union of the system of subsystemsSp andSq:

H2�S 0
=Sp < Sq� �

2p�Sp�·log p�Sp�2 p�Sq�·log p�Sq�
p�Sp < Sq�

1p�Sp < Sq�1 p�Sp > Sq�·log p�Sp > Sq�
p�Sp < Sq�

1log p�Sp < Sq� (43)

After the substitution of Eq. (43) in Eq. (42), the following
simplified relation is derived:

p�Sp�·Hmp
�S=Sp�1 p�Sq�·Hmq

�S=Sq�

2 p�Sp > Sq�·Hmpq
�S=Sp > Sq�

� p�Sp < Sq�·�Hmpq
�S=Sp < Sq�2 H2�S 0

=Sp < Sq��
�44�

The term (42) can also be rewritten in terms of entropies of
incomplete systems as follows:

p�Sp�·H1
mp
�Sp�1 p�Sq�·H1

mq
�Sq�

2 p�Sp > Sq�·H1
mpq
�Sp > Sq�

� p�Sp < Sq�·H1
mpq
�Sp < Sq� �45�

5. Engineering systems of events

Let us suppose that there is a number of, let us say,nc

physical or technical components of an engineering system.
The observable outcomes associated with the component
can be denoted as basic events or modes. Even inclusive
events or common cause events are random events, and have
to be identified as basic events. The basic event may happen,
when denotedAi ; or not, when denoted�Ai ; i � 1; 2;…;ne;

which also represents an event, sometimes called simple
alternative. Thene is the total number of basic events, not
necessarily equal to the number of componentsnc. The
quantitative methods of system analysis require component
operational data about basic events, such as the probability
of proper operationRi � p�Ai� or the probability to fail
Pf ;i � p� �Ai� � 1 2 p�Ai�: A systemEj of two events repre-
senting only one of the states of a component can be repre-
sented as

Ej �
Aj

�Aj

p�Aj� p� �Aj�

 !
:

The uncertainty that a single state of a component is
operational or fails can be expressed as the entropy of the
system of two eventsEj, as: H�Ej� � 2p�Aj� log p�Aj�2
p� �Aj� log p� �Aj�: The maximal entropy for two equally prob-
able events amountsH2�Ej�max� log2 2� 1:
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According to an operational modes and effects analy-
sis, all possible or at least all-relevant and observable
eventsEi of a system could be determined using basic
events. Methods such as enumeration, event-tree and
fault-tree analysis are at disposal. Some of the events
Ei can be regarded as operational modes, denoted asEo

i

(status� O), whilst some events can be regarded as
failure modes, denoted withEf

i (status� F). The prob-
abilities of possible modes can hopefully be calculated
using quantitative methods, and will be denoted
p�Ei�; i � 1;2;…;N: N is the total number of all
known, or at least all observable possible events consti-
tuting system of eventS.

The systemS can also be presented as a summa of
operational and failure subsystem as shown:

S �
E1 E2 … EN

p�E1� p�E2� … p�EN�

 !
� �O 1 F�

Consider also in more detail the two important subsystems
of the systemS. The first, denotedO, comprises all of the
eventsE, denotedEo

i ; i � 1;2;…;No; when the system is
operating. The second, denotedF, consists of events
Ef

i ; i � No 1 1;…;No 1 Nf when the system fails:

O �
Eo

1 Eo
2 … Eo

No

p�Eo
1� p�Eo

2� … p�Eo
No
�

 !

F �
Ef

No11 Ef
No12 … Ef

No1Nf

p�Ef
No11� p�Ef

No12� … p�Ef
No1Nf

�

0B@
1CA

The total number of events is equal toNo 1 Nf � N: It may
be also noted that the sequence of events within the system
or within the subsystems is irrelevant with respect to
intended reliability and uncertainty considerations.

The overall reliability of the system corresponds to all of
the outcomes when the system is operating, and can be
calculated as the probability of the subsystem of operational
modesp(O):

R�S� � p�O� �
XNo

i�1

p�Eo
i � �46�

The appropriate failure probability of the system corre-
sponds to all of the outcomes when the system fails and
can be calculated as the probability of the subsystem of
failure modesp(F):

Pf �S� � p�F� �
XNo 1 Nf

i�No 1 1

p�Ef
i � �47�

In any case, either for complete systems or for incomplete
systems, the next relation holds:

P�S� � p�O�1 p�F� �
XN
i�1

p�Ei� �48�

A systemS 0 of two subsystems of events, each considered
as a compound event denotedO for the operating system and
denotedF for the failed system, can be defined as follows:

S 0 � �O;F� �
O F

p�O� p�F�

 !
The event oriented system analysis may be applied to any
relation of sets of events or subsystems, such as exclusive or
inclusive sets, as well as dependent and independent events,
under the condition of proper partitioning of the system of
events to a basic set of disjoint events. Such a partitioning
can be provided, for example, by the well-known exclu-
sion–inclusion expansion of union of events.

5.1. Uncertainty associated with engineering systems and
subsystems

The systemS under the condition that it is operationalO
or failedF can be presented respectively, as follows:

S=O �
Eo

1=O Eo
2=O … Eo

No
=O

p�Eo
1�

p�O�
p�Eo

2�
p�O� …

p�Eo
No
�

p�O�

0B@
1CA;

S=F �
Ef

No11=F Ef
No12=F … Ef

No1Nf
=F

p�Ef
No11�

p�F�
p�Ef

No12�
p�F� …

p�Ef
No1Nf

�
p�F�

0BBB@
1CCCA

Shannon’s entropy of systemS, under the condition that the
system is operatingO, is shown as:

HNo
�S=O� � 2

XNo

i�1

p�Eo
i �

p�O� ·log
p�Eo

i �
p�O� ; �49�

Shannon’s entropy of systemS under the condition that the
system is failingF, is shown as:

HNf
�S=F� � 2

XNo 1 Nf

i�No 1 1

p�Ef
i �

p�F� ·log
p�Ef

i �
p�F� �50�

The entropy of the operational modes in Eq. (49) and of the
failure modes in Eq. (50) depends only on the states of the
subsystem of operational and failure modes, and not on any
other state of the system.

The maximal attainable entropy of systemS under the
condition that the system is operating is:

HNo
�S=O�max� log No �51�

The maximal attainable entropy of systemS under the
condition that the system is failing is:

HNf
�S=F�max� log Nf �52�

The entropy of the complete system of all known or all
observable possible eventsS, as well as the maximally
attainable entropy, can be obtained from Eq. (5) and from
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Hartley’s formula:

HN�S� � HN�O 1 F� � 2
XN
i�1

p�Ei�·log p�Ei� �53�

HN�S�max� log N �54�
The entropy of the complete systemS 0 of O andF, as well
the maximally attainable entropy are:

H2�S 0� � H2�O;F� � 2p�O�·log p�O�2 p�F�·log p�F�
�55�

H2�S 0�max� log 2 �56�
The operational and failure modes are of utmost interest for
the engineering system designers and for the system users.
The subsystems of operational and failure modes can also be
considered on different levels of the hierarchical representa-
tion of the basic events with respect to their importance in
system design.

5.2. Relations of the uncertainties of engineering systems
and subsystems

The weighted summa of entropies of the subsystemsO
andF of a complete systemS, in terms of the theorem
about mixture of distributions, can be represented according
to Eq. (23), as shown:

p�O�·HNo
�S=O�1 p�F�·HNf

�S=F�

� HN�O 1 F�2 H2�O;F� �57�
Eq. (57) represents the relation of the probabilities and
entropies of subsystems of operational and failure events
to the entropies of the system and subsystems of all possible
events.

Consider again the systemsS � �O 1 F�and S 0 �
� O;F� in terms of the theorem about dependent systems.
According to Eqs. (8) and (9), the entropy of two dependent
systems can be obtained by:

H�S S 0� � H�S 0�1 H�S=S 0� �58�
The term in Eq. (58) is calculated as follows:

H�S=S 0� � p�O�·H�S=S�1 p�F�·H�S=F� �59�
The term (59) represents the conditional entropy of system
S with respect to systemS 0.

H�S=O� andH�S=F� are called the conditional entropies
of systemS under the condition that subsystemsO andF
occur, respectively. When the states of systemS 0 are
entirely defined by the states of the systemS, as it is the
case in the present consideration, the following relation
holds:

H�S S 0� � H�S� �60�
Finally, using the theorem about dependent system of
events, the same result for the relation of the subsystem’s

entropies is obtained, as by using the theorem about mixture
of distributions:

p�O�·H�S=S�1 p�F�·H�S=F� � H�S�2 H�S 0� �61�
If the systemS is not a complete system of events, i.e.
p�S� , 1; an incomplete system of events is considered.
The Renyi’s/Shannon’s entropy of order one in Eq. (6),
can be applied for system uncertainty assessmentH1(S),
for either complete or incomplete systems of events, as
follows:

H1
N�S� � H1

N�O 1 F� � H2�S�
p�S� �62�

Renyi’s/Shannon’s entropy of order oneH1(S 0) of the
systems of subsystems of eventsS 0 can be used to assess
the uncertainty of the system built from subsystems based
on Eq. (6) as shown:

H1
2�S 0� � H1

2�O;F� � H2�S 0�
p�S 0� �63�

In Eqs. (60)–(63),H(S) andH(S 0) are defined in Eqs. (53)
and (55).

The systemsS andS 0 can also be considered under the
condition that only the observable events are of interest. The
conditional entropies can be obtained as presented in Eqs.
(13) and (21).

The following relations within the systemS considered
as a set of subsystemO andF, can be obtained on the basis
of Eq. (12) as follows:

p�O�·HNo
�S=O�1 p�F�·HNf

�S=F�

� p�S�·�H1
N�S�2 H1

2�S 0��
� p�S�·�HN�S=S�2 Hn�S 0

=S 0��
� HN�S�2 H2�S 0� � HN�O 1 F�2 H2�O;F� �64�

The uncertainties of operational and failure modes and their
relations can be applied in the assessment of system perfor-
mances. Following guidelines can be intuited:

• Higher entropy of operational modes is a consequence of
a more uniform distribution of probabilities of opera-
tional modes and can indicate the increase of the
system’s operational abundance.

• Higher entropy of failure modes is a consequence of more
uniform distribution of probabilities of failure modes and
can be related to the increase of the system endurance to
failures.

6. Example a vertically loaded foundation supported by
piles

An event oriented system analysis procedure is demon-
strated on a system reliability and system uncertainty analy-
sis of vertically loaded foundations supported by vertical
piles [10]. Variation in system configurations and different
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component probability distributions are considered (Fig.
1(a)–(c)).

6.1. System service modes and effects analysis

First, a system service modes and effects analysis is
performed in order to identify all the modes and appropriate
probabilities of occurrence.

6.1.1. The foundation on three piles
The foundation on three piles is stable if and only if all

three piles can carry loads (Fig. 1(a)). There areN � 23 � 8
outcomes. By inspection, all possible operational and failure
modes are determined. The subsystem of operational modes
O consist only of one,No � 1; fully operational mode:

p�Eo
1� � p�A1�p�A2�p�A3�; O : 3=3

The subsystem of failure modesF consists ofNf � 7
modes with different failure seriousness:

p�Ef
2� � p� �A1�p�A2�p�A3�; F : 1=3

p�Ef
3� � p�A1�p� �A2�p�A3�; F : 1=3

p�Ef
4� � p�A1�p�A2�p� �A3�; F : 1=3

p�Ef
5� � p� �A1�p� �A2�p�A3�; F : 2=3

p�Ef
6� � p� �A1�p�A2�p� �A3�; F : 2=3

p�Ef
7� � p�A1�p� �A2�p� �A3�; F : 2=3

p�Ef
8� � p� �A1�p� �A2�p� �A3�; F : 3=3

6.1.2. The foundation on four piles
The foundation supported by four piles is stable if three or

more piles can carry a load in following configurations:
[1,2,3,4], [1,2,3], [2,3,4], [3,4,1] and [4,1,2] (Fig. 1(b)).
There areN � 24 � 16 possible outcomes. By enumeration,
all possible operational and failure modes are determined.

The subsystem of operational modesO consists ofNo � 5
modes with different operational capacities, as follows:

p�Eo
1� � p�A1�p�A2�p�A3�p�A4�; O : 4=4

p�Eo
2� � p� �A1�p�A2�p�A3�p�A4�; O : 3=4

p�Eo
3� � p�A1�p� �A2�p�A3�p�A4�; O : 3=4

p�Eo
4� � p�A1�p�A2�p� �A3�p�A4�; O : 3=4

p�Eo
5� � p�A1�p�A2�p�A3�p� �A4�; O : 3=4

The subsystem of failure modesF consists ofNf � 11
events with different failure seriousness as given next:

p�Ef
6� � p� �A1�p� �A2�p�A3�p�A4�; F : 2=4

p�Ef
7� � p� �A1�p�A2�p� �A3�p�A4�; F : 2=4

p�Ef
8� � p� �A1�p�A2�p�A3�p� �A4�; F : 2=4

p�Ef
9� � p�A1�p� �A2�p� �A3�p�A4�;F : 2=4

p�Ef
10� � p�A1�p� �A2�p�A3�p� �A4�; F : 2=4

p�Ef
11� � p�A1�p�A2�p� �A3�p� �A4�; F : 2=4

p�Ef
12� � p� �A1�p� �A2�p� �A3�p�A4�; F : 3=4

p�Ef
13� � p� �A1�p� �A2�p�A3�p� �A4�; F : 3=4

p�Ef
14� � p� �A1�p�A2�p� �A3�p� �A4�; F : 3=4

p�Ef
15� � p�A1�p� �A2�p� �A3�p� �A4�; F : 3=4

p�Ef
16� � p� �A1�p� �A2�p� �A3�p� �A4�; F : 4=4

6.1.3. The foundation on five piles
The foundation supported by five piles is stable if three or
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more piles can carry a load with the exception of the combi-
nations [1,3,5] and [2,3,4] (Fig. 1(c)). There areN � 25 �
32 possible outcomes. By the use of minimal path method,
all possible No � 14 operational modes with different
operational capacities are determined and constitute the
subsystem of operational modesO.

p�Eo
1� � p�A1�p�A2�p�A3�p�A4�p�A5�; O : 5=5

p�Eo
2� � p�A1�p�A2�p�A3�p�A4�p� �A5�; O : 4=5

p�Eo
3� � p�A1�p�A2�p�A3�p� �A4�p�A5�; O : 4=5

p�Eo
4� � p�A1�p�A2�p�A3�p� �A4�p� �A5�;O : 3=5

p�Eo
5� � p�A1�p�A2�p� �A3�p�A4�p�A5�; O : 4=5

p�Eo
6� � p�A1�p�A2�p� �A3�p�A4�p� �A5�; O : 3=5

p�Eo
7� � p�A1�p�A2�p� �A3�p� �A4�p�A5�; O : 3=5

p�Eo
8� � p�A1�p� �A2�p�A3�p�A4�p�A5�; O : 4=5

p�Eo
9� � p�A1�p� �A2�p�A3�p�A4�p� �A5�; O : 3=5

p�Eo
10� � p�A1�p� �A2�p� �A3�p�A4�p�A5�; O : 3=5

p�Eo
11� � p� �A1�p�A2�p�A3�p�A4�p�A5�; O : 4=5

p�Eo
12� � p� �A1�p�A2�p�A3�p� �A4�p�A5�; O : 3=5

p�Eo
13� � p� �A1�p�A2�p� �A3�p�A4�p�A5�; O : 3=5

p�Eo
14� � p� �A1�p� �A2�p�A3�p�A4�p�A5�; O : 3=5

Employing minimal cat set method, allNf � 18 failure
modes of different failure seriousness are determined, and
constitute the subsystem of failure modesF, as follows:

p�Ef
15� � p� �A1�p�A2�p� �A3�p�A4�p� �A5�; F : 3=5

p�Ef
16� � p� �A1�p�A2�p� �A3�p� �A4�p� �A5�; F : 4=5

p�Ef
17� � p� �A1�p� �A2�p� �A3�p�A4�p� �A5�; F : 4=5

p�Ef
18� � p� �A1�p� �A2�p� �A3�p� �A4�p� �A5�; F : 5=5

p�Ef
19� � p�A1�p� �A2�p� �A3�p� �A4�p�A5�; F : 3=5

p�Ef
20� � p�A1�p� �A2�p� �A3�p� �A4�p� �A5�; F : 4=5

p�Ef
21� � p� �A1�p� �A2�p� �A3�p� �A4�p�A5�; F : 4=5

p�Ef
22� � p� �A1�p�A2�p�A3�p�A4�p� �A5�; F : 2=5

p�Ef
23� � p� �A1�p�A2�p�A3�p� �A4�p� �A5�; F : 3=5

p�Ef
24� � p� �A1�p� �A2�p�A3�p�A4�p� �A5�; F : 3=5

p�Ef
25� � p� �A1�p� �A2�p�A3�p� �A4�p� �A5�; F : 4=5

p�Ef
26� � p�A1�p� �A2�p�A3�p� �A4�p�A5�; F : 2=5

p�Ef
27� � p�A1�p� �A2�p�A3�p� �A4�p� �A5�; F : 3=5

p�Ef
28� � p� �A1�p� �A2�p�A3�p� �A4�p�A5�; F : 3=5

p�Ef
29� � p� �A1�p� �A2�p� �A3�p�A4�p�A5�; F : 3=5

p�Ef
30� � p� �A1�p�A2�p� �A3�p� �A4�p�A5�; F : 3=5

p�Ef
31� � p�A1�p� �A2�p� �A3�p�A4�p� �A5�; F : 3=5

p�Ef
32� � p�A1�p�A2�p� �A3�p� �A4�p� �A5�; F : 3=5

Both the subsystemsO andF for all three configurations
are collected in a system of eventsS. The systemS is
considered as a complete system of events in all
configurations, since:

p�S� � p�O�1 p�F� �
XN
i�1

p�Ei� � 1:0
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Table 1
Uncertainties for the given system target reliabilityp�O� � 0:99 for various system configurations of vertically loaded foundations with three, four and five
piles

Piles No. and Reliability Modes H�O 1 F�
bits

H(O, F)
bits

H(S/O)
bit

H(S/F)
bits

H�O 1 F�2 H(O, F)
bits

No NF Eq. (53) Eq. (55) Eq. (49) Eq. (50) Eq. (57)

Maximal values 3. 1. 0. 2.8073 3.
3 0.996655 1 7 0.0969 0.0808 0.0000 1.6173 0.0161
Maximal values 4. 1. 2.3219 3.4594 4.
4 0.958002 5 11 1.0055 0.0808 0.9062 2.7578 0.9147
Maximal values 5. 1. 3.8073 4.1699 1.
5 0.933016 14 18

������������
1.7728 0.0808 1.6836 2.5234 1.6720

V

P



where

p�O� �
XNo

i�1

p�Eo
i � and p�F� �

XNo 1 Nf

i�No 1 1

p�Ef
i �:

6.2. Event oriented system analysis of the vertically loaded
foundation

The piles are first assumed to be of the same quality, also
have identical component reliabilities. For a given target
systems reliability ofp�O� � 0:99; different configurations
of three, four and five piles are investigated (Fig. 1(a)–(c)).
Such an assumption of unrealistically low target reliability
provides presentable results of the event oriented system
analysis, according to relations (49), (50), (53), (55) and
(57) applied to various configurations of piles (Table 1).

A parametric study of a foundation supported by five piles
by variation of pile’s reliabilities is to be performed next.
The corner piles are assumed to be of the same quality, also
having identical reliabilities. The central pile is of another
quality, with the reliability distinct from the corner piles.

For a given target system reliability ofp�O� � 0:99; the
effects of different combinations of reliabilities on the four
corner piles and of the central pile on the system reliability
and system uncertainties are investigated. The results of an
event oriented system analysis are presented in Table 2 and
Fig. 2.

6.3. Points for the discussion of the results of the event
oriented system analysis

1. For the target system reliability ofp�O� � 0:99; the
entropies of the vertically loaded foundation are increas-
ing functions of a number of piles (three, four and five)
(Fig. 1(a–c)) for different considered configurations with
an increasing number of modes (Table 1).

2. For the reliability of corner piles equal to 0.958 of the
foundation with five piles (Table 2 and Fig. 2), the central
pile is entirely ineffective with respect to the foundation
target reliability.

3. The foundation configuration with five piles for the
reliability of the corner piles equal to 0.958 is, from the
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Table 2
Uncertainties for a given target system reliabilityp�O� � 0:99 for various reliabilities of corner and of central piles of a foundation supported by five piles

Pile reliabilities on
corners central

H�O 1 F�
bits Eq (53)

H(O, F)
bits Eq (55)

H(S/O)
bits Eq (49)

H(S/F)
bits Eq (50)

H�O 1 F�2 H(O, F)
bits Eq (57)

(Comments)

0.929 0.912 1.4756 0.0808 1.3916 1.7168 1.3948 (Non attainable)
0.930 0.9896 1.5651 0.0808 1.4794 1.9716 1.4843
0.933 0.9330 1.7728 0.0808 1.6836 2.5234 1.6920 (Equal reliabilities)
0.935 0.8939 1.8760 0.0808 1.7854 2.7646 1.7952
0.940 0.7789 2.0719 0.0808 1.9794 3.1454 1.9911
0.945 0.6336 2.1769 0.0808 2.0839 3.2998 2.0951
0.9465 0.5823 2.1846 0.0808 2.0917 3.3105 2.1038 (Maximal uncertainty)
0.950 0.4453 2.1369 0.0808 2.0438 3.2757 2.0561
0.955 0.1942 1.7689 0.0808 1.6741 3.0664 1.6881
0.958 0.0000 1.0055 0.0808 0.9062 2.7578 0.9247 (Zero reliability)

Fig. 2. Uncertainties for a given target reliabilityp�Q� � 0:99 with respect to the reliability variation of corner and central piles of a vertically loaded
foundation.



reliability point of view, equivalent to the configuration
with four piles (Table 1), where the reliability of all four
piles is 0.958002. The entropies for four and five piles are
identical due to the property of entropy that events with
zero reliability do not effect uncertainty.

4. The maximum entropy of the foundation is encountered
when corner pile reliability equals 0.9465 and central pile
reliability equals 0.5823. Then both entropies of opera-
tional modes and of failure modes reach their maximal
values, indicating that the probabilities of alternative
operational and failure modes are maximally uniformly
distributed.

5. For the reliability of corner piles under 0.929, the central
pile reliability amounting to 0.9(12) is practically unattain-
able with respect to the foundation target reliability of
0.99.

6. The target system reliability ofp�O� � 0:99 is also
accomplished when all five piles are of identical reliab-
ility of 0.933.

7. The entropy of the system of operational and failure
subsystems is constant,H�O;F� � 0:0808 due to the
imposed constant system target reliability ofp�O� �
0:99:

8. The highest entropy of the operational modes indicates
the optimal foundation operational abundance.

9. The highest entropy of the failure modes indicates the
optimal foundation endurance under distress.

7. Conclusion

This article suggests that the traditional probabilistic
engineering system analysis based on physical and/or tech-
nical components of a system, may be extended by an event
oriented system analysis. Such an analysis should take into
account different random events in the system’s lifetime
service. The presented procedure can be consistently
applied to problems of exclusive or inclusive events by
adequate partitioning of the event space. The uncertainties
in system’s operation originate from the unpredictability of
possible events. A practical uncertainty measure, in addition
to other complex system performance measures, convey
knowledge about the number of operational and failure
modes and their probabilities. The relation of the uncertain-
ties of the system and of subsystems to the overall system
performance, as it is defined in event oriented system analy-
sis, may be helpful in different fields of engineering in the
refinement of system performance.

Shannon’s entropy can be used for uncertainty assess-
ment of complete systems and Renyi’s entropy for incom-
plete systems. The theorems about the mixture of
distributions and dependent systems can be applied for
bringing into the relation, the probabilities and uncertainties
of the systems and those of the subsystems. The entropy, as
the only rational measure of system uncertainty, does not
depend on anything else other than possible events and in
this sense is entirely objective.

The assessment of the uncertainty of systems by repre-
senting them by systems of events and the application of the
entropy as defined in the information theory has been well
known in engineering. The reason that the system uncer-
tainty analysis is not widely adopted in engineering practice
could be the fact that the entropy of a system itself in general
is not particularly helpful in the assessment of system
performance. However, the uncertainties of important
subsystems of events, such as the operational and failure
modes, as well as their relations to the uncertainty and relia-
bility of the entire system, can provide a better insight into
the system performance. In many engineering problems, the
difficulty is to consider all relevant circumstances. An event
may be random with respect to some circumstances, and at
the same time it may be completely determined with respect
to some other circumstances. The randomness or deter-
minedness of an event depends on whether the circumstance
do or do not determine the occurrence or non-occurrence of
the event. The choice of circumstances depends on the
observer and there is certain freedom of choice within the
limits of possibilities. Within each subsystem, other groups
or subgroups of modes can be of interest to the designers
and to the users, like modes of equal operational capacity or
modes with equal failure rates etc. The event oriented
analysis can also be applied at any level of subsystem
partitioning.

The article tackles the problem of distinction among
complex system, including also possible redundancy and
robustness, performing identical function, with the same
level of reliability but with various probability distribu-
tions or with different number of operational and failure
modes. The system uncertainty can be thought of as a
design decision attribute, which takes into account the
number of events and the dispersion of their probabil-
ities, over all possible events and important subsystems
of events, which is not included in design considera-
tions about safety and economy. Such an approach
based on event oriented system analysis, could provide
an improved alternative to strengthening lifeline
networks, updating or inverse analysis with observations
made on system behaviour and in general better system
designs.

At present, the event oriented system analysis faces
possible numerical problems in dealing with larger
systems. For a complete event oriented system analysis,
an enumeration of all the possible events is needed.
Most of the quantitative methods are economical in
the use of only the most influential events in order to
reduce the computational efforts. The methods presented
in the paper also allows the uncertainty assessments of
incomplete systems, consisting of only observable or
only of important events, being then numerically more
efficient and perhaps more practically applicable. An
enormous increase in numerical capacities of recent
computer systems could further encourage the develop-
ment of even oriented system analysis.
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