INFLUENCE OF THE GREEN COVER AS ECOLOGICAL INFRASTRUCTURE ON THE VINEYARD INSECT COMPLEX

Božena BARIĆ¹ – Jasminka KAROGLAN KONTIĆ² – Ivana PAJAČ¹

¹ Department for Agricultural Zoology, Faculty of Agriculture, University of Zagreb, e-mail: baric@agr.hr
² Department for Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Croatia

Abstract:

Investigation of green cover as ecological infrastructure on vineyard insect complex was carried out in Jazbina vineyards (a facility of the Faculty of Agriculture). Fauna investigation was carried out by branch beating method during 2006 and 2007. The aim of investigation was to prove a connection between plant structure in green cover and insect structure depending on diet behaviour. Positive influence of green cover on soil structure, nutritive richness of soil and soil moisture regime are known. A negative impact of green cover might be in the insect structure like vector-appearance of phytoplasmas.

Keywords: green cover, ecological infrastructure, insect complex, vineyard

Introduction

In the history of agriculture there has been discovered a poor management of monoculture production. The first problem with resistant pests and disease species was in large orchards and vineyards. Main reason was in low biodiversity. Investigation of the food chain management has an important role in sustainable agriculture.

In the agro-ecosystem, especially in monoculture, sustainability does not work because of a low number of species with high population (Diercks, 1983). Biodiversity has an important role in sustainable agriculture (Husti, 2006). Ecologically safer agriculture implies integrated food production aimed at enhancing biodiversity. Interaction between soil, plants and insects has become an important subject of investigation. The connection between safe-food, soil, agriculture implies a food chain (Várallyay, 2006) in that soil and bears an important role. In integrated viticulture the transformation of monocultures into more complex agro-ecosystems is made possible by a green-cover strategy (Boller and all, 2004). The green manure application research was conducted in many countries. The establishment of a green cover requires an additional nitrogen input (Csaba and all,2006). Investigation of green cover impact in vineyards on soil quality and nutritive effect in Croatia was carried out by Karoglan-Kontić, 1999.

Materials and methods

The investigation was carried out in an experimental vineyard in Zagreb owned by the Faculty of Agriculture. In one part of the vineyard (about 3 ha) a green cover was built in with mixed plants:

Agrostis alba, Dactylis glomerata, Festuca rubra, Poa pratensis, Lotus cornuculatus, Trifolium repens.

The other part of vineyard had open soil. In the fauna research a branch beating method was used once per month during two years of research.

Identification of sampled insects was made in a laboratory using determination keys. The aim of the research was to determine a number of insect species on green cover and open soil in the vineyard and a structure of insects depending on diet behaviour.

Results and discussion

Fauna investigation showed that the vineyard with green cover was richer and had better insect structure in both years of research.

In 2006 by a branch beating method more insect species were collected in the green cover area (18 different species) than in the open soil area (13 species). Depending on a diet behaviour, in the green cover area there were 9 antagonist species, 8 species of plant feeders and one indifferent (neutral).

Phytophage species were feeders on cereal (bugs from *Lygaeidae* family and the leafhopper from *Cicadellidae*). This is because of a grass-legume mixture used as a green cover. In the open soil area there were only 5 antagonist and 8 phytophage species (regular vineyard pests).

Diet -behaviour	Open soil Species	Green cover Species	
	-	-	
	Othiorhynchus sp.	Otiorhynchus sp.	
	JASSIDAE	JASSIDAE	
	Metopoplax origani	Metopoplax origani	
phytophages	Phasmatidae	Euridema oleraceum	
	Eurigaster maura	Agriotes lineatus	
	Aphis sp.	Oulema lichenis	
	Phillotreta nemorum	Rhynchites auratus	
	Apion nigra	Aelia acuminata	
	Forficula auricularia	Forficula aricularia	
	ARANEA	ARANEA	
	Rhagonicha fulva	Subcoccinella 24-punctata	
	Nabis feroides	Tachyporus hypnorum	
antagonists	Coccinella septempunctata	Thea 22-punctata	
	· · ·	Carpocoris sp.	
		Hymacerus apterus	
		Orius sp.	
		Captosoma scutellata	
neutral		Corticaria gibosa	

Table 1. In	nsect complex i	n vinevards wit	h different ecologica	l infrastructure, 2006

In 2007 situation remained the same. By branch beating method 20 insects species were collected in the green cover area and only 6 insect species in the open soil area. The structure depended on diet behaviour as follows: 10 antagonist species, 7 pests on vineyards and cereals, and 3 neutral species. Pests were represented by the leafhopper from the *Cixiidae* family, known as phytoplasma vector on grapes, and bugs on cereals. Fauna structure in the open soil area of the vineyard included only 6 types of species: 4 antagonists and 2 neutral species.

2

DOI: 10.1556/CRC.36.2008.Suppl.1

Diet -behaviour	Open soil	Green cover	
	Species	Species	
phytophages		Cixius sp.	
		Lygus rugulipennis	
		Thrips tabaci	
		Metopoplax origani	
		Phyllotreta atra	
		Dolycoris baccarum	
		Rhynchites niger	
	ARANEA	ARANEA	
	Subcoccinella 24-punctata	Subcoccinella 24-punctata	
	Himacerus apterus	Himacerus apterus	
	Tachyporus hypnorum	Tachyporus hypnorum	
		Stethorus punctilum	
antagonists		Scimnus sp.	
		Forficula auricularia	
		BRACONIDAE	
		Nabis feroides	
		Panorpa communis	
neutral	FORFICIDAE	Corticaria gibosa	
	MUSCIDAE	MUSCIDAE	
		Rhyparochromus	
		alboacuminatus	

Table 2. Insect complex in vineyard with different ecological infrasructure, 2007

Fig. 1. Insect structures in open -soil, 2006

Fig. 2. Insect structures in green -cover, 2006

DOI: 10.1556/CRC.36.2008.Suppl.1

Fig.3. Insect structures in open-soil, 2007

Fig.4. Insect structures in green-cover, 2007

Conclusions

Investigation of influence of the green cover in vineyards on insect fauna and insect structure depending on diet behaviour showed positive effects. Fauna investigation in the open soil vineyard showed a smaller number of species (6 to 13) than in the vineyard with grass – legume mixtures that had more insect species (18 to 20) and better structure.

As regards to the phytophages structure in vineyards with green cover, it is necessary to carry out research on species of plants to be used in the mulch that might have the same efficiency in terms of diet and soil structure.

Acknowledgements

We would like to thank the students I. Havranek and B. Hlevnjak, who assisted with field work.

References

- Boller, E. F. Häni, F. Poehling, H.P.: 2004. Ecological Infrastructures Ideabook on Functional Biodiversity at the Farm Level, IOBC Edition, Switzerland. 46 62.
- Diercks, R.: 1983. Alternativen im Landbau, Verlag Eugen, Stuttgart, 4 362.
- Csaba, G. Péter, M. Földesi, P. Ujj, A. Kabnár, T.: 2006. Investigation of green manuring plants as sacondary crop improving unforable field conditions to efficient food production. Cereal Research Communications, Vol 34 (1). 191 195.
- Husti, I.: 2006. The main elements of sustanable food chain management. Cereal Research Communications, Vol 34 (1), 793 – 797.
- Karoglan, Kontić, J. Maletić, E. Kozina, B. -Mirošević, N.: 1999. The Influence of Inter-Row Cover Cropping on Mean Characteristics of Grapevine. Agriculturae Conspectus Scientificus, Vol 64, 3. 187 – 198.
- Várallyay, Gy.: 2006. Soil degradation processes and extreme soil moisture regime as environmental problems in the Carpathian Basin. Agrokémia és Talajtan. 55. (1 – 2). 9 – 18.

4

DOI: 10.1556/CRC.36.2008.Suppl.1