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ABSTRACT This note considers an alternate probabilistic presentation of uncertainty of complex systems and 
subsystems of any level. The entropy defined in information theory is used for the uncertainty measure. The relative 
measure of uncertainty brings into the relation the actual entropy to the maximal attainable entropy of a considered 
system or subsystem. The relative uncertainty facilitates the interpretations of the uncertainty with respect to 
systems consisting always of same number of events. Such an approach is hopefully more user-friendly way for 
representation of uncertainties in engineering systems. Numerical examples are attached. 
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INTRODUCTION 
 
The scope of this note is in the more readable probabilistic presentation of system uncertainties. It is particularly 
suited for engineering problems of complex systems of events. Engineering systems are usually consisting of more 
subsystems of events of any level, each of them pertaining to some characteristic of the system. 
The uncertainty measure based on the entropy defined earlier in information theory [Wiener 1948, Shannon and 
Weaver 1949] is an adequate general uncertainty measure for complete systems of events. The Renyi’s/Shannon's 
information of order one can be used to assess the uncertainty of incomplete systems [Renyi 1970]. The theorem 
about the information associated with the mixture of distributions can be used to assess the uncertainty of 
subsystems and system of subsystems of events [Žiha 1998]. The definition of a unit of uncertainty is not more and 
not less arbitrary then the choice of the unit of some physical quantity [Renyi 1970]. The unit of the Shannon's 
entropy conventionaly corresponds to a system of two equally probable events (simple alternatives). In this sense, it 
is general but not always easily interpretable measure for engineering purposes. The amount of the Shannon's 
entropy is not invariant on the applied bases of the logarithm. What is meant herein is not the relative information as 
it is defined earlier [e.g. Aczel and Daroczy 1975]. The idea underlined in the paper is to make use of the Shannon's 
information or of the Renyi’s/Shannon's information to assess the system uncertainty by bringing it into the relation 
to the known maximal uncertainty of the reference system of events. Such a relative uncertainty measure provided 
for engineering systems built up of same number of events can be more readable for engineering purposes. It is also 
invariant on the applied bases of the logarithm. Moreover, the relative entropies of subsystems can be related to the 
uncertainty of subsystems themself, but also to the uncertainty of the whole system. 
The presented relative uncertainty measures are applied to numerical examples in order to demonstrate its 
usefulness in the uncertainty analysis of systems and subsystems. 
 
2. UNCERTAINTY MEASURES 
 
Let us consider a system S , constituted by the events Ei, i=1,2,...,n, and with the appropriate probabilities 
associated to each of the events pi=p(Ei), which can be presented as a finite scheme [Khinchin 1957], as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅
⋅⋅⋅

=
n

n

p
E

p
E

p
E

2

2

1

1S  

The entropy of the complete system of events S   [Shannon and Weaver 1949] is supposed to depend only of the 
probability distribution of considered events ),...,,( 21 nppp=P  and can be denoted in different ways, as: 
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The quantity (1) is called entropy of the complete probability distribution or the entropy of the complete system of 
events, or the entropy of a finite scheme and it is usually denoted as the Shannon’s entropy or the Shannon’s 
information/uncertainty measure. 



Another measure of uncertainty is the Renyi’s entropy of order α, [e.g. Renyi 1970], which is defined for α≠1: 
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The quantity in (2) may also be viewed as a measure of the amount of uncertainty corresponding to either complete 
or incomplete distribution of probabilities pertaining to the system of events. If some outcomes of an "experiment" 
are not known or their probabilities can not be determined, e.g. only the observable outcomes are taken into 
account, an incomplete probability distribution pk can be considered. 
For incomplete system ( pk> 0; k=1, 2, ... , n) there is  pk

k
∑ < 1 and not necessarily . 1=∑

k
kp

The entropy of a complete or of an incomplete system of events S   can be determined as the limiting case of the 
term (2), for  α→1. It can be interpreted as the arithmetic mean (expected value) of the single enropies –log pi with 
weights pi. Renyi himself denoted this quantity as the Shannon's entropy of order one [Renyi 1970]: 
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Note that the entropy defined by (3) is often denoted as the Renyi's entropy of order one, [e.g. Aczel and Daroczi 
1975]. The note will use the notation Renyi's/Shannon’s entropy of order one. 
The maximal entropy of a complete or incomplete system of events is obtained for pi=p(S  )/n, pi=1,2,..,n,  is: 
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Let us consider a system S   of events Eij, with appropriate probabilities p(Eij ), as shown: 
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The events of system S   can be grouped regardless of the ordering of events within the system, into subsystems of 
events S i , i=1,2,...,n, each containing Eij, j=1,2,...,mi elements, as presented next: 
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Note that neither the probability nor the entropy depends on the sequence of events in subsystem Si. 
The system S   can be now presented as a summa of disjoint subsystems of events, as shown: 
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The system S   can be also viewed as a compound of subsystems of events S1, S2, ...,Sn, denoted as S  ', as shown: 
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The probability associated to systems S   and S  ' is defined as follows: 
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Subsystems of events are considered to be associated with a mixture of partial distributions, [Žiha 1998]. 
The uncertainty of the subsystem Si can be expressed as the Shannon's entropy applied only to the partial 
distribution of the system S  considered under the condition that the subsystem Si occurs. Such a conditional 
entropy does not depend on the system probability p(S  ). It is independent on whether the system S   is complete or 
incomplete. According to the definition of the entropy, it follows: 
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Note also that the entropies of the subsystems in (7) depend only on the states of the subsystem Si and not on the 
any other states of the system S . The following relation expresses the loss of the entropy of a subsystem Si viewed 
as a partial distribution, with respect to the entropy H1(S i )  of a subsystem Si viewed as an incomplete one: 
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The Renyi's/Shannon’s entropy of order one H1(S i )  in (8) is related to the entropy of an incomplete system as: 
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The maximal attainable conditional entropy of subsystem S i in (7) is obtained for mi equally probable events is: 
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By taking the weighted summa of all the subsystem's entropies, the following relation can be derived: 
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The expressions HN(S  /S ’) and Hn(S  /S ’)  in (11) may be considered as conditional entropies of the system S   
and S  '  with respect to the system of subsystems S '. The average of the entropy of the subsystems Si, with weights 
equal to the associated probabilities p(Si ), is equal to the entropy of the system of events S , reduced for the 
entropy of the system of subsystems S  '. The reduction in the entropy of system S  is a consequence of the 
knowledge about its partitioning into subsystems. The relation (11) does not depend on whether the systems S   and 
S ' are complete systems, i.e. 1)'()( == SS pp , HN(S  )=H1

N(S  ) and Hn(S ’ )=H1
n(S ’ ), or incomplete 

systems due to , H1)'()( <= SS pp N(S  )=H1
N(S  )+log p(S  ) and   Hn(S  ’)= H1(S ’ )+log p(S ’). 

 
3. Relative measures of uncertainty 
 
What is meant herein is not the relative information as it is defined earlier [e.g. Renyi 1970, Aczel and Daroczy 
1975]. For engineering purposes it might be more readable to express the uncertainty of a system either relative to 
the maximal uncertainty of the system itself or relative to some other appropriate system or subsystem, say target or 
reference system, instead in terms of "standard" system of two equally probable events. The relative measure of 
uncertainty hopefully more suitable for engineering purposes will be denoted with small leters hn,N(S  ) instead of 
capitals for entropy by definition HN(S  ).  The index n emphasises the number of events in a considered system or 
subsystem. The index N is the number of events in a reference system or subsystem relative to which the uncertainty 
is to be expressed. For complete and incomplete systems of events the relative measure of uncertainty can be 
expressed in dimensionless form with respect to any system, let us say of N events, and it reads: 
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The relative uncertainty measure with respect to the considered system of N events itself, is as shown: 
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Superscripts “1” in (12) and (13) emphasise that the entropy is related to an incomplete system of events. The 
terms (12) and (13) are valid for complete systems too. The relations (12) and (13) can be viewed as the application 
of logarithm of base B instead of base 2, where B=N/p(S  ) is the base of the applied logarithm. In those cases, 
entropy is exactly equal to unity for any system of N equally probable events with probability of observable events 
equal to p(S  ). 
However, for incomplete systems some can find sometimes as more appropriate to express the uncertainty with 
respect to a hypothetically complete system of N events (no superscript “1” used in (14) and (15)), as follows: 
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To the basic relations for relative entropy (12, 13, 14 and 15), the relation log log
logN

b

b
x x

N
=  can be applied. 

The value of hn,N(S  ) represents the fraction of the maximal attainable entropy, equal to the entropy of the system of 
N equally probable events. It expresses how many times is the entropy of the considered system less of the maximal 



attainable entropy of the target system. The relative measure defined in such a way is possibly a closer expression of 
intuitive perception of uncertainty in engineering problems. 
The main drawback of the relative measures of uncertainty in (12, 13, 14 and 15), compared to the absolute measure 
expressed by the Shannon's entropy (1) or Renyi’s/Shannon’s entropy (3), is that it is expressed by two quantities: 
the entropy and by the number of events constituting the considered reference system. The advantage is that the 
relative measure of uncertainty does not depend on the bases of the logarithm applied in the definition of the 
entropy, being in this sense dimensionless. 
The relative entropy of a subsystem of mi events with respect to an incomplete system of N events, is defined as: 
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However, for incomplete systems the uncertainty can also be expressed with respect to a hypothetically complete 
system of N events, as follows: 
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The relative entropy of a subsystem of mi events with respect to the subsystem itself, is defined as follows: 
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The three useful relations are derived next. 
By substitution of definition (12), (13) and (18) into the relation (11), the first expression is obtained: 
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Division of the equation (11) with log N/p(S  ) gives the second expression: 
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Division of the equation (11) with log N gives the third expression: 
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4. NUMERICAL EXAMPLES 
 
4.1. Incomplete system 
Let us consider first an incomplete system of events S   consisting of six events as shown: 
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The system S   is subdivided into two subsystems S 1 and S 2  as follows: 
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The probabilities associated with systems S 1 and S 2 are
24
11)( 1 =Sp  and 

24
10)( 2 =Sp , see equation. (5). 

Systems S   and two-element system S  '  are incomplete since p(S  )<1. The relative measures of uncertainty for 
incomplete system with respect to maximal entropy of the incomplete system, are according to (12, 13) as follows: 
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The relative measures of uncertainty for incomplete system with respect to maximal entropy of the system of N=6 
events, are calculated according to (14) and (15) as follows: 
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The relative measure of uncertainty applied to the subsystems are calculated according (16), (17) and (18) as 
follows: 
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The results for the incomplete system are resumed in the sequel. 
________________________________________________________________________________ 
H2(S 1 ) =0.9940,     H4(S 2 )  =1.8464,     H6

1(S  )             =2.5909,      H2
1(S  ’ )           =1.1910 

log 2     =1.0000,     log 4      =2.0000,     log 6-log(21/24) =2.7776,     log 2-log(21/24) =1.1926 
h2,2(S 1 )=0.9940,     h4,4(S 2 ) =0.9232,     h1

6,6(S  )            =0.9328,     h1
2,2(S  ’ )          =0.9984 

h1
2,6(S 1 )=0.3578,    h1

4,6(S 2 )=0.6647,     h1
6,6(S  )            =0.9328,     h1

2,6(S  ’ )          =0.4288 
h2,6(S 1 ) =0.3845,     h4,6(S 2 ) =0.7143,     h6,6(S  )             =1.0023,     h2,6(S  ’ )           =0.4607 
________________________________________________________________________________ 
 
 
4.2. Complete system 
 
Let us consider next an another system S  , now as a complete system of events: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

24
1

24
2

24
3

24
4

24
6

24
8

242322211211 EEEEEE
S  

The system S   is subdivided into two subsystems S 1 and S 2 as follows 
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The probabilities associated with systems S 1 and S 2 are
24
14)( 1 =Sp  and 

24
10)( 2 =Sp , see equation. (7). 

 
Systems S   and two-element system S  '   are complete since p(S  )=1. The relative measure of uncertainty applied 
to the complete system and system of subsystems are calculated according to (14) and (15) as follows: 
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The relative measure of uncertainty applied to the subsystems are calculated according to (17) and (18) as follows: 
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The results for the complete system are resumed in the sequel. 
 
________________________________________________________________________________ 
H2(S 1 )  =0.9852,      H4(S 2 )   =1.8464,      H6(S  )  =2.3239,      H2(S  ’ )   =0.9798 
log 2      =1.0000,      log 4      =2.0000,       log 6      =2.5849,      log 2        =1.0000 
h2,2(S 1 ) =0.9852,      h4,4(S 2 ) =0.9232,       h6,6(S  )  =0.8990,      h2,2(S  ’ ) =0.9798 
h2,6(S 1 ) =0.3811,      h4,6(S 2 ) =0.7143,       h6,6(S  )  =0.8990,      h2,6(S  ’)  =0.3790 
________________________________________________________________________________ 
 
 
 
5. CONCLUSION 
 
The note tackles the problem of the system uncertainty representation in a relative manner instead of standards units 
like “bits” or “nits”. Such an approach could possibly help the decision process in system evaluation and design. 
Each of the presented ways of representation of the system and subsystems uncertainties can be sometimes useful 
under some circumstances. It is up to the system designer to apply the adequate and rational methods of uncertainty 
representations, which will utmost meet his needs as well the needs of the system users. 
 
The tables of results of the illustrative examples contains the following methods for presentations of the system 
uncertainties, given in the article by rows: 
• The first row represents the system and subsystems entropy values by definition in bits, 
• The second row represents the maximal attainable entropies of considered system and subsystems in bits, 
• The third row represents the relative uncertainties, with respect to each system and subsystems themselfs, 
• The fourth row represents the relative uncertainties with respect to the maximal attainable uncertainties of the 

system and of the subsystems, 
• The fifth row represents the relative uncertainties only for incomplete system, with respect to the maximal 

attainable uncertainty of the system considered as a complete one. 
 
The assessment of the uncertainty of systems by representing them by systems of events and application of the 
entropy for uncertainty measure as defined in information theory, is known in engineering from earlier. The reason 
that the system uncertainty analysis is not widely adopted in engineering practice could be also in the fact that the 
engineers are not too much familiar with interpretation of uncertainties in bits or nits. The presented application of 
the relative entropy for assessment of the uncertainty of complete or incomplete systems of events as well as the 
reinterpretation of the theorem about the mixture of distribution for assessment of the uncertainty of subsystems, 
offers a more comprehensive insight in the system features. The uncertainty can be perceived as a fraction or 
percentage of some known and recognisable reference system uncertainty. Implementation of a relative uncertainty 
measure to system analysis can facilitate engineering presentation of complex system uncertainties and hopefully a 
more intensive application of system uncertainty analysis. 
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