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Abstract

This article presents an attempt towards a probabilistic event oriented system analysis in engineering. Engineering systems are representec
as either complete or incomplete systems of events and as compounds of various subsystems of events. The event oriented system analysi
investigates important subsystems in engineering systems, such as operational modes and failure modes and their interrelations. The analysi
is also applicable to engineering systems with various relations among the sets of events, such as mutually exclusive and inclusive sets.
Further, the systems and subsystems are subjected to probability and uncertainty analysis. The system uncertainty analysis is based or
entropy. General relations among the probability, uncertainty of the system and uncertainties of the subsystems are derived by using
information theory. Specific mathematical aspects and available methods in the uncertainty modelling of systems and subsystems are
summarised. Numerical examples confirm the relevance of the event oriented system analysis and indicate potential improvements in
system design© 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction to demonstrate the usefulness of the event oriented system
analysis as a tool for assessment of system performances

Each object can be viewed as a system in different ways.and improvements of engineering system design with

An object is often a part or subsystem of a more complex respect to system uncertainties.

system. The object itself can consist of many components

and possibly of more subsystems. Systems in engineering

are often viewed as objects of many discrete interacting 2. Uncertainty modelling

components with uncertain capabilities. Moreover, systems

are subjected to uncertain external demands. Sometimes, the There are many uncertainties concerning systems and

components are grouped into a number of subsystems, eaclvarious methods of analysis. However, in the usually

of them pertaining to some specific characteristic function adopted random variable model, the uncertainties of the

of the system. Subsequently, many systems can be assumedomponents are due to statistically uncertain capabilities

to depend only on the current states of their components. regarding the geometry, the material properties, the work-
Complex engineering systems can be subjected to servicemanship, different uncertain demands, operational conditions

modes and effects analysis in order to identify the events and loads, as well as modelling and subjective uncertainties.

that can occur at the component, subsystem and systenThe probabilistic system analysis is based on the application

levels. The goals of such an analysis are to determine theof probability theory to basic stochastic events, which can

effects of known operational and failure modes on the over- be defined by random design variables. Such an analysis

all behaviour of the systems [3,8,11]. In addition to opera- provides system reliability or system failure probability

tional modes and effects analysis, semiquantitative andusing the usually set algebra.

quantitative methods can be applied to predict the probabil- The traditional probabilistic approach to discrete

ities of safe operation or the accidents [10]. Redundanciesengineering systems (mechanical, structural, electrical,

[5,6] and robustness [4] can also be considered. Serviceaerospace, nuclear, marine, etc.), with uncertain capabilities

modes and effects analysis is an essential step towardsand operating under uncertain conditions, takes into account

understanding complex systems without which reliability the random physical and technical characteristics of the

and uncertainty analysis cannot be performed. components of the system and the stochastic environmental
The procedures presented in this article are applied in effects.

addition to the traditional system analysis for the solution  Moreover, systems may be considered at another level. In

of practical numerical examples in engineering. The aim is the event oriented system analysis, a system is defined not
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which prevailed before the experiment was accomplished,
and as a measure of the information expected from an
experiment. The theorem about the entropy associated

Nomenclature

A, B Random events in general with the mixture of distributions [13], and the theorem

H(-)  Entropy of a system of events about dependent systems [9] can be used to assess the uncer-

H(:)  Entropy of a system of events of order one tainty of subsystems.

N,n  Numbers of systems and of subsystems Possible ambiguities in a complex system reliability

No, Nr - Number of operational events and of failure  3ssessment can be resolved by uncertainty analysis. Such
events problems arouse when, for example, systems with the same

p(-). p  Probabilities of random events, (sub)systems reliability but different probability distributions of a number

S System of events in general of operational and failure modes are evaluated.

9! System of subsystems of events

i Subsystem of events in general

0,7 Subsystems of operational and of failure 3. Uncertainty measures

events

The uncertainty of a single stochastic evéntwith a
known probabilityp = p(A) # 0 plays a fundamental role

onlv by its phvsical and/or technical components. but also in the information theory. The entropy of a single stochastic
y by IS pny P . event is defined a& = H(p) = —log, p(A) [15], and can

by its all, or at least known or important states. Primarily, : .
) : . be interpreted either as a measure of how unexpected the
the states of the engineering system can be considered as

. . . I event was, or as a measure of the information yielded by
operational or inoperational. The majority of the states are he event [1]
observable, but there may be some unobservable, undefinedt, S . .
More important than single stochastic events are the

unknown or less important states as well. Some of the states .
. . systems of events. Events are considered as abstract

can be in common with several system features. The states : .
concepts and the relations among events are characterised

of a system are represented by a system and by subsystems

N . . axiomatically.

of random events in different relations and on various levels. .

. A . . The algebraic structure of the set of event turns to the

The word “uncertainty” in the context of engineering
) . . Boolean algebra [13].

system of events should be given a more precise meaning ;

i : . A system of eventsk,, E,, ..., E, is called a complete
[14]. The notion of uncertainty, applied to a system of : ; ! :

. LT A system of events if the following relations in the events

events, is an uncertainty in the objective sense due to the

fact that actually several events are possible. It is not the space hold:
uncertainty in the mind of observers concerning the E, # & k=1,2,..n) (@h)
outcomes of an experiment [13]. The uncertainty arises
from the number of events and the unpredictability of the EE.= (for j # k) 2
events or subsystems.

In connection with the notion of uncertainty, the concept E; + E; + --- + E, = | (©)

of information has to be mentioned. The uncertainty

diminishes with the reception of relevant information. The

uncertainty with respect to outcome may be considered ¢ The “0¥" in Egs. (1) and (2) means an impossible event.

equal to the information furnished by the occurrence of e The fact thatE; andEy are exclusive is expressed in Eq.

this outcome. Thus, uncertainty can also be measured. (2).

Terminology often alternates. The concept of entropy in e Eqg. (3) denotes that at least one of the evehbis

the information theory was first applied to transmission of k=12, ...,n, occurs.

various information. Later, it was extended to the prob- e The | denotes a definite event.

ability theory and engineering systems, providing more

comprehensive definitions of system characteristics by

introducing system uncertainties. A strong connection also

exists between the notion of entropy in thermodynamics and ¢ A system of eventsE,, k=1,2,...,n, is said to be

the information theory. complete if fori # j, AA =, and if the occurrence
The basic idea in this article is to make use of Shannon’s  of an eventg, is “almost sure”, i.e. if it has the property

entropy or information [12] to assess the uncertainty of  p>E) =>kp(E) = 1.

systems and subsystems. In addition to the basic definition _— .

of entropy given by Shannon and Weaver for complete The defln!t|on also .|nvolves that one and only one event

systems, Renyi’'s entropy [13] can be used to assess themUSt oceur in each trial.

uncertainty of incomplete system of events. The entropy e If some outcomes of an ‘experiment’ are not known, or

can be considered both as the measure of the uncertainty, their probabilities cannot be determined, or if only some

The definitions of complete and incomplete systems of
events in probability space imply the following:



K. Ziha / Probabilistic Engineering Mechanics 15 (2000) 261275 263

of all possible events are taken into account because onlythis quantity as the Shannon’s entropy of order one [13]:
they are observable, an incomplete probability distribution ] ]
px can be considered. If fop(py > 0, k=1,2,...,n) 1 o _{_
there is>, p < 1 and not necessarily , p, = 1, the Hn() = HY(&) = ( ;pi log pi)/;pi ©
system is incomplete.
Note that the entropy defined by Eq. (6) is often denoted as
3.1. Uncertainty associated with a complete system of eventgRenyi's entropy of order one [1]. This paper uses the
notation Renyi's/Shannon’s entropy of order one.
For a quantitative analysis of a system of events, e.g. in
mathematics, the presentation of a system of events only in ) .
terms of probability space, i.e. by the distribution of prob- 3-3- Properties of uncertainty measures
abilities of events, is sufficient. However, for more complex
gualitative analysis of systems, as is usually the case in
engineering, the systems and the subsystems of events ca
be presented both by the notion of events and by the appro-e¢ The definition of the unit of uncertainty is not more and
priate probabilities associated with each of the events, not less arbitrary than the choice of the unit of some
denoted as a finite scheme [9]. Let us consider a system physical quantity. For example, if the logarithm applied

Some definitions and properties of entropy important in
ﬁngineering are summarised.

&, constituted by the events;, i =1,2,...,n, and with in Egs. (4)—(6) is of base two, the unit of entropy is
the appropriate probabilities associated with each of the denoted as one “bit". One bit is the uncertainty of a
eventsp; = p(E;), presented as a finite scheme: system of two equally probable events. If the natural
logarithm is applied, the unit is denoted as one nit.
(BB .. K e Outcomes with zero probability do not change the uncer-
“\p. P tainty. By convention, O log €= 0.
e The entropyH,(¥) is equal to zero, when the state of the
The entropy of the complete system of events[12] is system¥ can be surely predicted, i.e. no uncertainty
supposed to depend only on the probability distribution of  exists at all. This occurs when one of the probabilities
considered event® = (py, P, ..., Pp) @nd can be denoted in ofeventy;, i =1,2,...,nisequaltoone,letussay, and
different equivalent ways, as shown: all the other probabilities are equal to zgogp= 0, i # k.
e The entropy is maximal when all events are equally prob-
H(S) = Hy(#) = Hn(P1, P2, -, Pr) = Hn(#) able, and the probability of failure is equalgo= 1/n, for
N N 1 i=12..,n, and it amounts tdH,(¥)max = log n [7].
- _ Z pi log p, = Z pi log = (4) Hartley’s entropy corresponds to the Renyi's entropy of
= = Pi order 0 [1].

e The entropy increases as the number of events increase.
The quantity (4) is called the entropy of the complete o The entropy does not depend on the sequence of events:
probability distribution or the entropy of the complete Hn(P1, P2s -+ Pn) = Hn(Piwys P2)» - Prcny)» Wherek is an
system of events. It is known as Shannon’s entropy or  arbitrary permutation oft, 2, ..., n).
Shannon’s information. e The entropy is the only function appropriate for the uncer-
tainty measure (the uniqueness theorem) [2,9].

3.2. Uncertainty associated with incomplete systems of  There are other important properties of the entropy concern-
events ing composite events.

Another measure of uncertainty is Renyi's entropy of e For two independent systems of eventsy =
ordera, which is defined fow # 1, as: (A, Ay, ... Ay andZ = (By, By, ..., By), where the prob-

ability of the occurrence of two states of the systems is

1 Lo defined by p(A; N B) = p(A)p(B)), the entropy of a
1-« IOgZ(; Pi /;pi) ®) system which is caIIJed the directl product of distributions

N N denoted as«#, is defined as follows (additivity of
The quantity (5) may also be viewed as a measure of the entropy):
amount of uncertainty corresponding to either complete or
incomplete distribution of probabilities pertaining to the H(/%) = H(/) + H(%) )
system of events’.

The entropy of an incomplete system of evefitgan be ¢ If the systems of eventsy = (A, Ay, ..., Ay) and 4 =
viewed as the limiting case of (5) fat — 1 and can be (B4, B,, ..., B,), are dependent, where the probability of
viewed as the arithmetic mean (expected value) of the single  the occurrence of two states is definedggpy N B)) =
entropies—log p; with weightsp,. Renyi himself denoted P(A)P(B;/A), the entropy of the compound system

Hi(9) = HY () =
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denoted as/ % [9], is defined as follows: distribution, there can be assigned an ordinary probability
H(A/%B) = H(/) + H( Bl ) d|s_tr|but|on by t_he substitution qn‘(Eij/,%)mstead.(_)b(Eij),_ _
which may be interpreted as a complete conditional distri-
H(%!</) in Eq. (8) is the average entropy of the systém bution of probabilities with respect to the condition that the
with respect to the systemy and represents the conditional system.#; occurs with probabilityp(.#;). It is obvious that

entropy of systen# with respect to the systeny: P(Ej/S ) S = p(Ej).
_ Each subsysten¥’; can also be viewed under the condi-
H# ) = in(Ai)-H(,@/Ai) ®) tion that in the system of all known modeg, only the

subsysteny”; occurs. The conditional probability of system
H(#/A) in Eq. (9) is the conditional entropy of systesm p(#1<;) depends only on the probability of subsystem
with respect to the ever; in system./. itself, i.e.p(71.%;) = p(¥}). Obviously,p(%i/%;) = 1.
If the system? is not a complete system of events, i.e.
p(#) < 1, an incomplete system of events has to be consid-

4. Subsystems of events , ; X
ered. The appropriate uncertainty of the incomplete system

Let us consider a systerf of N disjoint eventsE;, with & should be presented by the Renyi's/Shannon’s entropy of
appropriate probabilitiep(E; ): order one as follows:
En . Em . Bi . EBm .. HW) =H(SP) (12)
B p(Eiy) ... PEim) - KED ... PEm) .. The system% can also be considered under the condition
that only the observable events are of interest. The condi-
En . BEm tional entropy of systen¥’ can be obtained as follows:
p(Enl) qEnr‘m) E E:
Hy (1) = Z pgy; % = HL(¥) + log p(¥)
The events of systen¥’ can be grouped regardless of the P P
ordering of events into subsystems of events, i = (13
1,2, ...,n, each containinds, j=1,2,...m elements, as The summa applied in Eq. (12) is calculated as shown:
presented:
n m n
P ( E. ... E .. En ) Hu(o) = => > p(Ej logp(Ey) = D Hu (D (19
D= i=1j=1 i=1
" \pED .. PE) .. AEm) o |

The maximal attainable entropy of systefsfor either

The probabilityp(.#;) associated with each of the subsys- complete or incomplete systems, is obtained for=

tems;, i =12, ...n,is as follows: > L, m equally probable events in amountief (S )max =
il log(N/p(7)).

P = > pEy) (10
=1 4.1. Uncertainty associated with subsystems of events

Neither the probability nor the entropy depends on the
sequence of events within the subsystém Note that the
subsystems”; can be either exclusive or inclusive, having
some common events.

The system? can be in general presented as a union of
subsystems of event®;, as follows:

The theorem about the entropy associated with mixture of
distributions [13] can be applied to assess the uncertainty of
a subsystem of events. A mixing distribution may be
reinterpreted in terms of subsystems. Subsystems of events
are considered to be associated with a mixture of partial
distributions [16]. The uncertainty of the subsystem,
Y=<, U..US5U..UF) regardless of its exclusiveness or inclusiveness with respect
to other subsystems, can be expressed as the Shannon’s
entropy applied only to the partial probability distribution
of the system% considered under the condition that the
=1t TS+t S subsystem¥; occurs. Such a condition entropy does not
depend on the system probabilip¢.), being independent
of whether the systeny’ is complete or incomplete.

n According to the definition of the entro 4), and usin
pS) = p(Uy) Z Zp(Eij) 9 py (4) g

For strictly disjoint subsystems of evernt§, the system”
can be presented as:

The probability associated with syste#fis defined as:

ab conditional probabilities of the occurrence of subsystems, it
follows:
The probability distributiop(E;;) associated to a subsystem m oE:) E)
& is considered as a partial distribution of probabilities H (SIS} = _Z P lo PE; (15)
of the entire system¥. To every partial probability = P p(S)
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The entropies of the subsystems in Eg. (15) depend only on The summa applied in Eq. (20) is calculated as:

the states of the subsysterfsitself, not on any other states N

of the system¥ and on the systen¥ itself. H (") = — (") log p(¥;) (22
The following relation expresses the loss of the entropy of " ; P09 P

a subsystem?’; considered as a partial distribution, with ] o N

respect to the entropii'(#;) of a system¥; viewed as The general relation of the probabilities and conditional

an incomplete system: entropie_zs_ of complete or incomplete system and t_hose of
N the disjoint subsystems, can be derived by taking the
Hn (7191) = Hn () + log p() (16) weighted summa of all the conditional entropies of subsys-

The Renyi's/Shannon’s entropy of order oHg;(.%}) in tems [16], as follows:
Eq. (16) correspond to the entropy of incomplete system of n

event defined as: Z P(S ) Hn (1)) = () [HN(S1S) — Ho(L'19D)]
i=1
Hn () = Hi (Z)/P(S) 1n
The partial summad,(.%;) in Egs (14) and (17) within = p(S)HY(S) — Ha(# )] (23)

the systeny” corresponds to the partial probability distribu-
tion of subsystem of event¥’;, and can be calculated as:  The expression (23) may be considered as a straightforward

m application of the theorem about the entropy associated with
Hn (Y1) = — Z P(E;j) log p(Ej) (18 a system of disjoint subsystems. The average of the entropy
=1 of the subsystems’;, with weights equal to the associated

The maximal attainable conditional entropy of the subsystem Probabilitiesp(<;), is equal to the entropy of the system of

% is obtained fom equally probable events and amounts as: tevent;/?, reduced for the entropy of the system of subsys-
emss’.

Hi (717 Dmax = log m (19 The reduction in the entropy of systesi is a conse-
guence of the knowledge about its partitioning into subsys-
4.2. The relation of the uncertainties of the system and of tems. The relation (23) does not depend on whether the
disjoint subsystems systems.¥ and ' are complete systems, i.@(%) =
, Py =1, Hy(¥) = HN(¥) and Hy(#") = Ha("), or
The system of# can be viewed also a/ts a compounchof incomplete systems due {@.%) = p(#’) < 1, Hy(¥) =
subsystems/;, 5, ..., %, denoted as””’: HY (%) + log p() andHn (") = HY(") + log p().
P = (Lo Ly e L) The expression (23), can be also be rewritten in terms of

entropies of incomplete systems as follows:
( L e L Py )
(L) . PFD . P

The probability associated with systest’ is p(¥') =
SLip(s) = p() = Y1 3% pEy).
The maximal attainable entropy of systert{ for either 4.2.1. The relation of the uncertainties of k out of n disjoint
complete or incomplete systems, is obtainedrfaguality subsystems
probable events as;( )max = logVp(#")). In more general terms, the relation among &mut of n

If the systemy”' is not complete systems of events, i.e. disjoint subsystems of events can be derived as:
p(#") < 1, then incomplete systems of events have to be

considered. The appropriate uncertainty of the incomplete

NgE

P(S D) Hn (F1) = p(S)-HY(S) (24)
i=1

k k

system.#’ should be presented by the Renyi’'s/Shannon’s ;p(yi)-H(y/yi) - ;p(yi)-{H[y/(yl HEEE
entropy of order one as follows: - B
Ha(") = Ho(S)p(o") (20) + POl = HLI NS 1, Sy o SOT}
The systemv’ can also be considered under the condi-
tion that only the observable subsystems of events are of k L
interest. The conditional entropy of system’ can be = Zp(:%)-[H (L1+ S+ -+ S
obtained as follows: i=1
L p(; S
Ho(S' 1) = = LS log P —HY S, Sy ooy O]

= P) p(s)

= H(¥") + log p() (21 =H( 1+ S5+ -+ %) — H(S 1, o, L) (25)
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The terms in Eq. (25) are defined as follows:

H(S 1S+ Sy + 4, S

k m . .
3T PE) gy )

L Lk
i=1j=1 Z p(ym) Z p(ym)
m=1 =1
k
= Hl(yl + 5”2 + o 4 yk) + |Og Zp(yl) (26)
i=1
Hl(yl'i‘ Pyt o+ F) = H(¢¢1+i/’2+ et L)
D!
i=
k
> H&
_&=E .

Kk

> P

i=1

k m
H( L+ S5+ -+ S0 =—> D p(E;) log p(Ej)
i=1j=1

Il
[\/]x

H(S) (28
i=1
k
i
H(SIS 1, L o oo ) = — Z P log kp( )
= Z PSm) D (S m)
m=1 m=1
k
= HY S, L2 .. 1) + 109 D p(S)) (29)
i=1
HY S 1, Loy s Fp) = H(yl’k‘%"“’ 7 (30)
> D
i=1
k
H(S 1, S 20 S1) = = D DS} log PS5 @31

i=1

The weighted summa on the left-hand side in Eq. (25) does
not depend on whethe¥ and.#’ are complete or incom-

plete systems.

entropies of incomplete systems as follows:

k k
> [P )-Hay (D] = [Zp@%)]-H&(yl + S+
i=1

i=1

+ %) (32

4.2.2. The relation of the uncertainties of the disjoint
subsystems on arbitrary partitioning level

Some may be interested in uncertainties associated
with subsystems at an optional level of system or subsystem
partitioning. Let us suppose that any of the subsystetrsf
n, eventsk can be built up oim disjoint sub-subsystems.
S, each consisting ofn;, j=1,2,...,n;, appropriate
basic eventsE as defined earlier. Such a subsystem
can be presented as a subsystem of subsys#mas
follows:

y/ ( y”_ e y” e ylml )
U \p@ ASy) DS im)

The uncertainty of the sub-subsysterf; can be
expressed as the Shannon’s entropy applied only to
the partial distribution of the subsystewf; considered
under the condition that the subsystery occurs. Such

a conditional entropy does not depend on the probability
p(¥;), also being independent of whether the systém

is complete or incomplete. According to Eq. (4), it
follows:

o pEj) P(E;)

op. L) — —

A7) 1:21 p(%) log P(Li)

H(Z )
pP(S%)

=HY ) + log p(F) = + log p(Z)

(33

The relation among the uncertainties of sub-subsystems
can be derived analogously to the relation (23), and it
represents the conditional entropy of subsyst&mwith
respect to subsysterr’| as:

m
H(& 15} = Zp(yij)'H(yi/yij)
=

= p(DIHYS) — HY(DI
= p(SD)IHILS) = HS' 19D (3%

The relation (34) for subsysten’;, as a partial distri-
bution of a known complete or incomplete distribution,
does not depend on the other states of the systém
which are not in;.

In general, the uncertainty of the subsystems of events at
any level, considered under the condition that only the
events constituting the subsystem occur, depends only on

The relation (25) can be also be rewritten in terms of the events pertaining to the subsystem itself, and not on the
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other events of the system. The relation (34) can also besystem (¥, %>, ..

rewritten in terms of entropies of incomplete systems as:
m

> p)-H(Sy) = p(s)-H(S) (35)
j=1

The Renyi’s/Shannon’s entropy of order dA&.%) can be

applied instead of the Shannon’s entrag{¥’), for both
complete and incomplete systems. Hm¥) = 1, since

267

. %), and can also be denoted as
HI(S 1+ Py + oot POINS 1, L oo PN

4.3. Uncertainties of inclusive subsystems of events

Let us suppose that the system of eve#ftgontains two
subsystems with some common events. The first subsystem
is denoted as/’p, containing elementg,, 1=1,2,...m,
and the second is denoted &, containing elements

all the relations are the same, regardless of whether theEq. kK=1,2,...,m,, as presented next:

considered system is either a complete or an incomplete

one.

4.2.3. Uncertainty associated with dependent systems of
events

Another interpretation can be given to the relation of the
entropy of system and disjoint subsystems. Consider
systems ' = (F1, L, ... Fp) and & = (¥ + S5+
-+ &) as dependent.

The entropy of two dependent systems can be obtained

according to Eq. (8) as follows:

H(' %) = H(&¥) + H(L1S) (36)

The conditional entropyH(/.%") of system.# with
respect to systen¥’’ in Eq. (36) is on the basis of Eq. (9),
equals to the following term:

H(L1S") = p(F ) HS 1S ) + p(L o) H(SL LS 5) + -

+ p(S )RS TS )

= > p(SDHS1S) @37)
i=1

In Eq. (37), the termsH(¥/¥}), i=1,2,...,n are the
entropy of system” under the condition that subsystems
& occur. In the case when the states of systgihare
entirely defined by states of system, as it is in these
considerations, the following relation holdet(#'.%) =
H(%).

s _[ B s Eom,
P\ pEp s (=) AEpm,)
qu qu Eqnh
Fq=
p(qu) F(qu) F(Eqrrh)

The systent” can be presented more generally as a union of
more subsystem of events as shown:

S =(F1U . USU LU ..Uy

The probabilitiesp(,) and p(y) associated with the
subsystems/, and.%, are calculated as

Mp my
PSP =D PEy and  pFq = > pEq).
=1 =1

The conditional entropies of the syste#f with respect to
the subsystems’, and.%,, are calculated according to Eq.
(15) as follows:

s
p(EpI) p(EpI)
Hn (1Y) = — 39
1D = 2 57 ' pi, e
H (W/j):_g PEq)  P(Eq) @0
e S PSP

Finally, using the theorem about dependent systemsThe conditional entropie; of the syste#f with respect to
according to Egs. (8) and (9), the same result for the the Subsystems’,and.#in Egs. (39) and (40) depend only
relation of the uncertainties of the system and of the on the states of the subsystems, and not on any other state of
subsystems is obtained by using the theorem about mixtureth® system.

of distributions for complete systems of events in Eq. (23), L€t Us suppose that there are=1,2,...,m,; common
as given next: events denoted af,q,) = Eq), Where s and t are

appropriate selections of common events. The subsystem
containing common events is a subsystem too, and is to
be considered as an intersection of two events as follows:

Bosiy = Equ)

H(Z 1S = p(L ) H(S 1S ) + (S ) H(L LS ) + -

+ P ) HS LS ) Eps1) = Equa

S Sy = (
P(Eps1) = Equ))

A(Epsty = Equa)

P(Epsmy) = Eqtmy))

Epsm;) = Equm)

=H&) - H&") (39

The term (38) can also be viewed as a conditional entropy of
a partial system¥’; + ¥, + ---%)) with respect to the
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The system¥ can be presented as a summa of disjoint
subsystems of events as follows:

5=(E11 E12...Exn Ex.
5:( ...... 31 ............ 32...
So S5 Sq
[ |
[ I
.............. Speeeeveeves e s S et s e es e e
| |
SpDSq
Enl En2 En3---Enm)
------------ Sn.--.--.-----)

The probability of the intersection of two subsystefig
and.%q, can be defined as

m;
PN Sy = Z P(Eps1y = Equay)
i=1

The conditional entropy of the syste#fiwith respect to the
intersection of two subsystems of evert§ and %, is
calculated based on Eq. (15) as follows:

Hin (L1550 S )

_ < pEpan = Equ)
NN 7o)

P(Epsiy = Equy)
P& NS

(41
i=1

It is of interest to find out the entropy of a union of subsys-
tems considered as a system of=m, + m;—my
elements. The probability of the union of two subsystems
can be defined as

p(ypuyq)zp(yp)_Fp(yq)_p(ypmyq)-

By taking the weighted summa of all the conditional entro-
pies of systeny”” with respect to the subsystems and.%,

as well as their intersection, the following relation to the
probability and uncertainty of the union of events can be
derived:

P p) Hi, (1S p) = 10g (S p)] + P(S ) [Hin (ST )
—logp(# Q)] = PSp N S ) Hm, (195 N Fq)
- |Og p(<¢p N Sﬂq)]

=Sy U L) [H (PS5 U L) = log P U Sl
(42
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the system of subsystem denoted%aswith respect to the

union of the system of subsysters§, and % :

_p(yp)IOg p(yp) - p(yq)|09 p(yq)
P p U S

Ho(S'1Sp U S ) =

+p(Lp U Ly + p(Sp N Flogp(Sp NSy
p(SLp U S

+log p(sp U L) (43)
After the substitution of Eq. (43) in Eq. (42), the following
simplified relation is derived:

(S p) He (L1S ) + DS ) e (F1F )
— PN S ) H (LS50 L)

=P(Sp U S Hin (1S, U Sg) = Ho( S 1S5 U S )]
(44)

The term (42) can also be rewritten in terms of entropies of
incomplete systems as follows:

P ) Hm, () + P ) H (F)
— (SN S ) Hn (SN T

=P U L) Hn (Fp U L) (45)

5. Engineering systems of events

Let us suppose that there is a number of, let us say,
physical or technical components of an engineering system.
The observable outcomes associated with the component
can be denoted as basic events or modes. Even inclusive
events or common cause events are random events, and have
to be identified as basic events. The basic event may happen,
when denoted);, or not, when denoted,, i =1,2,...,n,,
which also represents an event, sometimes called simple
alternative. Then, is the total number of basic events, not
necessarily equal to the number of componemtsThe
quantitative methods of system analysis require component
operational data about basic events, such as the probability
of proper operatiorR, = p(A;) or the probability to fail
Pri=pA)=1-pA). A systemé’; of two events repre-
senting only one of the states of a component can be repre-
sented as

@@_:(/ﬂ A
"o \pA) pA)

The uncertainty that a single state of a component is
operational or fails can be expressed as the entropy of the
system of two events, as:H(é)) = —p(A) log p(A) —

p(A) log p(A). The maximal entropy for two equally prob-

The next term may be denoted as the conditional entropy of able events amounts,(&)max = 109, 2= 1.
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According to an operational modes and effects analy- A system%’ of two subsystems of events, each considered
sis, all possible or at least all-relevant and observable as a compound event denotédor the operating system and
eventsE; of a system could be determined using basic denoted# for the failed system, can be defined as follows:
events. Methods such as enumeration, event-tree and 0 7
fault-tree analysis are at disposal. Some of the events oo/ — (¢ 7 :( )

E, can be regarded as operational modes, denotegf as p(O) p(F)

(status= O), whilst some events can be regarded as . . .

failure modes, denoted WitE{ (status= F). The prob- The .event oriented system analysis may be applied tq any
abilities of possible modes can hopefully be calculated _relatlo_n of sets of events or subsystems, SUCh as exclusive or
using quantitative methods, and will be denoted inclusive sets, as well as dependellﬁ an_d independent events,
pE)i=12..N. N is the total number of all under the cond|.t|on of proper partitioning of the syst.e.m pf
known, or at least all observable possible events consti- €Vents to a t_)asm set of disjoint events. Such a partitioning
tuting system of event’. can be provided, for example, by the well-known exclu-

The system¢ can also be presented as a summa of sion—inclusion expansion of union of events.

operational and failure subsystem as shown: . . . : :
5.1. Uncertainty associated with engineering systems and

E; E, ... K ‘ subsystems
g = =0+ 7)

P(E) pE) ... PAEN) The systeny” under the condition that it is operational
Consider also in more detail the two important subsystems ©F failed 7 can be presented respectively, as follows:
of the system?. The first, denoted@, comprises all of the B0 EYO ... RO
eventsE, denotedE?, i = 1,2,...,N,, when the system is PO = o o o
operating. The second, denote#, consists of events —| PED pE) PEN
El, i =N, +1...N, + N; when the system fails: Py po) p(O)

o ( BE B . R, ) SWIVE N = AVE S = Y E 4
ED) pED .. MER 7 =
p( l) p( 2) F:( No) y// p(E{\l0+l) p(E{\I0+2) p(EI\jO+Nf)
ELOJr1 EfNDJr2 E{\,O+Nf p(F) p(F) p(F)
F = p(Ef ) p(Ef ) p(Ef ) Shannon’s entropy of syste#, under the condition that the
No+1 Not27 No N system is operating, is shown as:
The total number of events is equalNg + N; = N. It may N, D(E®) D(E®)
be also noted that the sequence of events within the systemtHy (#7/0) = — Z p(OfI) Jog p(é) , (49

or within the subsystems is irrelevant with respect to i=1

intended reliability and uncertainty considerations. Shannon’s entropy of systes under the condition that the
The overall reliability of the system corresponds to all of system is failingZ, is shown as:

the outcomes when the system is operating, and can be

calculated as the probability of the subsystem of operational No + Ny p(E_f) p(E.f)
F) = — i/ Jog =/
modesp(®): WD 2w ) 0
No
R = p(0) = Z P(E?) (46) The entropy of the operational modes in Eq. (49) and of the
i=1 failure modes in Eqg. (50) depends only on the states of the

subsystem of operational and failure modes, and not on any
other state of the system.

The maximal attainable entropy of syste¥fiunder the
condition that the system is operating is:

The appropriate failure probability of the system corre-
sponds to all of the outcomes when the system fails and
can be calculated as the probability of the subsystem of
failure modeg(¥):

No + Nt HNO(LV/@)max =log N, 51
f
Pi(S)=pF) = > pE) (47 The maximal attainable entropy of systeffi under the
=R condition that the system is failing is:
In any case, either for complete systems or for incomplete Hy (17 )max = log Ny (52)
f

systems, the next relation holds:
N The entropy of the complete system of all known or all
P(¥) = p(0) + p(F) = ZIO(Ei) (48) observable possible eventg, as well as the maximally
= attainable entropy, can be obtained from Eq. (5) and from



270 K. Ziha / Probabilistic Engineering Mechanics 15 (2000) 261-275

Hartley’s formula: entropies is obtained, as by using the theorem about mixture
N of distributions:
Hn(S) = Hy(O + 7) = = > p(E;)log p(E;) (33 PO H(LIS) + P(F)HFIF) = H(F) — HS')  (61)
i=1
If the system.¥ is not a complete system of events, i.e.
HN (S )max = 10g N (54 p(¥) < 1, an incomplete system of events is considered.
The entropy of the complete syste#fl of © and.#, as well The Renyi's/Shannon’s entropy of order one in Eq. (6),
the maximally attainable entropy are: can l_Je applied for syst(_am uncertainty assessreat’),
/ for either complete or incomplete systems of events, as
Ha(") = Ha(0, 7) = —p(0)-log p(O) — p(F)-log p(F) follows:
(55) Y
HY (%) = HY(O + 7) = Z(Z) (62
Ha(S max = log 2 (56) P

Renyi's/Shannon’s entropy of order oné'(’) of the

The operational and failure modes are of utmost interest for ‘ f subsvst ¢ 51 b dt
the engineering system designers and for the system usersyy >1eMs OF SUDSYSIEMS Of EVEMS can be USed 10 assess
he uncertainty of the system built from subsystems based

The subsystems of operational and failure modes can also b Eq. (6 h )
considered on different levels of the hierarchical representa-on g. (6) as shown:

tion of the basic events with respect to their importance in Lo o Ho (")
system design. Ha(o") = H2(0, 7) = ) (63)
5.2. Relations of the uncertainties of engineering systems In Egs. (60)—(63)H(.¥) andH(.¥"") are defined in Egs. (53)

and subsystems and (55).
_ _ The systems? and.#’ can also be considered under the
The weighted summa of entropies of the subsystéms  condition that only the observable events are of interest. The

and.7 of a complete systen¥’, in terms of the theorem  conditional entropies can be obtained as presented in Egs.
about mixture of distributions, can be represented according(13) and (21).

to Eq. (23), as shown: The following relations within the systerst considered
PO)-Hy (F10) + p(F)-Hy (L1F) as a set of subsystethand.#, can be obtained on the basis
° ' of Eq. (12) as follows:
=H\(O+ 7) = Hy(0. 7) OD p(O)Hy (F10) + PF)-Hy (F17)

Eq. (57) represents the relation of the probabilities and 1 Lo

entropies of subsystems of operational and failure events ~— P() HN () — Ha(¥)]

to the entropies of the system and subsystems of all possible

oo P Y Y P = PV HW(S1S) = Ho(S19")]
Consider again the system& = (0 + #)and &' = — Hu(P) — Ho () = Ha(O + F) — Ho(O. T 64

( 0,7) in terms of the theorem about dependent systems. N A7) N ) 20.7) 64

According to Egs. (8) and (9), the entropy of two dependent The uncertainties of operational and failure modes and their

systems can be obtained by: relations can be applied in the assessment of system perfor-

H( &) = H(S') + H(Z1S") 58) mances. Following guidelines can be intuited:

o Higher entropy of operational modes is a consequence of
a more uniform distribution of probabilities of opera-
H(&Z1S") = p(O)-H(SL1S) + p(F)-H(SLLF) (59) tional modes and can indicate the increase of the

system’s operational abundance.

Higher entropy of failure modes is a consequence of more
uniform distribution of probabilities of failure modes and
can be related to the increase of the system endurance to
failures.

The term in Eq. (58) is calculated as follows:

The term (59) represents the conditional entropy of system
& with respect to systeny’’. °
H(Z/0) andH(¥/% ) are called the conditional entropies

of system” under the condition that subsystefigsind #
occur, respectively. When the states of systefh are
entirely defined by the states of the systefnas it is the 6. Example a vertically loaded foundation supported by
case in the present consideration, the following relation piles
holds:

N An event oriented system analysis procedure is demon-
R 7) =HE (60) strated on a system reliability and system uncertainty analy-
Finally, using the theorem about dependent system of sis of vertically loaded foundations supported by vertical
events, the same result for the relation of the subsystem’spiles [10]. Variation in system configurations and different
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1 2 : 2

(@) (b) . (c)

Fig. 1. Foundations supported by three, four and five piles

component probability distributions are considered (Fig. The subsystem of operational modésonsists ofN, = 5
1(a)—(c)). modes with different operational capacities, as follows:

6.1. System service modes and effects analysis P(ED) = P(ADP(AL)P(Ag)P(Ay); O : 4/4

First, a system service modes and effects analysis isP(E2) = P(A)P(A)P(A)P(A); O : 3/4
performed in order to identify all the modes and appropriate B
probabilities of occurrence. P(E3) = P(A)P(A)P(Ag)P(A); O: 3/4

6.1.1. The foundation on three piles P(E3) = P(ADP(A)P(A3)P(A,); O: 3/4
The foundation on three piles is stable if and only if all B

three piles can carry loads (Fig. 1(a)). ThereMre 2° = 8 P(E3) = p(AD)P(A)P(A)P(Ay); O: 3/4

outcomes. By inspection, all possible operational and failure

modes are determined. The subsystem of operational mode

¢ consist only of oneN, = 1, fully operational mode:

f A A . .
P(E) = p(A)P(A)P(Ag); O: 33 P(Eg) = P(ADP(A)P(Az)P(A1); F : 2/4

The subsystem of failure mode® consists ofN; = 11
Bvents with different failure seriousness as given next:

The subsystem of failure mode# consists ofNy =7 p(Ef7) = p(A)P(A)P(A)P(A); F : 2/4
modes with different failure seriousness:

P(ED) = p(ADP(A)P(Ay); F : /3 P(Eg) = PADP(AP(AP(AY): F : 24
P(E}) = PADP(A)P(AY); F : U3 P(ED) = P(ADP(A)P(Ag)P(A,): F : 2/4

P(E)) = PADP(AYP(AY); F : U3 P(Ely) = PADP(A)PAPA,); F : 2/4
P(EL) = p(App(A)p(Ag); F : 2/3 P(E]y) = PADP(A)PAP(A,): F = 2/4
P(ED) = p(ADP(A)P(As); F : 23 P(EL,) = pADP(A)P(AP(A,); F : 3/4
P(ED) = p(ADP(A)P(Ay); F : 213 P(E}2) = PADPAIP(APA): F : 3/4
P(Ey) = PADP(A)P(Ay): F : 33 P(EL,) = P(ADP(AP(Ag)P(Ay); F :3/4

_ _ P(ELs) = PAADPAIP(ASIP(A); F : 34
6.1.2. The foundation on four piles

The foundation supported by four piles is stable if three or f\_ & R A AN .
more piles can carry a load in following configurations: P(Ee) = PAVRAIPAIPA): F - 414
[1,2,3,4], [1,2,3], [2,3,4], [3,4,1] and [4,1,2] (Fig. 1(b)).
There areN = 2* = 16 possible outcomes. By enumeration, 6.1.3. The foundation on five piles
all possible operational and failure modes are determined. The foundation supported by five piles is stable if three or
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Table 1
Uncertainties for the given system target reliabifiy) = 0.99 for various system configurations of vertically loaded foundations with three, four and five
piles

Piles No. and Reliability Modes HO + 7) H(0, 7) H(Z10) H(&1F) H(O + 7) — H(O, 7)
_— bits bits bit bits bits
No Ne Eq. (53) Eq. (55) Eq. (49) Eq. (50) Eq. (57)

Maximal values 3. 1. 0. 2.8073 3.

3 0.996655 1 7 0.0969 0.0808 0.0000 1.6173 0.0161

Maximal values 4, 1. 2.3219 3.4594 4,

4 0.958002 5 11 1.0055 0.0808 0.9062 2.7578 0.9147

Maximal values 5. 1. 3.8073 4.1699 1.

50.933016 14 18 1.7728 0.0808 1.6836 2.5234 1.6720

more piles can carry a load with the exception of the combi- nE! ) = p(A))p(A)p(As)p(A)p(As): F : 4/5
nations [1,3,5] and [2,3,4] (Fig. 1(c)). There ate= 2° = v LTS
32 possible outcomes. By the use of minimal path method,
all possible N, = 14 operational modes with different

operational capacities are determined and constitute the _ _ _
subsystem of operational modés P(E1g) = P(ADP(A)P(A3)P(A)P(As); F - 3/5

N(EL ) = pADP(A)P(Ag)p(AND(As): F : 5/5

PED = MADPADPAIPANPAS): O: 515 P(ELy) = PADPAIPRaIPADP(AS); F : 4/5

PE2) = PADPAIRAPAPA ) O: 415 P(Eby = PAPA PR IPADP(AS): F : 45

E3S) = p(A)p(A)p(A A ; O:4/5 _ _

P(ED) = P(A)P(A)P(A3)P(A)P(As); O = 3/5 . _ .
P(Ey3) = P(ADPA)P(AZ)P(AL)P(As); F - 3/5
P(ES) = P(ADP(A)P(A3)P(A)P(As); O : 4/5 o ]
(EL,) = PADP(A)P(As)P(ADD(As); F : 3/5
P(ED) = P(A)P(AL)P(Ag)P(A)P(As); O: 3/5 o o
o P(Ebs) = P(A)P(A)PAPA)P(As); F : 4/5
P(ED) = P(A)P(AL)P(As)P(A)P(As); O: 3/5
. B(ELe) = PADP(A)P(Ag)P(AD(A); F : 2/5
P(ED) = P(A)P(A)P(Ag)P(A)P(As); O: 4/5

. _ B(EL,) = PADP(A)P(Ag)P(AND(Ag); F : 35
P(E3) = P(ADP(A)P(A3)p(AP(As); O: 3/5

N(ELe) = PADP(A)PA)PAND(AS): F : 35

P(ESo) = P(ADP(A)P(A)P(A)P(As); O: 3/5

P(ES)) = p(AP(A)P(A)P(A)P(As); O: 4/5 P(Ebo) = P(A)P(AL)P(Ag)P(AP(As); F : 3/5
P(ED>) = P(A)P(A)P(A)P(AP(As); O: 3/5 P(Eso) = P(ADPA)P(A)P(A)P(As); F : 3/5
P(ESs) = p(A)P(A)P(As)P(A)P(As); O: 3/5 P(EL) = PADPAL)P(A)P(A)P(As); F : 3/5
P(EZs) = PADP(A)P(A9)P(A)P(As); O: 3/5 P(ES,) = P(A)P(A)P(AIP(A)P(As); F : 3/5

Employing minimal cat set method, aN; = 18 failure Both the subsystem& and .# for all three configurations
modes of different failure seriousness are determined, andare collected in a system of event6. The system? is
constitute the subsystem of failure modes as follows: considered as a complete system of events in all

R ~ ~ configurations, since:
P(ELe) = P(A)P(A)P(A)P(A)P(As); F : 3/5

N
x x ~ ~ FL)=pO) + p(F) = Ei =10
B(ELe) = PAYPAP(APAYP(AS): F : 4/5 P = PO+ PF) = 3 P(E)
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Table 2
Uncertainties for a given target system reliabiliy?) = 0.99 for various reliabilities of corner and of central piles of a foundation supported by five piles

Pile reliabilities on H(O + F) H(0, 7) H(Z10) H(Z1F) HWO + 7) — H(O, ) (Comments)

corners central bits Eq (53) bits Eq (55) bits Eq (49) bits Eq (50) bits Eq (57)

0.929 1.4756 0.0808 1.3916 1.7168 1.3948 (Non attainable)
0.930 0.9896 1.5651 0.0808 1.4794 1.9716 1.4843

[0.933  0.933p 1.7728 0.0808 1.6836 2.5234 1.6920 (Equal reliabilities)
0.935 0.8939 1.8760 0.0808 1.7854 2.7646 1.7952

0.940 0.7789 2.0719 0.0808 1.9794 3.1454 1.9911

0.945 0.6336 2.1769 0.0808 2.0839 3.2998 2.0951

[0.9465  0.5823 2.1846 0.0808 2.0917 3.3105 2.1038 (Maximal uncertainty)
0.950 0.4453 2.1369 0.0808 2.0438 3.2757 2.0561

0.955 0.1942 1.7689 0.0808 1.6741 3.0664 1.6881

0.958 [ 0.000p 1.0055 0.0808 0.9062 2.7578 0.9247 (Zero reliability)
where For a given target system reliability qf(¢) = 0.99, the

effects of different combinations of reliabilities on the four

N, No + N . . Co
0 — o Z — f corner piles and of the central pile on the system reliability
P ;p(E' ) and  p(7) i:NZ+ 1p(E| ) and system uncertainties are investigated. The results of an

event oriented system analysis are presented in Table 2 and
Fig. 2.

6.2. Event oriented system analysis of the vertically loaded

. 6.3. Points for the discussion of the results of the event
foundation

oriented system analysis

The piles are first assumed to be of the same quality, also
have identical component reliabilities. For a given target
systems reliability ofo(¢) = 0.99, different configurations 1. For the target system reliability gb(¢®) = 0.99, the
of three, four and five piles are investigated (Fig. 1(a)—(c)).  entropies of the vertically loaded foundation are increas-
Such an assumption of unrealistically low target reliability ing functions of a number of piles (three, four and five)
provides presentable results of the event oriented system (Fig. 1(a—c)) for different considered configurations with
analysis, according to relations (49), (50), (53), (55) and an increasing number of modes (Table 1).
(57) applied to various configurations of piles (Table 1). 2. For the reliability of corner piles equal to 0.958 of the
A parametric study of a foundation supported by five piles  foundation with five piles (Table 2 and Fig. 2), the central
by variation of pile’s reliabilities is to be performed next. pile is entirely ineffective with respect to the foundation
The corner piles are assumed to be of the same quality, also target reliability.
having identical reliabilities. The central pile is of another 3. The foundation configuration with five piles for the

quality, with the reliability distinct from the corner piles. reliability of the corner piles equal to 0.958 is, from the

Sr-———m——-———————————————— 1
[ :
3b-———— =4 ——— —_————= -—
= 7 Entropy of failure modes I ‘
5 25 |- —A2 Entropy-of atiomalmodey — — — — — — — — — — N— -
[ 'm| | 3. Entropy of the system g !
§ i 2 ! S '.E_'.' 'g‘-— :

53 =
2815 —4‘% ——————————————————— -
E 1 g — — ——— -~ ———————— 8|
™ s |
oS fF—-2r—————F T ———— — e —
2 &

0 ¥
093 0,93 0,94 0,946 095 0,95 09

Reliability of comer piles

Fig. 2. Uncertainties for a given target reliabilipfQ) = 0.99 with respect to the reliability variation of corner and central piles of a vertically loaded
foundation.



274

reliability point of view, equivalent to the configuration
with four piles (Table 1), where the reliability of all four
piles is 0.958002. The entropies for four and five piles are
identical due to the property of entropy that events with
zero reliability do not effect uncertainty.

. The maximum entropy of the foundation is encountered
when corner pile reliability equals 0.9465 and central pile
reliability equals 0.5823. Then both entropies of opera-
tional modes and of failure modes reach their maximal
values, indicating that the probabilities of alternative
operational and failure modes are maximally uniformly
distributed.

. For the reliability of corner piles under 0.929, the central
pile reliability amounting to 0.9?is practically unattain-
able with respect to the foundation target reliability of
0.99.

. The target system reliability op(¢) = 0.99 is also
accomplished when all five piles are of identical reliab-
ility of 0.933.

. The entropy of the system of operational and failure
subsystems is constant (¢, #) = 0.0808 due to the
imposed constant system target reliability pf©) =
0.99.
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The assessment of the uncertainty of systems by repre-
senting them by systems of events and the application of the
entropy as defined in the information theory has been well
known in engineering. The reason that the system uncer-
tainty analysis is not widely adopted in engineering practice
could be the fact that the entropy of a system itself in general
is not particularly helpful in the assessment of system
performance. However, the uncertainties of important
subsystems of events, such as the operational and failure
modes, as well as their relations to the uncertainty and relia-
bility of the entire system, can provide a better insight into
the system performance. In many engineering problems, the
difficulty is to consider all relevant circumstances. An event
may be random with respect to some circumstances, and at
the same time it may be completely determined with respect
to some other circumstances. The randomness or deter-
minedness of an event depends on whether the circumstance
do or do not determine the occurrence or non-occurrence of
the event. The choice of circumstances depends on the
observer and there is certain freedom of choice within the
limits of possibilities. Within each subsystem, other groups
or subgroups of modes can be of interest to the designers
and to the users, like modes of equal operational capacity or

. The highest entropy of the operational modes indicates modes with equal failure rates etc. The event oriented

the optimal foundation operational abundance.

analysis can also be applied at any level of subsystem

. The highest entropy of the failure modes indicates the partitioning.

optimal foundation endurance under distress.

. Conclusion

This article suggests that the traditional probabilistic

The article tackles the problem of distinction among
complex system, including also possible redundancy and
robustness, performing identical function, with the same
level of reliability but with various probability distribu-
tions or with different number of operational and failure

engineering system analysis based on physical and/or techiodes. The system uncertainty can be thought of as a
nical components of a system, may be extended by an eventlesign decision attribute, which takes into account the
oriented system analysis. Such an analysis should take intonumber of events and the dispersion of their probabil-
account different random events in the system’s lifetime ities, over all possible events and important subsystems
service. The presented procedure can be consistentlyof events, which is not included in design considera-
applied to problems of exclusive or inclusive events by tions about safety and economy. Such an approach
adequate partitioning of the event space. The uncertaintiesbased on event oriented system analysis, could provide
in system’s operation originate from the unpredictability of an improved alternative to strengthening lifeline
possible events. A practical uncertainty measure, in addition networks, updating or inverse analysis with observations
to other complex system performance measures, conveymade on system behaviour and in general better system
knowledge about the number of operational and failure designs.
modes and their probabilities. The relation of the uncertain- At present, the event oriented system analysis faces
ties of the system and of subsystems to the overall systempossible numerical problems in dealing with larger
performance, as it is defined in event oriented system analy-systems. For a complete event oriented system analysis,
sis, may be helpful in different fields of engineering in the an enumeration of all the possible events is needed.
refinement of system performance. Most of the quantitative methods are economical in
Shannon’s entropy can be used for uncertainty assessthe use of only the most influential events in order to
ment of complete systems and Renyi’'s entropy for incom- reduce the computational efforts. The methods presented
plete systems. The theorems about the mixture of in the paper also allows the uncertainty assessments of
distributions and dependent systems can be applied forincomplete systems, consisting of only observable or
bringing into the relation, the probabilities and uncertainties only of important events, being then numerically more
of the systems and those of the subsystems. The entropy, asfficient and perhaps more practically applicable. An
the only rational measure of system uncertainty, does notenormous increase in numerical capacities of recent
depend on anything else other than possible events and incomputer systems could further encourage the develop-
this sense is entirely objective. ment of even oriented system analysis.
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