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Early Ideas and Results

Ancient Result: There is an isomorphism
between a Hilbert lattice (a complete atomic
orthomodular lattice which satisfies the
superpostion princile and has > 2 atoms) and the
set of all closed subspaces of a Hilbert space.
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Early Ideas and Results

Ancient Result: There is an isomorphism
between a Hilbert lattice (a complete atomic
orthomodular lattice which satisfies the
superpostion princile and has > 2 atoms) and the
set of all closed subspaces of a Hilbert space.

If we wanted to connect a Hilbert lattice with
measured physical states of a quantum system
described by a Hilbert space equation, we
should impose quantum states on the lattice.

What is a quantum state on a lattice? Are there
classical states?
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States
Definition. A state on a lattice L is a function
m : L −→ [0, 1] (for real interval [0, 1]) such that
m(1) = 1 and a ⊥ b ⇒ m(a ∪ b) = m(a) + m(b),
where a ⊥ b means a ≤ b′.
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States
Definition. A state on a lattice L is a function
m : L −→ [0, 1] (for real interval [0, 1]) such that
m(1) = 1 and a ⊥ b ⇒ m(a ∪ b) = m(a) + m(b),
where a ⊥ b means a ≤ b′.

Definiton. A nonempty set S of states on L is
called a strong set of classical states if

(∃m ∈ S)(∀a, b ∈ L)((m(a) = 1 ⇒ m(b) = 1) ⇒ a ≤ b)

and a strong set of quantum states if

(∀a, b ∈ L)(∃m ∈ S)((m(a) = 1 ⇒ m(b) = 1) ⇒ a ≤ b)
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Non-Quantum States
There are many non-quantum states:
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Non-Quantum States
There are many non-quantum states:

classical ({0,1}, [0,1], etc.)

full but not strong

states on non-Hilbert lattices (obvious but
nevertheless often persued)

Some of these states might be useful.
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Usefulness
States that are not “quantum-useful”:
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Usefulness
States that are not “quantum-useful”:

classical — they turn a Hilbert lattice into a
Boolean algebra

full but not strong — they just show that there
are othomodular lattices that are not Hilbert
ones — with our algorithms and programs we
can always generate a pile of them if some
application pops up
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Usefulness ctnd.
States that might be “quantum-useful”:
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Usefulness ctnd.
States that might be “quantum-useful”:

states on non-Hilbert lattices

Frederic F. Shultz, J. Comb. Theory A 17, 317
(1974) −→ Mirko Navara, Int. J. Theor. Phys.
47, 36 (2008)
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Efficiency

A good scenario: states generate Hilbert lattice
equations - introduced by Radosław Godowski in
1981
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Efficiency

A good scenario: states generate Hilbert lattice
equations - introduced by Radosław Godowski in
1981

Originally Godowski used lattices.

Lattices are complicated Hasse and Dicht
diagrams.

However, they might be simplifed when
considered as Greechie diagrams and
hypergraphs
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MMP diagrams

They can be further simplified:
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MMP diagrams

They can be further simplified:

• only look at atoms within, say, a Hasse diagram
and dismiss the whole remaining structure

• the atoms uniquely determine the diagrams so
we can redefine them

We call the diagrams MMP diagrams when they
do not refer to any structure—when they are just
dots and lines; vertices and edges; atoms and
blocks.
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MMP definitions
They are graphs defined as follows:

(1) Every atom (vertex, point) belongs to at least
one block (edge, line).

(2) If there are at least two atoms then every
block is at least 2-element.

(3) Every block which intersects with another
block is at least 3-element.

(4) Every pair of different blocks intersects in at
most one (two, three) atom(s).

(5) Smallest loops are of order 1 (2,3,4,5)
States on Hilbert Lattices – p.



Finding States

We express the set of constraints imposed by
states as a linear programming problem.
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Finding States

We express the set of constraints imposed by
states as a linear programming problem.

If m is a state, then each 3-atom block with
atoms a, b, c imposes the following constraints:

m(a) + m(b) + m(c) = 1

m(a′) + m(a) = 1

m(b′) + m(b) = 1

m(c′) + m(c) = 1

m(x) ≥ 0, x = a, b, c, a′, b′, c′
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Lattice Equation

A condensed state equation is an abbreviated
version of a lattice equation constructed as
follows: all (orthogonality) hypotheses are
discarded, all meet symbols, ∩, are changed to
+, and all join symbols, ∪, are changed to
juxtaposition.
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Lattice Equation

A condensed state equation is an abbreviated
version of a lattice equation constructed as
follows: all (orthogonality) hypotheses are
discarded, all meet symbols, ∩, are changed to
+, and all join symbols, ∪, are changed to
juxtaposition.

E.g. a ⊥ d ⊥ b ⊥ e ⊥ c ⊥ f ⊥ a ⇒

(a∪d)∩ (b∪ e)∩ (c∪f) = (d∪ b)∩ (e∪ c)∩ (f ∪a)

which, in turn, can be expressed by the
condensed state equation
ad + be + cf = db + ec + fa. States on Hilbert Lattices – p. 11



States → Equations

When our program finds the states then we
obtain various constraints, such as:
m(B)+m(C)+m(1) ≤ 1;m(2)+m(E)+m(8) = 1
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States → Equations

When our program finds the states then we
obtain various constraints, such as:
m(B)+m(C)+m(1) ≤ 1;m(2)+m(E)+m(8) = 1

From these we obtain a form of condensed state
equations, e.g.,
45 + 9A + E8 + 6D = 56 + 89 + 4A + DE

Replacing the atoms with variables, the final
condensed state equation becomes:
ab + cd + ef + gh = bg + fc + ad + he
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