AGRONOMSKI FAKULTET
SVEUČILIŠTE U ZAGREBU

Mr. sc. MARINA PIRIA, dipl. ing.

EKOLOŠKI I BIOLOŠKI ČIMBENICI ISHRANE CIPRINIDNIH VRSTA RIBA IZ RIJEKE SAVE

DOKTORSKI RAD

KAZALO

1. Uvod .. 4
 1.1. Pregled dosadašnjih istraživanja ... 5
 1.2. Srva i ciljevi istraživanja ... 17

2. Područje istraživanja .. 19

3. Materijal i metode .. 21
 3.1. Prikupljanje, fiksiranje i konzerviranje materijala .. 21
 3.2. Analize vode i bioloških parametara .. 22
 3.3. Analize sadržaja probavila .. 23
 3.4. Morfološke izmjere riba ... 23
 3.5. Statistička analiza ... 24

4. Rezultati ... 29
 4.1. Fizikalno kemijske osobine rijeke Save ... 29
 4.2. Biološke osobine istraživanog područja .. 35
 4.2.1. Fitoplankton i fitobentos ... 35
 4.2.2. Zooplankton .. 39
 4.2.3. Makrozoobentos .. 42
 4.3. Povezanost morfoloških osobina sa načinom ishrane i selekcijom plijena 51
 4.4. Sastav ishrane istraživanih ribljih populacija .. 71
 4.4.1. Sastav ishrane klena ... 74
 4.4.2. Sastav ishrane uklije .. 88
 4.4.3. Sastav ishrane dvoprugaste uklije ... 98
 4.4.4. Sastav ishrane mrene ... 110
 4.4.5. Sastav ishrane krkuše .. 122
 4.4.6. Sastav ishrane podusta .. 132
 4.4.7. Sastav ishrane nosare .. 139
 4.4.8. Sastav ishrane klenića ... 146
 4.4.9. Sastav ishrane potočne mrene .. 151
 4.4.10. Sastav ishrane bodorke .. 156
 4.4.11. Sastav ishrane deverike ... 163
 4.4.12. Sastav ishrane plotice ... 168
 4.5. Dnevnii režim ishrane analiziranih populacija .. 171
 4.5.1. Sastav populacija u litoralnoj zoni ... 171
 4.5.2. Dnevna aktivnost hranjenja klena ... 174
 4.5.3. Dnevna aktivnost hranjenja uklije ... 177
 4.5.4. Dnevna aktivnost hranjenja dvoprugaste uklije .. 179
 4.5.5. Dnevna aktivnost hranjenja mrene ... 180
1. Uvod
Ciprinidne vrste riba dominantno su prisutne u slatkim vodama našeg klimatskog područja, pa tako i rijeke Save (Habeković i sur. 1990, 1997; Treer i sur. 2003, 2004, 2006a). Na području rijeke Save kod Samobora i na području Zagreba, u brojnosti i u biomasi izrazito dominira euritopni omnivor klen (Leuciscus cephalus). Njegova dominacija je konstantna u ihitološkim istraživanjima zadnjih četvrt stoljeća. Značajniji dio po brojnosti zauzimaju još dvoprugasta uklija (Alburnoides bipunctatus), potočna mrena (Barbus peloponnesius), uklija (Alburnus alburnus), mrena (Barbus barbus) i kruša (Gobio gobio), a manju, ali redovitu prisutnost pokazuju još podust (Chondrostoma nasus), nosara (Vimba vimba), šaran (Cyprinus carpio), som (Silurus glanis), babuška (Carassius auratus gibelio) i klenić (Leuciscus leuciscus). Povremeno se pojavljuju deverika (Abramis brama) i plotica (Rutilus pigus virgo).

Da bi se neka riblja populacija zadržala na određenom području, esencijalno im je potrebna raspoloživa hrana te je važno ustanoviti i međusobnu kompeticiju riba, koje žive na istom području, u odnosu na raspoloživi plijen (Specziár i sur., 1998; Lorenzioni i sur., 2002)
1.1. Pregled dosadašnjih istraživanja

najčešće sa vrstama iz skupine Bacillariophyceae, nešto manje vrstama iz skupine Chlorophyceae, a od životinjskih svojti plijena najčešće i najbrojnije su Oligochaeta. Na samo jednom primjerku preko 25,0 cm pronađen je plijen iz skupine Pisces (Piria i sur., 2005).

Insecta u kombinaciji sa Chlorophyceae. Većim primjercima glavna su hrana bili Oligochaeta i Insecta sa obiljem Chlorophyceae i Bacillariophyceae.

Ishrani. U srpnju i rujnu izražena je i pozitivna selekcija prema *Xantophyceae*, a u listopadu i prema *Cyanobacteria* (Piria, 2003; Piria i sur, 2005)

Prirodna ishrana podusta svodi se na opće informacije (Šenk i Aganović, 1968; Vostradovský, 1973; Losos i sur., 1980), na odnos predacije plijena koji se nalazi
u okolini (Adámek i Obrdlík, 1977) i istraživanja ishrane mlađi (Reckendorfer, 1993). Šenk i Aganović (1968) navode da je većina probavila podusta bilo ispunjeno mlječnokašastom masom tamnozelene boje koja potječe od biljne hrane. Na malom broju primjeraka od životinjskih svojštva pronašli su najviše Chironomidae, a nešto manje Oligochaeta i Gastropoda. Vostradovsky (1973) spominje nidentificirani biljni materijal, bentošne alge i trave, a nema podataka o životinjskoj ishrani. Adáme i Obrdlík (1977) pronašli su alge kremenjašice i vrlo malo nitastih alga od kojih je dominirala Cladophora sp. Losos i sur. (1980) pronašli su uglavnom biljni materijal i to alge kremenjašice i nitaste alge (Ulothrix sp.), a spominju da se u manjem broju primjeraka pojavila hrana kao što su Chironomidae i Simuliidae. Ostala životinjska komponenta javljala se vrlo rijetko. Baruš i sur. (1995) navode uglavnom alge kremenjašice, nitaste alge i makrofita, a da se rjeđe u ishrani pojavljuju Chironomidae i Simuliidae sa puno detritusa i kamenčića. Istraživanjima ishrane mlađi podusta iz rijeke Dunava ustanovljeno je da se larve hrane s Rotifera (Branchionus sp. i Keratella sp.), primjeri totalne dužine od 14,0 mm hrane se s lićinkama insekata, kopnenim insektima i Chironomidae, a primjeri od 40,0 do 60,0 mm prelaze na ishranu isključivo s bentošnim algama (Reckendorfer, 1993).

Istraživanja ishrane klenića odnose se na opće informacije (Mann, 1974; Losos i sur., 1980), selekciju hrane u odnosu na raspoloživ plijen u okolini (Adámek i Obrdlík, 1977) i na dnevnu i sezonsku ishranu ličinaka (Weatherley, 1987).

U južnom dijelu Engleske iz rijeka Stour i Frome klenić se hrani pretežno sa Trichoptera i Mollusca zimi, a s Ephemeroptera, Simulium sp. i Chironomidae tijekom ljetnih mjeseci. Također spominje se i biljni materijal u probavnom traktu (Mann, 1974). Losos i sur. 1980 dobili su slične rezultate u rijeci Jihlavi. Najviše je pronađeno Simuliidae u probavilima s dosta biljnog materijala. Oni zaključuju da je povećana učestalost makrofita u probavnom traktu uzrokom što Simulidae obitavaju na biljnom materijalu, pa se makrofita slučajno nađe u njihovu probavilu. Adámek i Obrdlík (1977) pronašli su velike količine algi i to Cladophora sp. i algi kremenjašica. Zoobentosni organizmi su se pojavljivali samo sporadično, a prisutni su bili Chironomidae i Simuliidae. Weatherely, 1987 navodi da se klenić u prva tri tjedna života hrani s Rotifera, a u četvrtom tjednu pojavljuju se nauplius ličinke Copepoda i alge kremenjašice. U petom tjednu počinju se hraniti s kopnenim insektima, Chironomidae i Tubificidae, a u desetom tjednu i modrozelene alge počinju biti važne u ishrani. U dnevnom ciklusu ishrane navode da se klenić noću hrani sa Chironomidae, a danju kopnenim insektima.

Na osnovu istraživanja dužine probavila potočne mrene iz rijeka Ljubinje i Zujevine zaključeno je da pripadaju grupi zoofitofaga sa znatnim udjelom biljne komponente (Vuković, 1968). Filipović i Janković (1978) navode da se potočna mrena iz Crnog Timoka hrani organizmima dna i to su većinom prisutni Chironomidae i Simuliidae, dok su Trichoptera i Ephemeroptera manje zastupljeni. Ondje nisu vršili istraživanja biljne ili zooplanktonske komponente u ishrani. Usporedno je vršeno i istraživanje ishrane ove vrste i iz rijeke

Ishrana bodorke vrlo detaljno je istražena, ali većina istraživanja vršena su na populacijama koje žive u jezerima. Radovi se odnose na sezonska istraživanja (Hellawell, 1972; Losos i sur, 1980; Vøllestad 1985; Martyniak i sur, 1991; Bubinas i Ložys, 2000) te na istraživanja probavnih enzima u odnosu na izbor hrane (Hofer, 1979; Niederholzer i Hofer, 1979). Osim toga, vršena su i istraživanja duljine zadržavanja hrane u probavilu u ovisnosti o veličini plijena i temperature (Hofer i sur, 1982; Specziár, 2002a), bioenergetske vrijednosti hrane

plijena, a prevladavao je detritus, biljni materijal, Cladocera i kopneni insekti. Uz biljni materijal i planktonske račići neinficirani primjerci mali su i Oligochaeta te Chironomidae. Weatherley (1987) navodi da se primjeri u drugom tjednu života hrane s nauplius ličinkama Copepoda, Rotifera, Chironomidae i algama kremenjašicama. Već sa mjesec dana života zooplankton zamjenjuju s Chironomidae i Tubificidae, a nakon dva mjeseca života počinju uzimati alge i makrofita.

Raznolike studije ishrane provedene su na ciprinidnim ribama u svijetu, dok se u nas o njima još uvijek malo zna. Evidentno je da postoji potreba detaljnije istražiti ekologiju i biologiju ciprinida iz našeg klimatskog područja.
1.2. Svrha i ciljevi istraživanja

Poznavanje prirodne ishrane riba ključno je za pravilno gospodarenje otvorenim vodama. Pri tome je bitno poznavanje kako samih svojih kojima se riba hrani, tako i uloga oblika i veličine usnog aparata, te uvjeta okoliša (doba dana, fizikalno-kemijske osobine vode i dr.).

Oblik usnog aparata omogućuje ribi da uzima određenu vrstu plijena. Ustanovit će se razlike i povezanost morfoloških karakteristika s tipom plijena pronađenom u probavilu.

Ekološki uvjeti favoriziraju određene vrste riba. Ako se neki od uvjeta promijeni, promijenit će se i struktura populacija koje ondje žive. Neke od njih su više ili manje fleksibilne na novonastale promjene. Utvrdit će se struktura ribljih populacija koje se zadržavaju na određenom području u ovisnosti o fizikalno-kemijskim promjenama i dostupnosti hranidbenih svojti. Temperatura utječe na intenzitet hranjenja, pa će se ustanoviti razlike prema sezonskim temperaturnim promjenama u izboru i intenzitetu hranjenja. Poznato je da se ribe više ili manje hrane u pojedino doba dana. Ustanovit će se intenzitet i dinamika dnevnog hranjenja 12 vrsta riba. Osim toga, ustanovit će se intenzitet i dinamika sezonskog hranjenja 12 vrsta riba.

Usporedit će se i svojte koje su pronađene u probavilu sa svojama koje su bile prisutne u okolišu, pa bi se na taj način moglo ustanoviti koje ribe preferiraju koju vrstu plijena. Utvrđit će se i međusobno preklapanje prehrambenih navika 12 vrsta ciprinida, pa će se time ustanoviti koliko vrsta riba je u kompeticiji prema određenom plijenu.
Ciljevi istraživanja

1. Utvrditi kemijske i fizikalne promjene istraživanog područja

2. Istražiti sastav zooplanktona, fitoplanktona, fitobentosa i makrozoobentosa istraživanog područja

3. Utvrditi sastav ishrane klena, klenića, uklije, dvoprugaste uklije, mrene, potočne mrene, podusta, nosare, krkuše, bodorke, deverike i plotice

4. Utvrditi vezu između morfologije hranidbenog aparata i konzumiranog plijena 12 ciprinidnih vrsta riba

5. Utvrditi dnevne i sezonske promjene u ishrani i njene razlike u odnosu na dužinske razrede istraživanih vrsta riba.

6. Utvrditi sastav sadržaja probavila riba i njegov odnos spram raspoloživih svojstva istraživanog područja.

7. Usporediti razlike u prehrambenim navikama i međusobne kompeticije u ishrani istraživanih vrsta.

8. Usporediti sastav ishrane istraživanih vrsta riba sa istraživanjima koja su provedena na drugim lokacijama.
2. Područje istraživanja

Postaja Medsave se nalazi na području ušća potoka Gradna na uzvodnom dijelu rijeke. Obalu rijeke Save na postaji Medsave karakterizira brzi tok vode s kamenim supstratom na obje obale. Na pojedinim mjestima pojavljuju se i šljunkovite plaže koje su siromašne florom i faunom (Slika 2.1.).

Slika 2.1. Lokacija Sava - Medsave
Obalu rijeke Save na Zagrebačkom području čini kamena obala, a kako je ovdje uzobalno nešto sporije gibanje vode, mjestimično se pojavljuju muljevita i pjeskovita dna (Slika 2.2.). Neposredno uz obalu razvija se vrlo bujna vegetacija višega bilja gdje prvenstveno dominiraju vrbe (Salix alba) i topole (Populus alba). Kamena obala na ovom dijelu rijeke, predstavlja idealan supstrat za razvoj različitih biocenoza, od modrozelenih algi (Cyanobacteria) i algi kremenjašica (Bacillariophyceae), preko praživotinja (Protozoa), kolnjaka (Rotifera) sve do puževa (Gastropoda) i ličinki kukaca (Hexapoda).
3. Materijal i metode

3.1. Prikupljanje, fiksiranje i konzerviranje materijala

Prikupljanje riba, biološkog materijala i vode obavljeno je na dvije postaje na rijeci Savi, postaja Medsave i postaja Jarun. Istraživanja su obavljana mjesečno 2004 i 2005. godine pri različitim vodostajima (registrirano na vodomjeru), no svakako se nastojalo prikupiti uzorke u vrijeme najnižeg vodostaja.

Uzorkovanje vode obavljeno je na dva mjesta na obje lokacije, uzvodno i nizvodno. Na terenu je pomoću multiparametarskog mjernog instrumenta Multi 340i izmjeren kisik, pH vrijednost i provodljivost te je provjerena prisutnost CO₂. Za laboratorijske analize napunjena je plastična boca od 1 l do vrha kako pri transportu do laboratorija ne bi došlo do aeracije vode.

Prikupljanje bentosa na mekim supstratima vršilo se Surberovom dredžom kojom je obuhvaćen 1 m² površine. Prikupljen supstrat je stavljan u plastičnu posudu te je prosijan kroz sito, a životinje su prikupljene i fiksirane u 4%-tnom formalinu. Životinje koje žive na tvrdim supstratima sakupljeni su sa kamenja slučajnim izborom. Kamen je brzo stavljen u plastičnu posudu, izmjerena je površina kamena te su životinje odmah fiksirane u 4%-tnom formalinu do trenutka analize. Vagana je svježa masa na elektronskoj vagi Tehtnica EB-300 M, s preciznošću od tisućinke grama.

Plankton je prikupljan pomoću planktonske mrežice poroznosti od 75 µm za analizu zooplanktona i pomoću planktonske mrežice poroznosti od 30 µm za analizu fitoplanktona. Za potrebe kvalitativne analize upotrijebljena je plastična posuda od 15 l kako bi mogli točno izračunati brojnost planktona. Uzorak planktona fiksiran je u 4 %-tnom formalinu do trenutka analize.
Fitobentos je prikupljan sa kamenja ili drvenih predmeta koji su se nalazili u vodi na površini od 5 cm², koji su također fiksirani u 4%-tnom formalinu do trenutka analize.

3.2. Analize vode i bioloških parametara

Odmah pri dolasku u laboratorij izvršene su fizikalno-kemijske analize vode pomoću spektrofotometra. Spektrofotometrom su određeni slijedeći parametri: \(\text{NH}_3 \) mg l\(^{-1}\), mg l\(^{-1}\) Ca\(^+\), mg l\(^{-1}\) Mg\(^+\), mg l\(^{-1}\) NO\(_2^{-}\), mg l\(^{-1}\) NO\(_3^{-}\), mg l\(^{-1}\) PO\(_4^{3-}\) i slobodni Cl mg l\(^{-1}\). Utrošak K\(\text{MnO}_4\) u mg O\(_2\) l\(^{-1}\) određen je klasičnom metodom po Huber Tiemanu.

Makrozoobentos je vagan kao svježa masa na elektronskoj vagi Tehtnica EB-300 M, s preciznošću od tisućinke grama.
3.3. Analize sadržaja probavila

Po odmrzavanju ribe su sortirane prema vrstama, pojedinačno vagane (preciznost 0,1 g) i mjerene (preciznost 0,1 cm). Sve dužine tijela riba odnose se na standardnu dužinu.

Iz konzerviranih primjeraka riba izdvojeno je probavilo nakon rezanja kod jednjaka i analnog otvora. U tom trenutku izmjerena je i dužina probavila.

Izdvojen je sadržaj probavila, izvagan kao mokra masa elektronskom vagom, te fiksiran u 4%-tnom formalinu. Za praćenje sastava ishrane organizmi su određeni do viših kategorija odnosno do vrsta ako je to bilo moguće.

3.4. Morfološke izmjere riba

Na svim ribama uzete su slijedeće morfološke izmjere (Labropoulou i Eleftheriou, 1997):

SL – standardna dužina ribe
TL – totalna dužina ribe
FL – dužina do vilice
HL – dužina glave
MW – širina usnog otvora dok su usta potpuno otvorena
MH – visina usnog otvora dok su usta potpuno otvorena
IL – dužina crijeva
GA – dužina prvog škržnog luka
GR – broj branhiospina na prvom škržnom luku

Mjerenja su izvršena pomoću prilagođenog ihtiometra.
3.5. Statistička analiza

Multivarijatne statističke metode upotrijebljene su za analizu odnosa između morfoloških i hranidbenih varijabli, kao i za usporedbu razlika između istraživanih vrsta temeljem većeg seta varijabli. Primjerice, kanonička diskriminantna analiza više je puta upotrebljava na u analizi morfometrijskih parametara (Douglas i Matthews, 1992; Labropolou i Eleftheriou, 1997) i dopušta usporedbu i testiranje udaljenosti dvije ili više grupa uzimajući u obzir više varijabli u isto vrijeme.

Za određivanje prikladnosti diskriminantne analize, zavisne varijable su testirane indirektom analizom dužine gradijenta pomoću DCA metode (detrended correspondence analysis). Ako je dužina gradijenta manja od 3, poželjno je upotrijebiti linearne regresijske metode, a ako je veća od 4 tada se pristupa unimodalnim regresijskim analizama. Vrijednosti gradijenta između 3 i 4 označavaju da je moguće upotrijebiti obje metode.

U ovom slučaju upotrijebljena je ograničena (constrained) linearna analiza kanoničke redundancije (RDA). Testirane su tri grupe varijabli koje su sačinjavale nezavisne morfološke varijable i zavisne hranidbene varijable (svojte plijena) mjerene na 12 vrsta riba. Analiza morfoloških podataka obrađena je univarijatno, pomoću analize varijance (ANOVA), s time da se testiranje postojanja razlika između 12 vrsta riba u morfološkim varijablama provelo Monte Carlo testom sa 999 permutacija sa povratnom selekcijom (Lepš i Šmilauer, 2006).

Za potrebe statističkih analiza, nezavisne varijable izražene su u postocima standardnih morfoloških mjerenja pri čemu se sve dužine tijela riba odnose na standardnu dužinu. Standardizacija proporcija riba različitih vrsta i veličina omogućava usporedbu morfoloških svojstava u relativnim proporcijama (Motta, 1988; Labropolou i Eleftheriou, 1997). Totalna dužina, dužina do vilice, dužina glave i dužina crijeva izražene su u % od standardne dužine, širina i visina usnog otvora izražene su u % od dužine glave, a broj branhiospina kao broj branhiospina po mm od prvog škržnog luka.

Zavisne varijable su izražene u postocima, a kao referentna vrijednost plijena korištena je učestalost pojavljuvanja.
Za usporedbu analizu individualnih primjeraka riba korištene su i apsolutne vrijednosti izmjera kao nezavisne varijable.
Za RDA analize odnosa ribe – plijen bez upotrebe morfoloških varijabli korištene su varijable indikatori (dummy variable) kao nezavisne varijable, a učestalost pojavljivanja plijena kao zavisne varijable. Varijable indikatori su predstavljene oznakama 0 i 1 koji označavaju prisutnost ili odsutnost pojedine vrijednosti.

Prilikom analiza pojedinih kategorija plijena upotrijebljene su sljedeće metode:

1. Postotak učestalosti pojavljivanja (F%) (Holden i Raitt, 1974):

\[F\% = \frac{f_i}{\sum f} \times 100 \]

Gdje je:
\(f_i \) = frekvencija jedne hranidbene kategorije
\(\sum f \) = Ukupna frekvencija svih hranidbenih kategorija

2. Postotak brojnosti (N %) (Holden i Raitt, 1974):

\[N\% = \frac{n_i}{\sum n} \times 100 \]

Gdje je
\(n_i \) = broj hranidbenih kategorija
\(\sum n \) = ukupan broj svih hranidbenih kategorija

3. Postotak mase (W %) (Holden i Raitt, 1974)

\[W\% = \frac{W_i}{\sum W} \times 100 \]

Gdje je
\(W_i \) = masa jedne hranidbene kategorije
\(\sum W \) = ukupna masa
Kako bi se došlo do što točnijih podataka u procjeni prehrambenih navika riba, autori se služe mnogobrojnim indeksima i koeficijentima (Piria i sur., 2001.). Za praćenje sastava ishrane upotrijebljeni su slijedeći koeficijenti:

\[
Jr \% = \frac{\text{masa sadržaja probavila}}{\text{masa ribe}} \times 100
\]

2. Koeficijent praznosti probavila (V \%)

\[
V = \frac{\text{broj praznih probavila}}{\text{Ukupan broj svih istraženih probavila}} \times 100
\]

Tjelesno stanje riba praćeno je Fultonovim koeficijentom kondicije:

1. Fultonov koeficijent kondicije (CF) (Ricker, 1975)

\[
CF = W L^{-3} \times 100
\]

gdje je:

\begin{align*}
W &= \text{masa u gramima} \\
L &= \text{totalna dužina u cm.}
\end{align*}
Za praćenje sezonske varijacije u ishrani istraživanih vrsta u odnosu na raspoloživu hranu u okolini upotrijebljen je slijedeći parametar:

1. Ivlevov koeficijent izbora (E) (Ivlev, 1961)

\[E = \frac{r_1 - p_1}{r_1 + p_1} \]

Gdje je:
\(r_1 \) = postotak organizama u probavilu
\(p_1 \) = postotak organizama u okolini

Da bi ustanovili da li se prehrambene navike istraživanih vrsta međusobno preklapaju, i u kojoj mjeri upotrijebit će se:

1. Indeks preklapanja prehrambenih navika (\(\alpha \)), (Schoener, 1970)

\[\alpha = 1 - 0.5 \left(\sum_{i=1}^{n} |PV_{x_i} - PV_{y_i}| \right) \]

gdje je:
\(n \) = broj svojti plijena
\(PV_{x_i} \) = proporcija hranidbene kategorije \(i \) u vrsti \(x \)
\(PV_{y_i} \) = proporcija hranidbene kategorije \(i \) u vrsti \(y \)
2. Pojednostavljen Morisita indeks \((C_H)\) (Krebs, 1999)

\[
C_H = \frac{2 \sum_{i}^{n} p_{ij} p_{ik}}{\sum_{j}^{n} p_{ij}^2 + \sum_{k}^{n} p_{ik}^2}
\]

gdje je:
- \(p_{ij}\) proporcija hrane \(i\) od ukupne hrane konzumirane od strane vrste \(j\)
- \(p_{ik}\) proporcija hrane \(i\) od ukupne hrane konzumirane od strane vrste \(k\)
- \(n\) ukupan broj hranidbenih kategorija

Vrijednosti oba indeksa variraju od 0 (nema preklapanja ishrane) do 1 (potpuno preklapanje ishrane). Osim toga, vrijednosti od 0,80 označavaju vrlo sličnu ishranu, dok vrijednosti od 0,60 označavaju biološki signifikantnu vrijednost i dokazuje međusobnu kompeticiju ako je raspoloživost hrane limitirana (Krebs, 1999; Lorenzioni i sur, 2002; Encina i sur, 2004).

Podaci će se statistički obraditi programima SPSS 12 for Windows (Field, 2005), Ecological methodology 6.1.1. (Krebs, 1999) i Canoco for Windows 4.5.5. (ter Braak i Smiulauer prema Lepš i Šmilauer, 2006)
4. Rezultati

4.1. Fizikalno kemijske osobine rijeke Save

Istraživanja fizikalno kemijskih osobina vode vršena su tijekom cijelog pokusnog razdoblja na obje lokacije između 7:00 i 9:00 ujutro. Analitičke vrijednosti pojedinih fizikalno-kemijskih parametra na lokaciji Medsave prikazane su u tablicama 4.1.1. i 4.1.2.

U 2004. g. koncentracija O$_2$ mg l$^{-1}$ najveća je bila u lipnju kada je temperatura vode bila relativno niska. Tijekom cijelog istraživanog razdoblja u 2004. g. zabilježene su povećane koncentracije CO$_2$, a kretale su se između 15,4 i 22,0. Količina organske tvari prema utrošku KMnO$_4$ u mg O$_2$ l$^{-1}$ bila je dosta visoka u lipnju, kolovozu i rujnu. Vrijednosti NH$_3$ bile su najveće u lipnju (0,30), a vrlo visoka koncentracija NO$_3$ zabilježena je u srpnju (8,0) rujnu (4,43) i listopad (6,20). Ostali parametri bili su stabilni i nije bilo većih odstupanja (Tablica 4.1.1.).

U 2005. g. koncentracija O$_2$ kretala se sukladno sa temperaturom vode, veće vrijednosti zabilježene su pri nižim temperaturama. Veće koncentracije slobodnog CO$_2$ javljaju se samo u ožujku (18,7) i u travnju (17,6), a visoka količina organske tvari zabilježena je u ožujku (58,48). Najveća vrijednost NH$_3$ javila se u rujnu (0,35), a NO$_3$ u kolovozu (4,43), listopadu (6,65) i studenom (8,42). Najveća vrijednost NO$_2$ zabilježena je u lipnju (0,23). U srpnju i listopadu javljaju se povećane koncentracije fosfora. Slobodni klor kretao se u niskim koncentracijama, a najveće vrijednosti zabilježene su u studenom (0,17). Vrijednosti pH konstantno se kreću od 7,60 u studenom do 7,92 u svibnju (Tablica 4.1.2.).

<table>
<thead>
<tr>
<th>Pokazatelj</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. zraka °C</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>Temp. vode °C</td>
<td>15,2</td>
<td>16,8</td>
<td>20,5</td>
<td>16,9</td>
<td>12,1</td>
</tr>
<tr>
<td>Provodljivost µS/cm</td>
<td>351</td>
<td>403</td>
<td>431</td>
<td>448</td>
<td>438</td>
</tr>
<tr>
<td>O₂ mg l⁻¹</td>
<td>6,25</td>
<td>5,43</td>
<td>3,64</td>
<td>4,88</td>
<td>5,23</td>
</tr>
<tr>
<td>O₂ %</td>
<td>62,80</td>
<td>55,70</td>
<td>41,10</td>
<td>50,72</td>
<td>49,65</td>
</tr>
<tr>
<td>Slob CO₂ mg l⁻¹</td>
<td>19,80</td>
<td>22,00</td>
<td>28,16</td>
<td>15,40</td>
<td>16,55</td>
</tr>
<tr>
<td>Utrošak KMnO₄ u mg O₂ l⁻¹</td>
<td>29,40</td>
<td>10,43</td>
<td>30,77</td>
<td>26,87</td>
<td>17,77</td>
</tr>
<tr>
<td>NH₃ mg l⁻¹</td>
<td>0,30</td>
<td>0,16</td>
<td>0,20</td>
<td>0,11</td>
<td>0,09</td>
</tr>
<tr>
<td>Ca tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,43</td>
<td>0,91</td>
<td>0,89</td>
<td>0,24</td>
<td>0,65</td>
</tr>
<tr>
<td>Ca⁺ mg l⁻¹</td>
<td>0,36</td>
<td>0,25</td>
<td>0,20</td>
<td>0,28</td>
<td>0,18</td>
</tr>
<tr>
<td>Mg tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,43</td>
<td>0,91</td>
<td>0,89</td>
<td>0,24</td>
<td>0,65</td>
</tr>
<tr>
<td>Mg⁺ mg l⁻¹</td>
<td>0,10</td>
<td>0,22</td>
<td>0,22</td>
<td>0,05</td>
<td>0,16</td>
</tr>
<tr>
<td>NO₃⁻ mg l⁻¹</td>
<td>0,59</td>
<td>8,00</td>
<td>0,76</td>
<td>4,43</td>
<td>6,20</td>
</tr>
<tr>
<td>NO₂⁻ mg l⁻¹</td>
<td>0,20</td>
<td>0,98</td>
<td>0,09</td>
<td>0,06</td>
<td>0,13</td>
</tr>
<tr>
<td>NaNO₂ mg l⁻¹</td>
<td>0,30</td>
<td>0,15</td>
<td>0,17</td>
<td>0,09</td>
<td>0,07</td>
</tr>
<tr>
<td>PO₄³⁻ mg l⁻¹</td>
<td>0,34</td>
<td>0,24</td>
<td>0,36</td>
<td>0,41</td>
<td>0,18</td>
</tr>
<tr>
<td>P₂O₅ mg l⁻¹</td>
<td>0,25</td>
<td>0,18</td>
<td>0,27</td>
<td>0,30</td>
<td>0,13</td>
</tr>
<tr>
<td>Slobodni Cl mg l⁻¹</td>
<td>0,02</td>
<td>0,07</td>
<td>0,04</td>
<td>0,10</td>
<td>0,02</td>
</tr>
<tr>
<td>pH</td>
<td>7,65</td>
<td>7,73</td>
<td>7,60</td>
<td>7,87</td>
<td>7,77</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0,40</td>
<td>0,44</td>
<td>0,59</td>
<td>0,59</td>
<td>0,53</td>
</tr>
<tr>
<td>Vodostaj</td>
<td>-61</td>
<td>-95</td>
<td>-194</td>
<td>-219</td>
<td>-68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pokazatelj</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Svibanj</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. vode °C</td>
<td>6,6</td>
<td>9,8</td>
<td>11,8</td>
<td>21,0</td>
<td>21,1</td>
<td>16,3</td>
<td>17,8</td>
<td>11,6</td>
<td>13,1</td>
</tr>
<tr>
<td>Temp. zraka °C</td>
<td>6,1</td>
<td>12,2</td>
<td>16,5</td>
<td>23,5</td>
<td>24,0</td>
<td>20,0</td>
<td>18,0</td>
<td>15,4</td>
<td>14,0</td>
</tr>
<tr>
<td>Provodljivost μS/cm</td>
<td>521</td>
<td>377</td>
<td>400</td>
<td>466</td>
<td>450</td>
<td>448</td>
<td>478</td>
<td>451</td>
<td>488</td>
</tr>
<tr>
<td>O₂ mg l⁻¹</td>
<td>5,80</td>
<td>5,26</td>
<td>5,03</td>
<td>4,00</td>
<td>4,08</td>
<td>4,89</td>
<td>4,73</td>
<td>5,8</td>
<td>5,33</td>
</tr>
<tr>
<td>O₂%</td>
<td>47,9</td>
<td>47,0</td>
<td>46,8</td>
<td>43,3</td>
<td>46,6</td>
<td>50,4</td>
<td>50,0</td>
<td>54,0</td>
<td>51,0</td>
</tr>
<tr>
<td>Slob. CO₂ mg l⁻¹</td>
<td>18,7</td>
<td>17,6</td>
<td>11,0</td>
<td>3,3</td>
<td>4,6</td>
<td>4,4</td>
<td>5,9</td>
<td>5,5</td>
<td>5,3</td>
</tr>
<tr>
<td>Utrošak KMnO₄ u mg O₂ l⁻¹</td>
<td>58,48</td>
<td>15,6</td>
<td>23,39</td>
<td>30,03</td>
<td>28,44</td>
<td>18,33</td>
<td>26,23</td>
<td>18,96</td>
<td>14,22</td>
</tr>
<tr>
<td>NH₃ mg l⁻¹</td>
<td>0,12</td>
<td>0,13</td>
<td>0,218</td>
<td>0,10</td>
<td>0,05</td>
<td>0,18</td>
<td>0,35</td>
<td>0,23</td>
<td>0,21</td>
</tr>
<tr>
<td>Ca tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,33</td>
<td>0,11</td>
<td>0,72</td>
<td>0,82</td>
<td>1,23</td>
<td>0,10</td>
<td>0,83</td>
<td>1,11</td>
<td>1,41</td>
</tr>
<tr>
<td>Ca⁺ mg l⁻¹</td>
<td>0,13</td>
<td>0,04</td>
<td>0,29</td>
<td>0,33</td>
<td>0,49</td>
<td>0,04</td>
<td>0,33</td>
<td>0,44</td>
<td>0,56</td>
</tr>
<tr>
<td>Mg tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,30</td>
<td>1,54</td>
<td>1,62</td>
<td>1,23</td>
<td>>2,00</td>
<td>1,20</td>
<td>1,75</td>
<td>1,15</td>
<td>1,05</td>
</tr>
<tr>
<td>Mg⁺ mg l⁻¹</td>
<td>0,07</td>
<td>0,37</td>
<td>0,39</td>
<td>0,30</td>
<td>>0,47</td>
<td>0,29</td>
<td>0,43</td>
<td>0,28</td>
<td>0,26</td>
</tr>
<tr>
<td>NO₃⁻ mg l⁻¹</td>
<td>2,21</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,44</td>
<td>4,43</td>
<td>3,54</td>
<td>6,65</td>
<td>8,42</td>
</tr>
<tr>
<td>NO₂⁻ mg l⁻¹</td>
<td>0,06</td>
<td>0,26</td>
<td>0,13</td>
<td>0,23</td>
<td>0,17</td>
<td>0,10</td>
<td>0,10</td>
<td>0,07</td>
<td>0,17</td>
</tr>
<tr>
<td>NaNO₂ mg l⁻¹</td>
<td>0,09</td>
<td>0,39</td>
<td>0,20</td>
<td>0,35</td>
<td>0,25</td>
<td>0,15</td>
<td>0,15</td>
<td>0,10</td>
<td>0,25</td>
</tr>
<tr>
<td>PO₄³⁻ mg l⁻¹</td>
<td>0,48</td>
<td>0,49</td>
<td>1,14</td>
<td>0,83</td>
<td>>2,50</td>
<td>0,41</td>
<td>1,83</td>
<td>>2,50</td>
<td>0,41</td>
</tr>
<tr>
<td>P₂O₅ mg l⁻¹</td>
<td>0,35</td>
<td>0,37</td>
<td>0,85</td>
<td>0,62</td>
<td>>1,87</td>
<td>0,31</td>
<td>1,37</td>
<td>>1,87</td>
<td>0,31</td>
</tr>
<tr>
<td>Slobodni Cl mg l⁻¹</td>
<td>0,00</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
<td>0,02</td>
<td>0,06</td>
<td>0,09</td>
<td>0,00</td>
<td>0,17</td>
</tr>
<tr>
<td>pH</td>
<td>7,88</td>
<td>7,91</td>
<td>7,92</td>
<td>7,63</td>
<td>7,68</td>
<td>7,75</td>
<td>7,82</td>
<td>7,83</td>
<td>7,60</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0,41</td>
<td>0,40</td>
<td>0,25</td>
<td>0,43</td>
<td>0,35</td>
<td>0,43</td>
<td>0,45</td>
<td>0,41</td>
<td>0,40</td>
</tr>
</tbody>
</table>
Analitičke vrijednosti pojedinih fizikalno-kemijskih parametra na lokaciji Jarun prikazane su u tablici 4.1.3. i 4.1.4.

Temperatura vode i koncentracija kisika u vodi bila je stabilna tijekom cijelog istraživanog razdoblja. Vrijednosti pH kretale su se od 7,51 do 8,26 tijekom 2004. i 2005. g. Vrijednosti slobodnog CO₂ bile su povišene u srpnju i kolovozu 2004. g te travnju i svibnju 2005. g. Količina organske tvari prema utrošku KMnO₄ u mg O₂ l⁻¹ bila je veća krajem 2004. g. i početkom 2005. g. Povećane vrijednosti NO₃⁻ mg l⁻¹ bile su u lipnju, srpnju i rujnu 2004. g. te u ožujku i studenom 2005. g. Veće vrijednosti za fosfor zabilježene su jedino u kolovozu i rujnu 2005. g. Slobodni Cl mg l⁻¹ bio je nizak tijekom cijelog istraživanog razdoblja (Tablice 4.1.3. i 4.1.4.)

<table>
<thead>
<tr>
<th>Pokazatelj</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. zraka °C</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>Temp. vode °C</td>
<td>19,9</td>
<td>18,8</td>
<td>17,3</td>
<td>15,0</td>
<td>13,1</td>
</tr>
<tr>
<td>Provodljivost µS/cm</td>
<td>415</td>
<td>415</td>
<td>430</td>
<td>475</td>
<td>430</td>
</tr>
<tr>
<td>O₂ mg l⁻¹</td>
<td>5,87</td>
<td>5,76</td>
<td>4,55</td>
<td>4,98</td>
<td>5,12</td>
</tr>
<tr>
<td>O₂ %</td>
<td>64,1</td>
<td>63,2</td>
<td>48,7</td>
<td>50,9</td>
<td>49,3</td>
</tr>
<tr>
<td>Slob CO₂ mg l⁻¹</td>
<td>nema</td>
<td>33,00</td>
<td>15,87</td>
<td>12,32</td>
<td>9,90</td>
</tr>
<tr>
<td>Utrošak KMnO₄ u mg O₂ l⁻¹</td>
<td>19,91</td>
<td>7,88</td>
<td>10,15</td>
<td>21,05</td>
<td>17,34</td>
</tr>
<tr>
<td>NH₃ mg l⁻¹</td>
<td>0,20</td>
<td>0,13</td>
<td>0</td>
<td>0</td>
<td>0,41</td>
</tr>
<tr>
<td>Ca tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,23</td>
<td>0,71</td>
<td>0,54</td>
<td>0,24</td>
<td>0,34</td>
</tr>
<tr>
<td>Ca⁺ mg l⁻¹</td>
<td>0,09</td>
<td>0,23</td>
<td>0,20</td>
<td>0,29</td>
<td>0,19</td>
</tr>
<tr>
<td>Mg tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,51</td>
<td>0,81</td>
<td>0,27</td>
<td>0,57</td>
<td>1,32</td>
</tr>
<tr>
<td>Mg⁺ mg l⁻¹</td>
<td>0,20</td>
<td>0,24</td>
<td>0,06</td>
<td>0,13</td>
<td>0,32</td>
</tr>
<tr>
<td>NO₂⁻ mg l⁻¹</td>
<td>7,08</td>
<td>4,43</td>
<td>2,22</td>
<td>6,65</td>
<td>0,44</td>
</tr>
<tr>
<td>NO₃⁻ mg l⁻¹</td>
<td>0,13</td>
<td>0,15</td>
<td>0</td>
<td>0,21</td>
<td>0,07</td>
</tr>
<tr>
<td>NaNO₂ mg l⁻¹</td>
<td>0,19</td>
<td>0,19</td>
<td>0,30</td>
<td>0,86</td>
<td>0,09</td>
</tr>
<tr>
<td>PO₄³⁻ mg l⁻¹</td>
<td>0,29</td>
<td>0,34</td>
<td>0,46</td>
<td>0,41</td>
<td>0,22</td>
</tr>
<tr>
<td>P₂O₅ mg l⁻¹</td>
<td>0,25</td>
<td>0,30</td>
<td>0,34</td>
<td>0,30</td>
<td>0,16</td>
</tr>
<tr>
<td>Slobodni Cl mg l⁻¹</td>
<td>0,01</td>
<td>0,06</td>
<td>0,01</td>
<td>0,03</td>
<td>0,02</td>
</tr>
<tr>
<td>pH</td>
<td>7,86</td>
<td>7,77</td>
<td>7,95</td>
<td>7,86</td>
<td>7,71</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0,40</td>
<td>0,60</td>
<td>0,52</td>
<td>0,45</td>
<td>0,49</td>
</tr>
<tr>
<td>Vodostaj</td>
<td>-207</td>
<td>-152</td>
<td>-173</td>
<td>-200</td>
<td>-127</td>
</tr>
</tbody>
</table>
Tablica 4.1.4. Prosječne fizikalno-kemijske karakteristike vode u rijeci Savi, lokacija Jarun u razdoblju od 9 mjeseci 2005. godine

<table>
<thead>
<tr>
<th>Pokazatelj</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Svibanj</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. vode °C</td>
<td>6,4</td>
<td>7,5</td>
<td>12,9</td>
<td>21</td>
<td>22,2</td>
<td>17,2</td>
<td>18,8</td>
<td>12,1</td>
<td>13,4</td>
</tr>
<tr>
<td>Temp. zraka °C</td>
<td>6,1</td>
<td>12,2</td>
<td>16,5</td>
<td>23,5</td>
<td>26,0</td>
<td>25,3</td>
<td>20,0</td>
<td>15,4</td>
<td>14,0</td>
</tr>
<tr>
<td>Provodljivost µS/cm</td>
<td>545</td>
<td>512</td>
<td>417</td>
<td>466</td>
<td>442</td>
<td>460</td>
<td>697</td>
<td>636</td>
<td>493</td>
</tr>
<tr>
<td>O₂ mg l⁻¹</td>
<td>7,00</td>
<td>6,05</td>
<td>5,73</td>
<td>4,00</td>
<td>4,28</td>
<td>4,80</td>
<td>5,50</td>
<td>5,40</td>
<td>5,10</td>
</tr>
<tr>
<td>O₂ %</td>
<td>57,4</td>
<td>56,0</td>
<td>54,2</td>
<td>43,3</td>
<td>49,5</td>
<td>50,0</td>
<td>59,1</td>
<td>50,0</td>
<td>49,0</td>
</tr>
<tr>
<td>Slob. CO₂ mg l⁻¹</td>
<td>11,00</td>
<td>22,00</td>
<td>14,30</td>
<td>3,30</td>
<td>5,50</td>
<td>16,28</td>
<td>7,04</td>
<td>7,04</td>
<td>6,22</td>
</tr>
<tr>
<td>Utrošak KMnO₄ u mg O₂ l⁻¹</td>
<td>55,79</td>
<td>41,72</td>
<td>23,39</td>
<td>30,03</td>
<td>33,19</td>
<td>20,55</td>
<td>20,55</td>
<td>15,49</td>
<td>16,44</td>
</tr>
<tr>
<td>NH₃ mg l⁻¹</td>
<td>0,01</td>
<td>0,34</td>
<td>0,26</td>
<td>0,24</td>
<td>0,07</td>
<td>0,26</td>
<td>0,16</td>
<td>1,46</td>
<td>0,06</td>
</tr>
<tr>
<td>Ca tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,34</td>
<td>0,75</td>
<td>0,66</td>
<td>1,37</td>
<td>0,20</td>
<td>1,03</td>
<td>0,59</td>
<td>0,89</td>
<td>0,19</td>
</tr>
<tr>
<td>Ca⁺ mg l⁻¹</td>
<td>0,13</td>
<td>0,30</td>
<td>0,26</td>
<td>0,55</td>
<td>0,08</td>
<td>0,41</td>
<td>0,24</td>
<td>0,36</td>
<td>0,08</td>
</tr>
<tr>
<td>Mg tvrdoća kao CaCO₃ mg l⁻¹</td>
<td>0,21</td>
<td>1,33</td>
<td>1,66</td>
<td>2,00</td>
<td>1,21</td>
<td>1,00</td>
<td>1,18</td>
<td>0,86</td>
<td>0,29</td>
</tr>
<tr>
<td>Mg⁺ mg l⁻¹</td>
<td>0,07</td>
<td>0,32</td>
<td>0,40</td>
<td>0,47</td>
<td>0,29</td>
<td>0,24</td>
<td>0,29</td>
<td>0,21</td>
<td>0,07</td>
</tr>
<tr>
<td>NO₃⁻ mg l⁻¹</td>
<td>5,31</td>
<td>0,00</td>
<td>0,00</td>
<td>0,89</td>
<td>3,10</td>
<td>0,00</td>
<td>3,54</td>
<td>0,00</td>
<td>6,65</td>
</tr>
<tr>
<td>NO₂⁻ mg l⁻¹</td>
<td>0,03</td>
<td>0,16</td>
<td>0,07</td>
<td>0,13</td>
<td>0,10</td>
<td>0,07</td>
<td>0,17</td>
<td>0,17</td>
<td>0,23</td>
</tr>
<tr>
<td>NaNO₂ mg l⁻¹</td>
<td>0,04</td>
<td>0,25</td>
<td>0,10</td>
<td>0,20</td>
<td>0,15</td>
<td>0,10</td>
<td>0,25</td>
<td>0,25</td>
<td>0,35</td>
</tr>
<tr>
<td>PO₄³⁻ mg l⁻¹</td>
<td>0,30</td>
<td>0,86</td>
<td>0,69</td>
<td>1,05</td>
<td>0,44</td>
<td>>2,50</td>
<td>1,87</td>
<td>0,91</td>
<td>0,43</td>
</tr>
<tr>
<td>P₂O₅ mg l⁻¹</td>
<td>0,22</td>
<td>0,64</td>
<td>0,52</td>
<td>0,78</td>
<td>0,31</td>
<td>1,87</td>
<td>1,40</td>
<td>0,68</td>
<td>0,32</td>
</tr>
<tr>
<td>Slobodni Cl mg l⁻¹</td>
<td>0,07</td>
<td>0,05</td>
<td>0,05</td>
<td>0,02</td>
<td>0,05</td>
<td>0,00</td>
<td>0,01</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>pH</td>
<td>8,15</td>
<td>8,26</td>
<td>7,88</td>
<td>7,63</td>
<td>7,55</td>
<td>7,73</td>
<td>7,85</td>
<td>7,51</td>
<td>7,7</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0,45</td>
<td>0,45</td>
<td>0,32</td>
<td>0,43</td>
<td>0,40</td>
<td>0,45</td>
<td>0,49</td>
<td>0,45</td>
<td>0,44</td>
</tr>
<tr>
<td>Vodostaj</td>
<td>-282</td>
<td>-71</td>
<td>-162</td>
<td>-241</td>
<td>-201</td>
<td>-143</td>
<td>-120</td>
<td>-135</td>
<td>-110</td>
</tr>
</tbody>
</table>
4.2. Biološke osobine istraživanog područja

4.2.1. Fitoplankton i fitobentos

Istraživanja fitoplanktona vrše se uglavnom u vodama stajačicama poput jezera, akumulacija, bara i sl. U tekućicama je daleko značajniji biljni obraštaj kamenja mikrofitima. Pojedine vrste mogu biti i indikatori biološkog onečišćenja voda. Biljni obraštaj je sakupljan s kamenja iz vode. U nedostatku kamenitog supstrata uzorak je skinut s drugih predmeta koji su se nalazili u vodi.

Veći broj taksona u biljnom obraštaju pronađen je na lokaciji Medsave u obje sezone istraživanja. Ondje je dostupno više kamenite obale i pri višem vodostaju, pa je bilo moguće uzeti uzorak tijekom cijele godine. Na lokaciji Jarun pri višem vodostaju obala je bila poplavljena, pa se na dostupnim predmetima u vodi perifiton nije posebno razvio.

Na obje lokacije najviše su razvijene Bacillariophyceae, a manje Chlorophyta, Chrysophyta, Euglenophyta i Cyanophyta/Cyanobacteriae. Od Bacillariophyta masovno su razvijene na obje lokacije u obje sezone *Diatoma vulgare*, *Gomphonema* sp. i *Navicula* sp. Za Chlorophyta najznačajnija je *Cladophora glomerata* na obje lokacije (Tablica 4.2.1.1.).
Tablica 4.2.1.1. Prisutnost mikrofita u obraštaju rijeke Save na lokaciji Medsave i Jarun u 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Medsave</th>
<th>Jarun</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004</td>
<td>2005</td>
</tr>
<tr>
<td>CYANOPHYTA/CYANOBACTERIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anabaena sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lyngbya sp.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nostoc sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillatoria sp.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Phormidium sp.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EUGLENOPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euglena sp.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHRYSEPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHRYSEPHYCEAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colacium sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dinobryon divergens</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Tribonema sp.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>XANTHOPYCEAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaucheria sp.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BACILLARIOPHYCEAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achnantes sp.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Caloneis sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocconeis sp.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cymbella sp.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Diatoma vulgare</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gomphonema sp.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gyrosigma sp.</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Eunotia monodon</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fragillaria sp.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Meridion sp.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Melosira sp.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Navicula sp.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nitzschia sp.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pinnularia sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rhicosphenia sp.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Synedra ulna</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tabellaria sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHLOROPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clidium sp.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cladophora glomerata</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cosmarium sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Oedogonium sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pedastrum sp.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Richterella sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus sp.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stigeoclonium sp.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tetraedron sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulothrix sp.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Zygnema sp.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1- rijetko; 2- srednje; 3- masovno
Tablica 4.2.1.2. Struktura mrežnog fitoplanktona rijeke Save na lokaciji Medsave i Jarun u 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Medsave</th>
<th>Jarun</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYANOPHYTA/CYANOBACTERIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcystis aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merismopedia sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gloeocapsa sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phormidium sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sphaerotilus natans</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EUGLENOPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euglena oxyuris</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Euglena proxima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euglena sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phacus sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phacus longicauda</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phacus tortus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHRYSOHYCEAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinobryon sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>XANTOPHYCEAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribonema sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BACILLARIOPHYCEAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achnanthes sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aristonella formosa</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cymatopleura sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diatoma sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fragillaria sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gyrosigma sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Navicula sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitzchia sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinnularia sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rhoicosphenia sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Synedra sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DINOPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ceratium hirundinella</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Peridinium sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CHLOROPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ankistrodesmus sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coelastrium sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cosmarium sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Crucigenia sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Closterium libellula</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Closterium sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mougeotia sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pandorina morum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pediastrum duplex</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pediastrum simplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediastrum boryanum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pediastrum biradiatum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pediastrum tetras</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Pediastrum sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Richteriella sp.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Scenedesmus acuminatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus quadricauda</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Scenedesmus sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spirogyra sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stigeoclonium sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Staurastrum paradoxum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraëdron trigonum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ulothrix zonata</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Sastav mrežnog fitoplanktona razlikuje se u broju pronađenih taksona. Na lokaciji Medsave ukupno je pronađeno u 2004. g. 33 taksona, a u 2005. g. 41. Na lokaciji Jarun 2004. g. pronađeno je 28 taksona, a 2005. g. 37. Sastav vrsta razlikuje se između lokacija. Tako je na lokaciji Jarun pronađen *Microcystis aeruginosa*, a na lokaciji Medsave nije zabilježen u cijelom istraživanom razdoblju. Rod *Gloeocapsa* bio je prisutan samo na lokaciji Jarun, a *Oscillatoria* sp. samo na lokaciji Medsave. Rod *Tribonema* zabilježen je na obje lokacije samo u 2005. g. Najveći broj vrsta zabilježen je iz skupine Chlorophyta na obje lokacije, a slijedi skupina Bacillariophyceae. *Cladophora* sp. pronađena je na obje lokacije u 2004. i 2005. g. (Tablica 4.2.1.2.)
4.2.2. Zooplankton

Glavninu slatkovodnog zooplanktona čine skupine Rotifer (kolnjaci), planktonski račići Cladocera (rašljoticalci) i Copepoda (veslonošci). Od ostalih skupina životinja u slatkovodnom zooplanktonu mogu se susresti Protozoa, jaja riba, ličinke riba, školjkaša, kukaca i dugoživci.

Za slatkovodni zooplankton karakteristične su vertikalne migracije. Skupine Cladocera i Copepoda pokazuju pravilne migracije po dubini tijekom 24 sata, dolazeći u površinske slojeve tijekom noći i spuštajući se za vrijeme dana u dublje slojeve vode. Skupina Rotifer ne podliježe ovakvim dnevnim ritmovima. Pretpostavlja se da se plankton zadržava na onoj dubini na kojoj mu je optimalna količina svjetla.

Na obje lokacije vrste iz skupine Rotifera bile su najbrojnije, a pojavljivale su se tijekom cijelog istraživanog razdoblja. Na lokaciji Medsave nisu zabilježeni jedino u travnju 2005. g. kada su nauplius ličinke Copepoda bile dominantne. Zooplankton je bio najbrojniji u rujnu 2005. g. Na lokaciji Jarun niti jedan takson zooplanktona nije pronađen u listopadu 2004. g. Zooplankton je bio najbrojniji u kolovozu 2005. g., a u rujnu iste godine pronađen je najveći broj taksona (Tablice 4.2.2.1. – 4.2.2.6.).
Tablica 4.2.2.1. Struktura zooplanktona rijeke Save na lokaciji Medsave u 2004. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jed l⁻¹</td>
<td>%</td>
<td>Jed l⁻¹</td>
<td>%</td>
<td>Jed l⁻¹</td>
</tr>
<tr>
<td>ROTIFERA</td>
<td>35</td>
<td>26,1</td>
<td>78</td>
<td>33,1</td>
<td>122</td>
</tr>
<tr>
<td>CLADOCERA</td>
<td>7</td>
<td>5,2</td>
<td>16</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>COPEPODA</td>
<td>92</td>
<td>68,7</td>
<td>142</td>
<td>60,2</td>
<td>45</td>
</tr>
<tr>
<td>Nauplius ličinke</td>
<td>92</td>
<td>68,7</td>
<td>142</td>
<td>60,2</td>
<td>45</td>
</tr>
<tr>
<td>Ukupno</td>
<td>134</td>
<td>100</td>
<td>236</td>
<td>100</td>
<td>179</td>
</tr>
</tbody>
</table>

Tablica 4.2.2.2. Struktura zooplanktona rijeke Save na lokaciji Medsave od ožujka do srpnja u 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Svibanj</th>
<th>Lipanj</th>
<th>Srpanj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jed l⁻¹</td>
<td>%</td>
<td>Jed l⁻¹</td>
<td>%</td>
<td>Jed l⁻¹</td>
</tr>
<tr>
<td>ROTIFERA</td>
<td>94</td>
<td>100</td>
<td></td>
<td>182</td>
<td>52,3</td>
</tr>
<tr>
<td>CLADOCERA</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>9,2</td>
</tr>
<tr>
<td>COPEPODA</td>
<td>122</td>
<td>100</td>
<td></td>
<td>134</td>
<td>38,5</td>
</tr>
<tr>
<td>Nauplius ličinke</td>
<td>122</td>
<td>100</td>
<td></td>
<td>134</td>
<td>38,5</td>
</tr>
<tr>
<td>Ukupno</td>
<td>94</td>
<td>100</td>
<td></td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

Tablica 4.2.2.3. Struktura zooplanktona rijeke Save na lokaciji Medsave od kolovoza do studenog u 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jed l⁻¹</td>
<td>%</td>
<td>Jed l⁻¹</td>
<td>%</td>
</tr>
<tr>
<td>ROTIFERA</td>
<td>76</td>
<td>93,8</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>CLADOCERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPEPODA</td>
<td>5</td>
<td>6,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nauplius ličinke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukupno</td>
<td>81</td>
<td>100</td>
<td>16</td>
<td>100</td>
</tr>
</tbody>
</table>
Tablica 4.2.2.4. Struktura zooplanktona rijeke Save na lokaciji Jarun u 2004. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jed l^{-1}</td>
<td>%</td>
<td>Jed l^{-1}</td>
<td>%</td>
<td>Jed l^{-1}</td>
</tr>
<tr>
<td>ROTIFERA</td>
<td>133</td>
<td>38,0</td>
<td>166</td>
<td>100</td>
<td>341</td>
</tr>
<tr>
<td>CLADOCERA</td>
<td>29</td>
<td>8,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPEPODA</td>
<td></td>
<td></td>
<td>188</td>
<td>53,7</td>
<td>31</td>
</tr>
<tr>
<td>Ukupno</td>
<td>350</td>
<td>100</td>
<td>166</td>
<td>100</td>
<td>341</td>
</tr>
</tbody>
</table>

Tablica 4.2.2.5. Struktura zooplanktona rijeke Save na lokaciji Jarun od ožujka do srpnja u 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Svibanj</th>
<th>Lipanj</th>
<th>Srpanj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jed l^{-1}</td>
<td>%</td>
<td>Jed l^{-1}</td>
<td>%</td>
<td>Jed l^{-1}</td>
</tr>
<tr>
<td>ROTIFERA</td>
<td>145</td>
<td>100</td>
<td>86</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>CLADOCERA</td>
<td>34</td>
<td>12,5</td>
<td>34</td>
<td>12,5</td>
<td>34</td>
</tr>
<tr>
<td>COPEPODA</td>
<td>188</td>
<td>72,0</td>
<td>311</td>
<td>64,9</td>
<td></td>
</tr>
<tr>
<td>Ukupno</td>
<td>145</td>
<td>100</td>
<td>86</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Tablica 4.2.2.6. Struktura zooplanktona rijeke Save na lokaciji Jarun od kolovoza do studenog u 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jed l^{-1}</td>
<td>%</td>
<td>Jed l^{-1}</td>
<td>%</td>
</tr>
<tr>
<td>ROTIFERA</td>
<td>320</td>
<td>40,0</td>
<td>34</td>
<td>12,5</td>
</tr>
<tr>
<td>CLADOCERA</td>
<td>34</td>
<td>12,5</td>
<td>34</td>
<td>12,5</td>
</tr>
<tr>
<td>COPEPODA</td>
<td>480</td>
<td>60,0</td>
<td>170</td>
<td>62,5</td>
</tr>
<tr>
<td>Ukupno</td>
<td>800</td>
<td>100</td>
<td>272</td>
<td>100</td>
</tr>
</tbody>
</table>
4.2.3. Makrozoobentos

Svaki raspoloživi supstrat može biti adekvatno stanište za makrozoobentos uključujući vodeno bilje, korištenje vodenog bilja i drveća, otpalo lišće i ostaci biljnog materijala, mulj, pijesak, obraštaj na kamenju, pa čak i predmeti koji se nalaze u vodi. Oni su vrlo važni u hranidbenoj mreži svih organizama koji žive u vodenom mediju, pa tako i riba. Stoga su i uzimani uzorci makrozoobentosa sa svih raspoloživih supstrata na rijeci.

U tablicama 4.2.3.1., 4.2.3.2. i 4.2.3.3. prikazan je sastav makrozoobentosa u bentalu istraživanjima provedenim 2004. i 2005. godine na lokaciji Medsave, a u tablicama 4.2.3.4., 4.2.3.5. i 4.2.3.6. na lokaciji Jarun. Prikazani rezultati odnose se na prosječan broj i masu pronađenih svojstva.

Za vrijeme uzorkovanja u lipnju, srpnju i listopadu 2004. g., na lokaciji Medsave bio je izrazito visok vodostaj, pa je bio dostupan samo muljeviti supstrat dok je kolovozu i rujnu bilo moguće uzeti uzorak sa svih supstrata.

U lipanjskom uzorku u bentalu rijeke pronađen je samo jedan primjerak Gastropoda i to Physa fontinalis. U srpanjskom uzorku najbrojnije (70,5%) i u najveće masi (79,7%) pronađene su jedinke iz skupine Oligochaeta, a nešto veće brojnosti (21,8%) pronađeni su i Chironomidae. Vrlo slabo su se razvile jedinke iz skupina Gastropoda i Hirudinea. U kolovozu su se znatnije razvile jedinke iz skupine Hirudinea (33,4 %) i Amphipoda i to Gammarus fossarum (29,4%). U rujanskom uzorku najveći broj (44,5%) i znatne mase (57,4%) razvile su se jedinke iz skupine Hirudinea, dok su u listopadu prevladavali Gammarus fossarum sa 59,3 % brojnosti i 35,6 % mase. Najveći broj taksona razvio se u kolovozu, rujnu i listopadu (Tablica 4.2.3.1.).
Tablica 4.2.3.1. Biomasa makrozoobentosa u bentalu na lokaciji Medsave u 2004. godini.

<table>
<thead>
<tr>
<th>TAKSON</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jed m²</td>
<td>% Masa (g m⁻²)</td>
<td>jed m²</td>
<td>% Masa (g m⁻²)</td>
<td>jed m²</td>
</tr>
<tr>
<td>OLIGOCHAETA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubifex tubifex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>55,0</td>
<td>70,5</td>
<td>1,326</td>
<td>79,7</td>
<td>1,0</td>
</tr>
<tr>
<td>n. det.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bithynia tentaculata</td>
<td>2,66</td>
<td>2,36</td>
<td>1,400</td>
<td>19,4</td>
<td>21,0</td>
</tr>
<tr>
<td>Physa acuta</td>
<td>1,0</td>
<td>1,3</td>
<td>0,067</td>
<td>0,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Physa fontinalis</td>
<td>1,0</td>
<td>100</td>
<td>0,080</td>
<td>100</td>
<td>1,0</td>
</tr>
<tr>
<td>Planorbidae</td>
<td>3,43</td>
<td>2,82</td>
<td>0,079</td>
<td>11,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Lymnaea peregra</td>
<td>10,0</td>
<td>8,24</td>
<td>0,080</td>
<td>100</td>
<td>1,0</td>
</tr>
<tr>
<td>Valvata christata</td>
<td>3,33</td>
<td>2,1</td>
<td>0,050</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeridae</td>
<td>1,0</td>
<td>1,2</td>
<td>0,086</td>
<td>1,2</td>
<td>1,0</td>
</tr>
<tr>
<td>n. det.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIRUDINEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudidae</td>
<td>40,0</td>
<td>33,4</td>
<td>2,97</td>
<td>41,2</td>
<td>69,8</td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td>35,71</td>
<td>29,4</td>
<td>0,657</td>
<td>9,1</td>
<td>26,1</td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>9,66</td>
<td>6,2</td>
<td>0,066</td>
<td>1,2</td>
<td>2,0</td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanypus sp.</td>
<td>4</td>
<td>3,29</td>
<td>0,018</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>17,0</td>
<td>21,8</td>
<td>0,038</td>
<td>2,3</td>
<td>2</td>
</tr>
<tr>
<td>TRICHOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche angustipennis</td>
<td>5,0</td>
<td>6,2</td>
<td>0,316</td>
<td>13,1</td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODONATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphus vulgatissimus</td>
<td>1,43</td>
<td>1,18</td>
<td>0,328</td>
<td>4,55</td>
<td>1,0</td>
</tr>
<tr>
<td>Calopteryx splendens</td>
<td>1,0</td>
<td>1,2</td>
<td>0,037</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>EPHEMEROPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptageniidae</td>
<td>2,0</td>
<td>2,5</td>
<td>0,100</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>Ephemeridae</td>
<td>1,0</td>
<td>1,2</td>
<td>0,087</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>UKUPNO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0,080</td>
<td>100</td>
<td>77</td>
<td>100</td>
</tr>
</tbody>
</table>
Tablica 4.2.3.2. Biomasa makrozoobentosa u bentalu na lokaciji Medsave u od ožujka do lipnja u 2005. godini.

<table>
<thead>
<tr>
<th>TAKSON</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Sivibanj</th>
<th>Lipanj</th>
<th>(\bar{X})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jed m(^{-2})</td>
<td>%</td>
<td>Masa (g m(^{-2}))</td>
<td>%</td>
<td>jed m(^{-2})</td>
</tr>
<tr>
<td>TURBELLARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>1,3</td>
<td>1,82</td>
<td>0,05</td>
<td>0,16</td>
<td></td>
</tr>
<tr>
<td>OLIGOCHAETA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>10,0</td>
<td>14,00</td>
<td>2,55</td>
<td>7,98</td>
<td>2,0</td>
</tr>
<tr>
<td>Lumbricus terrestris</td>
<td>17,5</td>
<td>24,49</td>
<td>3,58</td>
<td>11,20</td>
<td>2,0</td>
</tr>
<tr>
<td>n. det.</td>
<td>3,75</td>
<td>5,25</td>
<td>0,09</td>
<td>0,28</td>
<td>2,0</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bithynia tentaculata</td>
<td>16,7</td>
<td>1,05</td>
<td>0,95</td>
<td>1,36</td>
<td></td>
</tr>
<tr>
<td>Lymnaea sp.</td>
<td>41,7</td>
<td>2,62</td>
<td>2,08</td>
<td>2,99</td>
<td>5,0</td>
</tr>
<tr>
<td>n. det.</td>
<td>8,33</td>
<td>0,52</td>
<td>0,69</td>
<td>0,99</td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>8,33</td>
<td>0,52</td>
<td>0,03</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>HIRUDINEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossiphonidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,0</td>
</tr>
<tr>
<td>Hirudidae</td>
<td>66,7</td>
<td>4,19</td>
<td>2,44</td>
<td>3,50</td>
<td>105,0</td>
</tr>
<tr>
<td>Piscicola geometra</td>
<td>1,3</td>
<td>1,82</td>
<td>0,03</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td>675,0</td>
<td>42,40</td>
<td>10,26</td>
<td>14,74</td>
<td>32,5</td>
</tr>
<tr>
<td>ISOPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>41,7</td>
<td>2,62</td>
<td>1,01</td>
<td>1,45</td>
<td>6,67</td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>66,7</td>
<td>4,19</td>
<td>0,05</td>
<td>0,07</td>
<td>1,3</td>
</tr>
<tr>
<td>Syrphidae</td>
<td>8,33</td>
<td>0,52</td>
<td>0,86</td>
<td>1,24</td>
<td></td>
</tr>
<tr>
<td>TRICHOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche angustipennis</td>
<td>641,7</td>
<td>40,31</td>
<td>50,93</td>
<td>73,15</td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>16,7</td>
<td>1,05</td>
<td>0,32</td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis macrura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,67</td>
</tr>
<tr>
<td>n. det.</td>
<td>2,0</td>
<td>0,58</td>
<td>0,09</td>
<td>1,66</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerae ignita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,3</td>
</tr>
<tr>
<td>Potamanthus luteus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,0</td>
</tr>
<tr>
<td>Rhiitrogena semicolorata</td>
<td>1,3</td>
<td>1,82</td>
<td>0,09</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>2,5</td>
<td>3,50</td>
<td>0,05</td>
<td>0,16</td>
<td>26,7</td>
</tr>
<tr>
<td>UKUPNO</td>
<td>1591,89</td>
<td>100</td>
<td>69,62</td>
<td>100</td>
<td>71,45</td>
</tr>
</tbody>
</table>
Tablica 4.2.3.3. Biomasa makrozoobentosa u bentalu na lokaciji Medsave od srpnja do studenog u 2005. godini.

<table>
<thead>
<tr>
<th>TAKSON</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jed m²</td>
<td>% Masa</td>
<td>% Masa</td>
<td>jed m²</td>
<td>% Masa</td>
</tr>
<tr>
<td>OLIGochaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>5,71</td>
<td>3,37</td>
<td>0,29</td>
<td>7,64</td>
<td>4,0</td>
</tr>
<tr>
<td>n. det.</td>
<td>2,0</td>
<td>2,88</td>
<td>0,03</td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bithynia tentaculata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physa sp.</td>
<td>7,9</td>
<td>4,66</td>
<td>0,19</td>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>Planorbis planorbis</td>
<td>1,43</td>
<td>0,84</td>
<td>0,12</td>
<td>3,16</td>
<td></td>
</tr>
<tr>
<td>Lymnaea sp.</td>
<td>1,4</td>
<td>0,83</td>
<td>0,18</td>
<td>4,74</td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>5,0</td>
<td>2,95</td>
<td>0,22</td>
<td>5,79</td>
<td>1,6</td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudidae</td>
<td>16,4</td>
<td>9,67</td>
<td>0,38</td>
<td>10,01</td>
<td>11,5</td>
</tr>
<tr>
<td>Glossiphoniidae</td>
<td>4,29</td>
<td>2,53</td>
<td>0,06</td>
<td>1,58</td>
<td>4,8</td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td>67,9</td>
<td>40,05</td>
<td>1,65</td>
<td>43,44</td>
<td>9,9</td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>12,9</td>
<td>7,61</td>
<td>0,13</td>
<td>3,63</td>
<td>8,0</td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipulidae</td>
<td>2,9</td>
<td>1,71</td>
<td>0,08</td>
<td>2,11</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>6,8</td>
<td>4,01</td>
<td>0,04</td>
<td>1,05</td>
<td>16,1</td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>4,3</td>
<td>2,53</td>
<td>0,02</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td>Megaloptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sialis lutaria</td>
<td>2,9</td>
<td>1,71</td>
<td>0,05</td>
<td>1,32</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche angustipennis</td>
<td>2,0</td>
<td>2,20</td>
<td>0,03</td>
<td>0,75</td>
<td>14,5</td>
</tr>
<tr>
<td>n. det.</td>
<td>22,5</td>
<td>13,27</td>
<td>0,33</td>
<td>8,69</td>
<td>2,0</td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygoptera</td>
<td>2,0</td>
<td>2,88</td>
<td>0,03</td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>Gomphidae</td>
<td>4,0</td>
<td>5,76</td>
<td>0,07</td>
<td>4,67</td>
<td>4,0</td>
</tr>
<tr>
<td>Gomphus vulgatissimus</td>
<td>2,0</td>
<td>2,88</td>
<td>0,05</td>
<td>3,33</td>
<td></td>
</tr>
<tr>
<td>Calopteryx splendens</td>
<td>2,2</td>
<td>1,76</td>
<td>0,01</td>
<td>0,37</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis sp.</td>
<td>4,3</td>
<td>2,54</td>
<td>0,03</td>
<td>0,79</td>
<td>1,6</td>
</tr>
<tr>
<td>Caenis macrura</td>
<td>2,9</td>
<td>1,71</td>
<td>0,02</td>
<td>0,53</td>
<td>14,0</td>
</tr>
<tr>
<td>Caenis horaria</td>
<td>2,2</td>
<td>1,76</td>
<td>0,01</td>
<td>0,37</td>
<td></td>
</tr>
<tr>
<td>Heptagenia sp.</td>
<td>169,5</td>
<td>100</td>
<td>3,80</td>
<td>100</td>
<td>69,4</td>
</tr>
</tbody>
</table>
U ožujku na lokaciji Medsave 2005. g. najbrojniji su bili Gammarus fossarum (42,40%) i Hydropsyche angustipennis (40,31%) koji je dominirao i masom (73,15 %). U travnju Trichoptera nisu pronađeni, a Gammarus fossarum je i dalje dominirao brojnošću (45,49%), ali i masom (79,79%). Tada su bile vrlo razvijene i vrste iz skupine Oligochaeta. U svibnju su vrlo brojni bili Chironomidae (76,93%), a najveću masu imali su Ephemeroptera (53,32%) i Gammarus fossarum (20,85%). U lipnju vrlo su brojni Hirudinea (21,0%), Gammarus fossarum (31,0%) i Chironomidae (38,0%), a masom su dominirali Hirudinea (64,33%). U srpnju se razvio najveći broj vrsta bentosnih beskralježnjaka, a Gammarus fossarum je bio dominantan brojnošću (40,05%) i masom (43,44%). Još su vrlo brojni bili Trichoptera (13,27%), a ostale vrste su se razvile u manjem broju i biomasi. U kolovozu je pao broj vrsta iz skupine Amphipoda, a jače su se razvile Ephemeroptera i to Caenis horaria (20,17%) s manjom biomasom (3,33%) i Hirudinea (23,49 %) s vrlo viskom vrijednosti mase (62,67%). Tijekom rujna, listopada i studenog opet dominiraju Gammarus fossarum s povremenim jačim razvojem Trichoptera, a u studenom i Hirudinea (Tablice 4.2.3.2. i 4.2.3.3.).

Na lokaciji Jarun zbog visokog vodostaja rijeke Save u kolovozu 2004. godine nije bilo moguće sakupiti uzorke bentosnih beskralježnjaka. U mjesecu lipnju prema brojnosti dominirali su Diptera (77,3%), a prema masi Trichoptera (70,6%). U srpnju najveću brojnost (23,6) imale su Oligochaeta, a masu Trichoptera (72,0). I mjesec rujan karakterizira najveća brojnost (39,9%) i masa (97,0%) Trichoptera. U listopadu dominiraju Hirudinea (Tablica 4.2.3.3.).
<table>
<thead>
<tr>
<th>TAKSON</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Rujan</th>
<th>Listopad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jed m²</td>
<td>%</td>
<td>Masa (g m⁻²)</td>
<td>%</td>
</tr>
<tr>
<td>OLIGOCHAETA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>13,0</td>
<td>23,6</td>
<td>0,105</td>
<td>5,6</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physa fontinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planorbidae</td>
<td>1,0</td>
<td>1,8</td>
<td>0,067</td>
<td>3,6</td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>11,0</td>
<td>33,0</td>
<td>0,016</td>
<td>1,7</td>
</tr>
<tr>
<td>HIRUDINEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudidae</td>
<td>6,0</td>
<td>4,2</td>
<td>0,312</td>
<td>7,1</td>
</tr>
<tr>
<td>Glossiphoniidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td>2,0</td>
<td>1,4</td>
<td>0,084</td>
<td>1,9</td>
</tr>
<tr>
<td>Planograptidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanypus sp.</td>
<td>61,3</td>
<td>42,6</td>
<td>0,107</td>
<td>2,4</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>7,0</td>
<td>12,7</td>
<td>0,014</td>
<td>0,7</td>
</tr>
<tr>
<td>n. det.</td>
<td>50,0</td>
<td>34,7</td>
<td>0,056</td>
<td>1,3</td>
</tr>
<tr>
<td>TRICHOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche angustipennis</td>
<td>8,6</td>
<td>6,0</td>
<td>0,762</td>
<td>17,2</td>
</tr>
<tr>
<td>Hydropsyche instabilis</td>
<td>5,3</td>
<td>3,7</td>
<td>0,245</td>
<td>5,5</td>
</tr>
<tr>
<td>n. det.</td>
<td>6,7</td>
<td>4,7</td>
<td>2,116</td>
<td>47,9</td>
</tr>
<tr>
<td>ODONATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calopteryx splendens</td>
<td>2,0</td>
<td>1,4</td>
<td>0,700</td>
<td>15,8</td>
</tr>
<tr>
<td>Gomphus vulgarissimus</td>
<td>2,0</td>
<td>1,4</td>
<td>0,040</td>
<td>0,9</td>
</tr>
<tr>
<td>n. det.</td>
<td>2,0</td>
<td>1,4</td>
<td>0,040</td>
<td>0,9</td>
</tr>
<tr>
<td>UKUPNO</td>
<td>143,9</td>
<td>100</td>
<td>4,422</td>
<td>100</td>
</tr>
</tbody>
</table>
Tablica 4.2.3.5. Biomasa makrozoobentosa u bentalu na lokaciji Jarun u od ožujka do lipnja u 2005. godini.

<table>
<thead>
<tr>
<th>TAKSON</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Svibanj</th>
<th>Lipanj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jed m²</td>
<td>%</td>
<td>Masa (g m⁻²)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIGOCHAETA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>35,0</td>
<td>21,21</td>
<td>5,91</td>
<td>32,92</td>
</tr>
<tr>
<td>n. det.</td>
<td>20,83</td>
<td>1,34</td>
<td>9,79</td>
<td>7,85</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bithynia tentaculata</td>
<td>20</td>
<td>12,12</td>
<td>1,73</td>
<td>9,46</td>
</tr>
<tr>
<td>Lymnaea sp.</td>
<td>20,83</td>
<td>1,34</td>
<td>10,00</td>
<td>8,01</td>
</tr>
<tr>
<td>n. det.</td>
<td>20,83</td>
<td>1,34</td>
<td>10,00</td>
<td>8,01</td>
</tr>
<tr>
<td>HIRUDINEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossiphonia complanata</td>
<td>5,0</td>
<td>3,03</td>
<td>0,165</td>
<td>0,92</td>
</tr>
<tr>
<td>Hirudidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td>15,0</td>
<td>9,09</td>
<td>0,175</td>
<td>0,97</td>
</tr>
<tr>
<td>n. det.</td>
<td>20,83</td>
<td>1,34</td>
<td>11,56</td>
<td>9,26</td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>1000,0</td>
<td>100,0</td>
<td>0,46</td>
<td>100,0</td>
</tr>
<tr>
<td>n. det.</td>
<td>16,13</td>
<td>1,03</td>
<td>0,20</td>
<td>0,16</td>
</tr>
<tr>
<td>TRICHOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche angustipennis</td>
<td>65,0</td>
<td>39,39</td>
<td>3,45</td>
<td>19,22</td>
</tr>
<tr>
<td>n. det.</td>
<td>20,0</td>
<td>5,80</td>
<td>1,55</td>
<td>6,18</td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphus vulgatissimus</td>
<td>10,0</td>
<td>6,06</td>
<td>5,30</td>
<td>29,53</td>
</tr>
<tr>
<td>Calopteryx splendens</td>
<td>10,0</td>
<td>6,06</td>
<td>1,20</td>
<td>6,69</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis sp.</td>
<td>5,0</td>
<td>3,03</td>
<td>0,02</td>
<td>0,11</td>
</tr>
<tr>
<td>Centroptilum sp.</td>
<td>62,5</td>
<td>4,01</td>
<td>9,69</td>
<td>7,77</td>
</tr>
<tr>
<td>Ephemerella sp.</td>
<td>2,5</td>
<td>0,72</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>Ephemerellidae</td>
<td>78,63</td>
<td>5,04</td>
<td>9,71</td>
<td>7,78</td>
</tr>
<tr>
<td>UKUPNO</td>
<td>165,0</td>
<td>100</td>
<td>17,95</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TAKSON</th>
<th>Srpanj</th>
<th>Kolovo</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jed m²</td>
<td>%</td>
<td>Masa (g m⁻²)</td>
<td>jed m²</td>
<td>%</td>
</tr>
<tr>
<td>OLIGOCHAETA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubifex tubifex</td>
<td>6,0</td>
<td>5,56</td>
<td>0,02</td>
<td>0,80</td>
<td>2,0</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>10,0</td>
<td>9,26</td>
<td>0,32</td>
<td>12,75</td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>4,0</td>
<td>3,70</td>
<td>0,07</td>
<td>2,79</td>
<td></td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physa sp.</td>
<td>4,4</td>
<td>6,51</td>
<td>0,10</td>
<td>5,32</td>
<td></td>
</tr>
<tr>
<td>Planorbas sp.</td>
<td>4,0</td>
<td>3,70</td>
<td>0,09</td>
<td>3,59</td>
<td></td>
</tr>
<tr>
<td>HIRUDINEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erpobdeliiidae</td>
<td>24,1</td>
<td>17,40</td>
<td>0,89</td>
<td>9,81</td>
<td></td>
</tr>
<tr>
<td>Glossiphonidae</td>
<td>4,0</td>
<td>3,70</td>
<td>0,04</td>
<td>1,59</td>
<td></td>
</tr>
<tr>
<td>Glossphonia complanata</td>
<td>2,2</td>
<td>3,25</td>
<td>0,24</td>
<td>12,78</td>
<td></td>
</tr>
<tr>
<td>Hirudidae</td>
<td>8,9</td>
<td>13,17</td>
<td>0,27</td>
<td>14,38</td>
<td>2,4</td>
</tr>
<tr>
<td>AMPHIGOPDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td>11,1</td>
<td>16,42</td>
<td>0,34</td>
<td>18,10</td>
<td>2,0</td>
</tr>
<tr>
<td>ISOPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>2,5</td>
<td>3,70</td>
<td>0,07</td>
<td>3,62</td>
<td></td>
</tr>
<tr>
<td>COLEOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>2,4</td>
<td>7,48</td>
<td>0,01</td>
<td>1,15</td>
<td></td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>12,0</td>
<td>17,75</td>
<td>0,01</td>
<td>0,53</td>
<td>10,0</td>
</tr>
<tr>
<td>TRICHOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche angustipennis</td>
<td>15,6</td>
<td>23,08</td>
<td>0,67</td>
<td>35,68</td>
<td></td>
</tr>
<tr>
<td>n. det.</td>
<td>10,9</td>
<td>16,12</td>
<td>0,18</td>
<td>9,58</td>
<td>21,3</td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphus vulgatissimus</td>
<td>4,0</td>
<td>3,70</td>
<td>0,06</td>
<td>2,39</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis horana</td>
<td>2,0</td>
<td>1,44</td>
<td>0,03</td>
<td>0,33</td>
<td></td>
</tr>
<tr>
<td>Caenis macrura</td>
<td>3,2</td>
<td>4,73</td>
<td>0,02</td>
<td>1,06</td>
<td></td>
</tr>
<tr>
<td>UKUPNO</td>
<td>67,6</td>
<td>100</td>
<td>1,88</td>
<td>100</td>
<td>108,0</td>
</tr>
</tbody>
</table>
Lokacija Jarun se i u 2005. g. razlikovala od lokacije Medsave. U ožujku brojnošću dominira Trichoptera i to *Hydropsyche angustipennis* (39,39%), a biomasom Oligochaeta i to *Eiseniella tetraedra* (32,92%). Iako nije bio posebno brojan, *Gomphus vulgatissimus* je imao visoke vrijednosti biomase (29,53%). U travnju je zabilježen vrlo visoki vodostaj rijeke Save pa je na lokaciji Jarun bio poplavljen kameniti dio obale, a dostupan je ostao samo muljeviti materijal. Tada je pronađena samo jedna skupina makrozoobentosa i to Chironomidae. U svibnju i lipnju znatno su se razvili *Gammarus fossarum*, a znatnije su još bili zastupljeni Chironomidae i Oligochaeta. U svibnju je bila još visoka zastupljenost Ephemeroptera. U srpnju su Trichoptera dominantni brojnošću (39,2%) i masom (45,26%), a znatno su se razvili Amphipoda i Hirudinea. U kolovozu je dominantan *Gammarus fossarum*, a dobro se razvila i skupina Hirudinea. U rujnu opet dominiraju Trichoptera, a u listopadu Hirudinea. *Gammarus fossarum* je opet dominirao u studenom (Tablice 4.2.3.5. i 4.2.3.6.).
4.3. Povezanost morfoloških osobina sa načinom ishrane i selekcijom plijena

Morfološke osobine usnog aparata i probavnog trakta prediktori su koji uvjetuju način ishrane pojedine vrste. Svaka od istraživanih vrsta ima specifičnu građu i oblik navedenih osobina. Prosječne vrijednosti izmjerenih morfoloških osobina prikazane su u tablicama 4.3.1. i 4.3.2.

Klen je vrsta koja ima usta položena na dorzalnoj strani glave, a usni otvor veoma širok (Sl. 4.3.1.). Na prvom škržnom luku nalaze se kratke i rijetke branhiospine u dva reda, a crijevo je relativno kratko.

![Izgled usnog aparata klena](http://www.digitalnature.org/vissen/kopvoorn%201.jpg)
Uklija ima usta na dorzalnoj strani glave, a usni otvor uzak i visok (Slika 4.3.2.). Na prvom škržnom luku branhiospine su položene u dva reda. Branhiospine na lijevoj strani su dugačke, a na desnoj strani nešto kraće i brojnije. Crijevo je u odnosu na dužinu tijela nešto kraće nego u klena.

Slika 4.3.2. Izgled tijela i oblik glave uklije (www.fishbase.com)

Dvoprugasta uklija, također, usta ima položena na dorzalnoj strani glave (Sl. 4.3.3.). Branhiospine su položene u dva reda na prvom škržnom luku i manje su brojne nego u uklije. Crijevo je relativno kratko.

Sl. 4.3.3. Izgled tijela i oblik glave dvoprugaste uklije (www.fishbase.com)
Klenić ima usta orijentirana prema sredini glave i mogu se nazvati poludonja (Sl. 4.3.4.). Usni otvor je relativno mali. Oblik prvog škržnog luka i broj branhiospina ne razlikuje se puno od onih u klena. Crijevo je prosječne dužine oko 145,0 % u odnosu na standardnu dužinu tijela.

![Sl. 4.3.4. Izgled tijela i oblik glave klenića (www.fishbase.com)](http://www.fishbase.com)

Bodorke ima usta položena na sredini glave u ravnini sa centralnim dijelom očiju (Sl. 4.3.5.). Usni otvor je mali, a brojne branhiospine položene su u dva reda. Crijevo nije dugačko i kreće se oko 120 % u odnosu na standardnu dužinu tijela.

![Sl. 4.3.5. Izgled glave bodorke (http://studiocinquo.com/p_veenvliet/other/full/roach03.JPG)](http://studiocinquo.com/p_veenvliet/other/full/roach03.JPG)
Deverika, kao i klenić usta ima poludonja, a usni otvor relativno mali i cjevasti (Sl. 4.3.6.). Branhiospine su na prvom škržnom luku položene u dva reda i relativno brojne. Crijevje je kratko.

Sl. 4.3.6. Izgled tijela deverike (www.ulg.ac.be)

Plotica ima mala usta položena na centralnom dijelu glave (Sl. 4.3.7.). Usni otvor je uzak, a branhiospine rjeđe na lijevoj strani nego na desnoj. Crijevje je relativno dugačko i iznosi oko 147 % u odnosu na standardnu dužinu tijela.

Sl. 4.3.7. Izgled tijela plotice (www.bayern.de)
Mrena ima mala donja usta sa 4 brčića (Sl. 4.3.8.). Branhiospine su položene u dva reda na prvom škržnom luku. Na lijevoj strani su rijetke i malobrojne, a nešto veći broj nalazi se s desne strane. Crijevo je dosta dugačko i iznosi oko 180 % u odnosu na standardnu dužinu tijela.

![Sl. 4.3.8. Izgled glave mrene (www.bio.unipg.it)](image)

Potočna mrena ima mala donja položena usta kao i mrena sa četiri brčića (Sl. 4.3.9.). Branhiospine su smještene u dva reda na prvom škržnom luku i dolaze u nešto većem broju nego u mrene. Crijevo je relativno dugačko.

![Sl. 4.3.9. Izgled tijela potočne mrene (www.fishbase.com)](image)
Usta krkuše su donja i njihov vrh je niži od nivoa horizontale donjeg kraja očiju. Na uglovima usta nalazi se dobro razvijen par brčića (Sl. 4.3.10.). Branhioskope na prvom škržnom luku smještene su u dva reda. Kod pojedinih primjeraka branhiospine na lijevoj strani nedostaju. Na desnoj strani se nalaze u malom broju, a male su i zakržljale. Crijevo je kratko.

Sl. 4.3.10. Izgled prednjeg dijela tijela krkuše (www.ribe-hrvatske.com)

Nosara ima donja položena usta i relativno mali usni otvor (Sl. 4.3.11.). Branhioskope su položene u dva reda na prvom škržnom luku i relativno rijetke. Crijevo je dosta kratko.

Sl. 4.3.11. Izgled tijela nosare (www.fishbase.com)
Usta podusta su donja, u obliku ravne poprečne pukotine. Donja usna je pokrivena "hrskavicom" (Sl. 4.3.12.). Usni otvor je mali, često veći u širinu nego u dužinu. Brojne branhiospine su položene u dva reda na prvom škržnom luku.

![Sl. 4.3.12. Izgled glave podusta (www.fishbase.com)](image)

Prosječne vrijednosti morfoloških osobina koje su povezane s ishranom svih istraživanih vrsta riba za obje lokacije date su u tablicama 4.3.1. i 4.3.2. Iz prikazanih tablica može se uočiti da je plotica lovljena samo na lokaciji Jarun i to samo nekoliko primjeraka. Osim plotice, u vrlo malom broju ulovljene su deverika, klenić i potočna mrena na obje lokacije. Područje Medsava bilo je predstavljeno sa manjim brojem deverika, potočne mrene i klenića, pa prilikom RDA analize ove vrste nisu uzete u obzir. Za RDA analizu, podaci morfoloških osobina su predstavljale nezavisne varijable "environmental variables".
Tablica 4.3.1. Prosječne vrijednosti (\bar{X}) morfoloških osobina istraživanih vrsta riba na postaji Medsave lovljenih tijekom 2004. i 2005. godine (n= broj primjeraka, TL= totalna dužina, FL = dužina do vilice, orijentacija usta 1= gornja usta, 2= usta u sredini, 3= donja usta)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>n</th>
<th>TL</th>
<th>FL</th>
<th>Dužina glave</th>
<th>Dužina probavila</th>
<th>Širina usta</th>
<th>Visina usta</th>
<th>Dužina škržnog luka (cm)</th>
<th>Broj branhiospina na lijevoj strani</th>
<th>Broj branhiospina na desnoj strani</th>
<th>Orijentacija usta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krkuša</td>
<td>60</td>
<td>119,06</td>
<td>110,85</td>
<td>24,84</td>
<td>94,33</td>
<td>29,62</td>
<td>35,87</td>
<td>2,37</td>
<td>11,01</td>
<td>7,75</td>
<td>14,29</td>
</tr>
<tr>
<td>Mrena</td>
<td>81</td>
<td>122,94</td>
<td>109,72</td>
<td>25,21</td>
<td>176,78</td>
<td>22,29</td>
<td>26,84</td>
<td>7,75</td>
<td>14,29</td>
<td>14,29</td>
<td>14,29</td>
</tr>
<tr>
<td>Klen</td>
<td>497</td>
<td>120,58</td>
<td>110,88</td>
<td>26,42</td>
<td>127,35</td>
<td>34,20</td>
<td>48,46</td>
<td>7,14</td>
<td>9,16</td>
<td>10,01</td>
<td>17,08</td>
</tr>
<tr>
<td>Uklja</td>
<td>148</td>
<td>121,79</td>
<td>109,12</td>
<td>21,16</td>
<td>104,88</td>
<td>23,18</td>
<td>46,37</td>
<td>17,08</td>
<td>23,69</td>
<td>29,18</td>
<td>23,69</td>
</tr>
<tr>
<td>Dvoprugasta uklja</td>
<td>346</td>
<td>122,55</td>
<td>110,56</td>
<td>23,13</td>
<td>106,60</td>
<td>28,37</td>
<td>53,93</td>
<td>9,22</td>
<td>11,25</td>
<td>11,25</td>
<td>11,25</td>
</tr>
<tr>
<td>Podust</td>
<td>226</td>
<td>122,45</td>
<td>110,23</td>
<td>21,08</td>
<td>261,73</td>
<td>24,59</td>
<td>26,83</td>
<td>21,90</td>
<td>26,34</td>
<td>26,34</td>
<td>26,34</td>
</tr>
<tr>
<td>Nosara</td>
<td>15</td>
<td>123,96</td>
<td>110,61</td>
<td>24,32</td>
<td>114,45</td>
<td>24,06</td>
<td>34,32</td>
<td>12,21</td>
<td>13,05</td>
<td>13,05</td>
<td>13,05</td>
</tr>
<tr>
<td>Bodorka</td>
<td>5</td>
<td>124,11</td>
<td>110,16</td>
<td>23,22</td>
<td>120,91</td>
<td>23,06</td>
<td>34,44</td>
<td>11,47</td>
<td>20,53</td>
<td>20,53</td>
<td>20,53</td>
</tr>
<tr>
<td>Deverika</td>
<td>1</td>
<td>126,09</td>
<td>108,70</td>
<td>23,91</td>
<td>97,83</td>
<td>20,45</td>
<td>27,27</td>
<td>14,29</td>
<td>13,57</td>
<td>13,57</td>
<td>13,57</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td>2</td>
<td>120,58</td>
<td>110,21</td>
<td>25,83</td>
<td>150,00</td>
<td>19,87</td>
<td>27,88</td>
<td>11,43</td>
<td>20,00</td>
<td>20,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Klenić</td>
<td>4</td>
<td>122,42</td>
<td>108,95</td>
<td>23,95</td>
<td>145,09</td>
<td>21,52</td>
<td>34,53</td>
<td>8,31</td>
<td>11,77</td>
<td>11,77</td>
<td>11,77</td>
</tr>
</tbody>
</table>

Tablica 4.3.2. Prosječne vrijednosti (\bar{X}) morfoloških osobina istraživanih vrsta riba na postaji Jarun lovljenih tijekom 2004. i 2005. godine (n= broj primjeraka, TL= totalna dužina, FL = dužina do vilice, orijentacija usta 1= gornja usta, 2= usta u sredini, 3= donja usta)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>n</th>
<th>TL</th>
<th>FL</th>
<th>Dužina glave</th>
<th>Dužina probavila</th>
<th>Širina usta</th>
<th>Visina usta</th>
<th>Dužina škržnog luka (cm)</th>
<th>Broj branhiospina na lijevoj strani</th>
<th>Broj branhiospina na desnoj strani</th>
<th>Orijentacija usta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krkuša</td>
<td>135</td>
<td>119,29</td>
<td>110,90</td>
<td>25,37</td>
<td>105,91</td>
<td>29,97</td>
<td>36,94</td>
<td>2,36</td>
<td>9,78</td>
<td>7,87</td>
<td>13,18</td>
</tr>
<tr>
<td>Mrena</td>
<td>150</td>
<td>124,08</td>
<td>109,85</td>
<td>24,57</td>
<td>191,20</td>
<td>23,57</td>
<td>27,27</td>
<td>7,87</td>
<td>13,18</td>
<td>13,18</td>
<td>13,18</td>
</tr>
<tr>
<td>Klen</td>
<td>557</td>
<td>120,92</td>
<td>111,04</td>
<td>25,35</td>
<td>127,85</td>
<td>31,67</td>
<td>49,30</td>
<td>8,02</td>
<td>11,04</td>
<td>11,04</td>
<td>11,04</td>
</tr>
<tr>
<td>Uklja</td>
<td>237</td>
<td>121,69</td>
<td>109,65</td>
<td>20,68</td>
<td>103,94</td>
<td>27,74</td>
<td>45,74</td>
<td>20,07</td>
<td>28,45</td>
<td>28,45</td>
<td>28,45</td>
</tr>
<tr>
<td>Dvoprugasta uklja</td>
<td>270</td>
<td>122,23</td>
<td>110,20</td>
<td>22,92</td>
<td>107,59</td>
<td>28,10</td>
<td>53,41</td>
<td>9,56</td>
<td>11,42</td>
<td>11,42</td>
<td>11,42</td>
</tr>
<tr>
<td>Podust</td>
<td>202</td>
<td>123,10</td>
<td>110,83</td>
<td>21,44</td>
<td>261,27</td>
<td>24,19</td>
<td>25,40</td>
<td>21,56</td>
<td>27,18</td>
<td>27,18</td>
<td>27,18</td>
</tr>
<tr>
<td>Nosara</td>
<td>48</td>
<td>123,04</td>
<td>108,80</td>
<td>24,99</td>
<td>114,88</td>
<td>22,13</td>
<td>34,52</td>
<td>12,96</td>
<td>14,13</td>
<td>14,13</td>
<td>14,13</td>
</tr>
<tr>
<td>Bodorka</td>
<td>28</td>
<td>123,33</td>
<td>109,92</td>
<td>22,10</td>
<td>124,56</td>
<td>23,87</td>
<td>33,63</td>
<td>11,16</td>
<td>18,57</td>
<td>18,57</td>
<td>18,57</td>
</tr>
<tr>
<td>Deverika</td>
<td>11</td>
<td>129,69</td>
<td>111,12</td>
<td>25,41</td>
<td>107,91</td>
<td>19,77</td>
<td>26,81</td>
<td>10,07</td>
<td>10,35</td>
<td>10,35</td>
<td>10,35</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td>4</td>
<td>122,86</td>
<td>110,58</td>
<td>26,34</td>
<td>185,25</td>
<td>22,82</td>
<td>29,77</td>
<td>10,42</td>
<td>14,17</td>
<td>14,17</td>
<td>14,17</td>
</tr>
<tr>
<td>Klenić</td>
<td>8</td>
<td>120,40</td>
<td>110,95</td>
<td>25,38</td>
<td>125,78</td>
<td>30,93</td>
<td>43,65</td>
<td>10,49</td>
<td>11,51</td>
<td>11,51</td>
<td>11,51</td>
</tr>
<tr>
<td>Plotica</td>
<td>4</td>
<td>123,18</td>
<td>110,06</td>
<td>21,77</td>
<td>147,72</td>
<td>25,26</td>
<td>32,98</td>
<td>7,06</td>
<td>10,01</td>
<td>10,01</td>
<td>10,01</td>
</tr>
</tbody>
</table>
U Tablicama 4.3.3. i 4.3.4. prikazana je prosječna učestalost pojavljivanja pojedinih svojih plijena u probavilima istraživanih vrsta riba na obje lokacije.

Iz prikazanih podataka može se uočiti visoka selektivnost prema detritusu svih istraživanih vrsta riba. Detritus predstavlja ostatke sluzi, nedeterminiranog biljnog i životinjskog materijala, šljunka i pijeska. Dakle, sav onaj plijen koji je bio razgrađen toliko da ga nije bilo moguće grupirati niti u jednu navedenu skupinu.

Za RDA analizu, podaci prosječnih vrijednosti učestalosti pojavljivanja predstavljali su zavisne varijable "species variables".

Testiranje RDA analizom na lokaciji Medsave pokazalo je da su statistički signifikantne samo dvije varijable i to broj branhiospina na lijevoj strani škržnog luka (F=2,66; p=0,05) i orijentacija usta (F= 2,24; p=0,03). Na prve dvije ordinate objašnjeno je 100 % varijabilnosti morfoloških vrijednosti, a varijabilnost u ishrani sa 83,9 % (Tablica 4.3.5.). Time se pouzdanije može reći da se podust razlikuje od ostalih vrsta riba i ovisan je o većim brojem branhiospina što dovodi u vezu uzimanje sitnije hrane kao što su alge kremenjašice. Podusta se ovdje može okarakterizirati kao fitobentofagnu vrstu. S druge strane orijentacija usta je vežavana sa nosarom i mrenom koje imaju donja usta. Te se ribe hrane organizmima dna i može ih se okarakterizirati kao zoobentofgne vrste (Slika 4.3.1.).

Testiranje RDA analizom na lokaciji Jarun pokazalo se da je signifikantna samo jedna varijabla i to dužina probavila (F= 2,54; p= 0,02). Na prvoj ordinati objašnjeno je 100% varijabilnosti morfoloških vrijednosti, a varijabilnost u ishrani sa 75,6 (Tablica 4.3.6.). I u ovom slučaju se može sa sigurnošću tvrditi da se podust najviše razlikuje od ostalih riba i sa dužinom probavila. Naime visoka dužina probavila je u uskoj vezi sa uzimanjem biljne hrane pa se i ovdje podust može okarakterizirati kao fitobentofagna vrsta. Također, relativno dugačko probavilo imale su i mrena te potočna mrena. I one su imale visok udio biljnog materijala u sadržaju probavila. Mrenu bi se u ovom slučaju moglo okarakterizirati kao zoobentofagnu vrstu, a potočnu mrenu kao fitobentofagnu vrstu (Slika 4.3.2.).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Krkuša</td>
<td>2,65</td>
<td>0,00</td>
<td>6,19</td>
<td>37,17</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>2,65</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>2,65</td>
<td>7,08</td>
<td>2,65</td>
<td>0,00</td>
<td>0,88</td>
<td>15,93</td>
<td>0,88</td>
</tr>
<tr>
<td>Mrena</td>
<td>4,65</td>
<td>8,37</td>
<td>5,12</td>
<td>29,30</td>
<td>0,00</td>
<td>0,00</td>
<td>2,33</td>
<td>1,40</td>
<td>2,79</td>
<td>0,00</td>
<td>0,47</td>
<td>2,79</td>
<td>15,81</td>
<td>0,47</td>
<td>0,47</td>
<td>0,93</td>
<td>0,47</td>
<td>9,30</td>
<td>0,47</td>
<td>0,47</td>
<td>0,93</td>
<td>13,02</td>
<td>0,47</td>
</tr>
<tr>
<td>Klen</td>
<td>6,66</td>
<td>15,67</td>
<td>7,49</td>
<td>41,33</td>
<td>0,00</td>
<td>0,00</td>
<td>1,53</td>
<td>0,69</td>
<td>1,39</td>
<td>0,00</td>
<td>14,29</td>
<td>0,69</td>
<td>0,00</td>
<td>0,00</td>
<td>0,69</td>
<td>0,14</td>
<td>1,39</td>
<td>2,08</td>
<td>0,00</td>
<td>1,25</td>
<td>2,50</td>
<td>2,22</td>
<td></td>
</tr>
<tr>
<td>Ukljja</td>
<td>1,48</td>
<td>0,74</td>
<td>1,48</td>
<td>48,15</td>
<td>0,00</td>
<td>0,00</td>
<td>1,48</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>29,63</td>
<td>0,00</td>
<td>0,00</td>
<td>9,63</td>
<td>0,00</td>
<td>3,70</td>
<td>2,22</td>
<td>0,00</td>
<td>0,74</td>
<td>0,74</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dvuklij</td>
<td>8,64</td>
<td>6,82</td>
<td>0,91</td>
<td>43,18</td>
<td>0,23</td>
<td>0,23</td>
<td>0,00</td>
<td>0,00</td>
<td>0,23</td>
<td>0,00</td>
<td>23,18</td>
<td>0,68</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,59</td>
<td>0,00</td>
<td>5,68</td>
<td>3,41</td>
<td>0,00</td>
<td>3,41</td>
<td>0,91</td>
<td>0,91</td>
</tr>
<tr>
<td>Podust</td>
<td>25,24</td>
<td>3,88</td>
<td>31,07</td>
<td>39,81</td>
<td>0,00</td>
</tr>
<tr>
<td>Nosara</td>
<td>8,82</td>
<td>5,88</td>
<td>20,59</td>
<td>32,35</td>
<td>0,00</td>
<td>0,00</td>
<td>2,94</td>
<td>0,00</td>
<td>2,94</td>
<td>0,00</td>
<td>11,76</td>
<td>8,82</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>2,94</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>2,94</td>
<td>0,00</td>
</tr>
<tr>
<td>Bodorka</td>
<td>13,33</td>
<td>13,33</td>
<td>6,67</td>
<td>33,33</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>26,67</td>
<td>0,00</td>
<td>6,67</td>
<td>0,00</td>
</tr>
<tr>
<td>Deverika</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>33,33</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>33,33</td>
<td>0,00</td>
</tr>
<tr>
<td>Potmrena</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>50,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>50,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Klenić</td>
<td>33,33</td>
<td>0,00</td>
<td>0,00</td>
<td>50,00</td>
<td>0,00</td>
<td>16,67</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Krkusa</td>
<td>2,58</td>
<td>4,52</td>
<td>5,81</td>
<td>45,81</td>
<td>0,00</td>
<td>0,00</td>
<td>0,65</td>
<td>0,00</td>
<td>2,58</td>
<td>0,00</td>
<td>1,94</td>
<td>0,00</td>
<td>6,45</td>
<td>0,00</td>
<td>5,81</td>
<td>0,65</td>
<td>10,32</td>
<td>0,00</td>
<td>0,00</td>
<td>0,65</td>
<td>0,00</td>
<td>3,87</td>
<td>0,65</td>
<td>0,00</td>
</tr>
<tr>
<td>Mrena</td>
<td>4,58</td>
<td>12,61</td>
<td>3,72</td>
<td>33,81</td>
<td>0,00</td>
<td>1,43</td>
<td>0,00</td>
<td>0,00</td>
<td>4,58</td>
<td>0,86</td>
<td>2,01</td>
<td>0,57</td>
<td>0,00</td>
<td>0,00</td>
<td>1,43</td>
<td>0,00</td>
<td>8,88</td>
<td>0,29</td>
<td>0,57</td>
<td>0,29</td>
<td>0,29</td>
<td>4,30</td>
<td>0,86</td>
<td>0,06</td>
</tr>
<tr>
<td>Klen</td>
<td>13,07</td>
<td>19,66</td>
<td>6,14</td>
<td>35,88</td>
<td>0,00</td>
<td>0,00</td>
<td>0,34</td>
<td>0,00</td>
<td>2,05</td>
<td>1,36</td>
<td>0,80</td>
<td>0,00</td>
<td>0,00</td>
<td>0,11</td>
<td>10,57</td>
<td>0,34</td>
<td>1,02</td>
<td>0,00</td>
<td>0,00</td>
<td>0,91</td>
<td>0,34</td>
<td>0,68</td>
<td>2,50</td>
<td>1,25</td>
</tr>
<tr>
<td>Uklja</td>
<td>1,53</td>
<td>3,99</td>
<td>0,00</td>
<td>45,90</td>
<td>0,00</td>
<td>0,31</td>
<td>0,31</td>
<td>0,31</td>
<td>0,61</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,31</td>
<td>0,61</td>
<td>27,61</td>
<td>0,92</td>
<td>0,92</td>
<td>0,00</td>
<td>0,00</td>
<td>4,91</td>
<td>1,23</td>
<td>4,91</td>
<td>2,76</td>
<td>0,61</td>
</tr>
<tr>
<td>Dvuklja</td>
<td>3,78</td>
<td>5,95</td>
<td>1,35</td>
<td>45,41</td>
<td>0,27</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,89</td>
<td>0,54</td>
<td>0,00</td>
<td>0,00</td>
<td>1,35</td>
<td>0,00</td>
<td>19,73</td>
<td>0,27</td>
<td>4,59</td>
<td>0,00</td>
<td>0,00</td>
<td>2,16</td>
<td>0,00</td>
<td>3,51</td>
<td>0,54</td>
<td>2,97</td>
</tr>
<tr>
<td>Podust</td>
<td>32,56</td>
<td>17,21</td>
<td>11,16</td>
<td>37,67</td>
<td>0,00</td>
<td>0,47</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,47</td>
<td>0,00</td>
<td>0,47</td>
<td>0,00</td>
<td>0,47</td>
</tr>
<tr>
<td>Nosara</td>
<td>0,00</td>
<td>7,02</td>
<td>5,26</td>
<td>43,86</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,75</td>
<td>1,75</td>
<td>3,51</td>
<td>0,00</td>
<td>5,26</td>
<td>0,00</td>
<td>14,04</td>
<td>0,00</td>
<td>3,51</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>5,26</td>
<td>1,75</td>
<td>0,00</td>
<td>7,02</td>
<td>0,00</td>
</tr>
<tr>
<td>Bodorka</td>
<td>17,65</td>
<td>19,61</td>
<td>1,96</td>
<td>35,29</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>9,80</td>
<td>0,00</td>
<td>7,84</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>9,80</td>
<td>1,96</td>
<td>1,96</td>
<td>0,00</td>
<td>1,96</td>
</tr>
<tr>
<td>Deverika</td>
<td>16,00</td>
<td>8,00</td>
<td>0,00</td>
<td>44,00</td>
<td>0,00</td>
<td>8,00</td>
<td>0,00</td>
<td>4,00</td>
<td>4,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>4,00</td>
<td>0,00</td>
<td>4,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>4,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Potmrena</td>
<td>18,18</td>
<td>18,18</td>
<td>9,09</td>
<td>27,27</td>
<td>0,00</td>
<td>18,18</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Klenič</td>
<td>0,00</td>
<td>0,00</td>
<td>11,76</td>
<td>41,18</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>17,65</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>5,88</td>
<td>5,88</td>
<td>0,00</td>
<td>5,88</td>
<td>11,76</td>
</tr>
</tbody>
</table>
| Plotica | 18,18 | 9,09 | 18,18 | 27,27 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 18,18 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
Tablica 4.3.5. Svojstvene vrijednosti RDA analize za morfološke (nezavisne) i hranidbene (zavisne) varijable na lokaciji Medsave

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,317</td>
<td>0,208</td>
<td>0,213</td>
<td>0,102</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,973</td>
<td>0,870</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>31,7</td>
<td>52,5</td>
<td>73,8</td>
<td>83,9</td>
<td></td>
</tr>
<tr>
<td>- između zavisnih i nezavisnih varijabli</td>
<td>60,4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>Suma svih kanoničkih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,525</td>
</tr>
</tbody>
</table>

Slika 4.3.1. Projekcija signifikantnih vrijednosti morfoloških i hranidbenih varijabli dobivenih RDA analizom na lokaciji Medsave za različite vrste riba
Tablica 4.3.6. Svojstvene vrijednosti RDA analize za morfološke (nezavisne) i hranidbene (zavisne) varijable na lokaciji Jarun

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,203</td>
<td>0,266</td>
<td>0,166</td>
<td>0,122</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,754</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>20,3</td>
<td>46,8</td>
<td>63,4</td>
<td>75,6</td>
<td></td>
</tr>
<tr>
<td>- između zavisnih i nezavisnih varijabli</td>
<td>100,0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suma svih kanonickih svojstvenih vrijednosti</td>
<td>0,203</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slika 4.3.2. Projekcija signifikantnih vrijednosti morfoloških i hranidbenih varijabli dobivenih RDA analizom na lokaciji Jarun za različite vrste riba
Kako bi se usporedili rezultati prosječnih morfoloških i hranidbenih varijabli sa apsolutnim vrijednostima morfoloških varijabli i uzimanje plijena pristupilo se analizi RDA za svaku pojedincu jedinku. Analiza je provedena samo na jedinkama koje su imale puna probavila, a referentna vrijednost plijena bila je učestalost njihova pojavljivanja. Podaci su analizirani na isti način pomoću Monte Carlo testa.

Na lokaciji Medsave, Monte Carlo testom utvrđena je statistički značajna razlika između riba za dužinu probavila (F= 24,33; p=0,002), visinu usta (F= 10,51; p= 0,002), branhiospine s lijeve strane škržnog luka (F= 12,89; p=0,002), branhiospine s desne strane škržnog luka (F= 4,19; p=0,002) totalnu dužinu ribe (F=7,64; p=0,002), standardnu dužinu ribe (F=2,06; p=0,032) i širinu usta (F=7,76; p=0,002). Dužina škržnog luka i dužina glave nisu bile statistički značajno različite.

U tablici 4.3.7. prikazane su svojstvene vrijednosti RDA analize za odnos između individualnih morfoloških osobina i ishrane na lokaciji Medsave.

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,045</td>
<td>0,033</td>
<td>0,011</td>
<td>0,004</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,474</td>
<td>0,480</td>
<td>0,413</td>
<td>0,212</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td>4,5</td>
<td>7,8</td>
<td>8,9</td>
<td>9,2</td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>46,9</td>
<td>80,6</td>
<td>92,2</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suma svih kanoničkih svojstvenih vrijednosti</td>
<td>0,096</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Na slici 4.3.3. prikazani su odnosi morfoloških i hranidbenih varijabli (a), te položaj i odnos istraživanih vrsta (b). Morfološke osobine pokazuju visoku pozitivnu korelaciju. Među morfološkim varijablama, najviše sa širinom usta povezan je plijen biljnog porijekla (makrofita i alge kremenjašice), kojega je najviše uzimao podust. Podust je usko vezan sa dužinom probavila, dužinom tijela, brojem branhiospina i širinom usta. Slabu korelaciju sa morfološkim
varijablama pokazuju Pisces i Oligochaeta, s kojima je usko povezan klen. Većina ostalog plijena nalazi se na drugoj i trećoj ordinati što upućuje na pozitivnu korelaciju sa morfološkim osobinama. Istraživane vrste su povezane na isti način. Iz ovog prikaza vidljiva je i veza između riba i njihova plijena. Tako je klen raspoređen na sve 4 ordinate i što upućuje da je to omnivorna vrsta. Bentosnim beskralježnjacima hranile su se mrena, krkuša i bodorka. Ukljija i dvoprugasta ukljija uzimale su sitniji plijen sastavljen od insekata koji su pali u vodu, sitnim dvokrilcima (Ceratopogonidae), te zooplanktonom. Nosara je uzimala Odonata i ličinke dvokrilaca.

Slika 4.3.3. Projekcija apsolutnih signifikantnih vrijednosti morfoloških i hranidbenih varijabli (a) te položaj i odnos istraživanih vrsta (b) na lokaciji Medsave (n= 683)

Provedena je i RDA analiza individualnih morfoloških vrijednosti izraženih u postocima, s obzirom na konzumirani plijen. Monte Carlo testom utvrđena je statistički značajna razlika između riba za dužinu probavila (F= 28,22; p=0,002), visinu usta (F= 14,02; p= 0,002), branhiospine s desne strane škržnog luka (F= 9,21; p=0,002), branhiospine s lijeve strane škržnog luka (F= 8,06; p=0,002),
dužinu ribe do vilice (F=2,67; p=0,010), standardnu dužinu ribe (F=1,94; p=0,042), širinu usta (F=6,00; p=0,002) i dužinu glave (F=2,84; p=0,014). U tablici 4.3.8. prikazane su svojstvene vrijednosti RDA analize za odnos između individualnih morfoloških karakteristika izraženih u postocima i ishrane na lokaciji Medsave.

Tablica 4.3.8. Svojstvene vrijednosti RDA analize za odnos između individualnih morfoloških karakteristika izraženih u postocima i ishrane na lokaciji Medsave za 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,051</td>
<td>0,031</td>
<td>0,011</td>
<td>0,003</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,497</td>
<td>0,478</td>
<td>0,366</td>
<td>0,182</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td>5,1</td>
<td>8,2</td>
<td>9,4</td>
<td>9,7</td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>50,5</td>
<td>81,6</td>
<td>92,9</td>
<td>96,3</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suma svih kanonskih svojstvenih vrijednosti</td>
<td>0,101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slika 4.3.4. Projekcija signifikantnih vrijednosti morfoloških varijabli izraženih u postocima i hraničdenih varijabli (a), te položaj i odnos istraživanih vrsta (b) na lokaciji Medsave (n= 683)
Negativnu korelaciju pokazuju totalna dužina ribe i dužina ribe do vilice. Ostale morfološke varijable pokazuju pozitivnu korelaciju, ali su dosta udaljene jedna od druge. Sa dužinom probavila najviše je povezan plijen biljnog porijekla (makrofta i alge kremenjašice) i Pisces. S obzirom na položaj podusta, plijen biljnog porijekla je važan u njegovoj ishrani, a to je povezano s dužinom probavila. Plijen iz skupine Pisces uzimao je klen koji ima relativno kratko probavilo s obzirom da je to omnivorna vrsta. Osim veze s morfološkim osobinama, iz ovog prikaza vidljiva je veza između riba i njihova plijena. Tako je klen raspoređen na sve 4 ordinate što dokazuje da je to omnivorna vrsta. BENTOSnim beskralježnjacima hranile su se mrena, krkuša i bodorka. Ukljua i dvoprugasta uklija uzimale su sitniji plijen sastavljen od insekata koji su pali u vodu, sitnim dvokrilcima (Ceratopogonidae) te zooplanktonom. Nosara je uzimala Odonata i ličinke dvokrilaca (Sl. 4.3.4.).

Na lokaciji Jarun, Monte Carlo testom utvrđena je statistički značajna razlika između riba za dužinu probavila (F= 40,86; p=0,001), visinu usta (F= 13,35; p= 0,001), branhiospine s lijeve strane škržnog luka (F= 12,32; p=0,001), branhiospine s desne strane škržnog luka (F= 3,48; p=0,002), standardnu dužinu ribe (F=8,72; p=0,001), širinu usta (F=4,64; p=0,001) i dužinu škržnog luka (F=1,86; p= 0,05). U tablici 4.3.9. prikazane su svojstvene vrijednosti RDA analize za odnos između individualnih morfoloških osobina i ishrane na lokaciji Jarun. Na slici 4.3.5. prikazani su odnosi apsolutnih morfoloških i hranidbenih varijabli (a) te položaj i odnos istraživanih vrsta (b).
Tablica 4.3.9. Svojstvene vrijednosti RDA analize za odnos između individualnih morfoloških osobina i ishrane na lokaciji Jarun za 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,047</td>
<td>0,024</td>
<td>0,010</td>
<td>0,002</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,450</td>
<td>0,432</td>
<td>0,332</td>
<td>0,166</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>4,7</td>
<td>7,1</td>
<td>8,1</td>
<td>8,2</td>
<td></td>
</tr>
<tr>
<td>- između zavisnih i nezavisnih varijabli</td>
<td>56,2</td>
<td>84,4</td>
<td>95,8</td>
<td>97,9</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>Suma svih kanoničkih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,084</td>
</tr>
</tbody>
</table>

Slika 4.3.5. Projekcija apsolutnih signifikantnih vrijednosti morfoloških i hranidbenih varijabli (a), te položaj i odnos istraživanih vrsta (b) na lokaciji Jarun (n=974)
Analizom apsolutnih vrijednosti morfoloških osobina dobiveni su slični rezultati kao i na lokaciji Medsave. Morfološke vrijednosti visoko su pozitivno korelirane, a sa njima je najviše povezan plijen biljnog porijekla. Same riblje vrste slično su raspoređene na ordinatama kao i na lokaciji Medsave (Sl. 4.3.5.).

Analizom individualnih morfoloških osobina izraženih u postocima na lokaciji Jarun, Monte Carlo testom utvrđena je statistički značajna razlika između riba za dužinu probavila (F= 41,139; p=0,002), visinu usta (F= 10,584; p= 0,002), branhiospine s lijeve strane škržnog luka (F= 19,325; p=0,002), branhiospine s desne strane škržnog luka (F= 4,977; p=0,002), dužinu ribe do vilice (F=3,855; p=0,002), totalnu dužinu ribe (F=4,467; p=0,002) i širinu usta (F=5,044; p=0,002). U tablici 4.3.10. prikazane su svojstvene vrijednosti RDA analize za odnos između individualnih morfoloških osobina i ishrane na lokaciji Jarun. Na slici 4.3.5. prikazani su odnosi vrijednosti morfoloških varijabli izraženih u postocima i hranidbenih varijabli (a), te položaj i odnos istraživanih vrsta (b).

Tablica 4.3.10. Svojstvene vrijednosti RDA analize za odnos između individualnih morfoloških osobina izraženih u postocima i ishrane na lokaciji Jarun za 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,056</td>
<td>0,019</td>
<td>0,009</td>
<td>0,001</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,487</td>
<td>0,387</td>
<td>0,312</td>
<td>0,156</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>5,6</td>
<td>7,5</td>
<td>8,4</td>
<td>8,5</td>
<td></td>
</tr>
<tr>
<td>- između zavisnih i nezavisnih varijabli</td>
<td>64,6</td>
<td>86,6</td>
<td>96,8</td>
<td>98,1</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>Suma svih kanoničkih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,087</td>
</tr>
</tbody>
</table>
Slika 4.3.6. Projekcija signifikantnih vrijednosti morfoloških varijabli izraženih u postocima i hranidbenih varijabli (a) te položaj i odnos istraživanih vrsta (b) na lokaciji Jarun (n= 974)

Na Sl. 4.3.6. prikazane su morfološke vrijednosti izražene u postocima, te njihov odnos sa svojima plijena i istraživanim vrstama riba. I u ovom slučaju morfološke vrijednosti su u visokoj pozitivnoj korelaciji, a biljni plijen je najviše povezan sa dužinom probavila i dužinom ribe do vilice.
4.4. Sastav ishrane istraživanih ribljih populacija

Za prikaz sastava ishrane kroz cijelo istraživano razdoblje na lokaciji Medsave i lokaciji Jarun korištena je RDA analiza pomoću varijabl indikatora (dummy variables). U tablici 4.4.1. prikazane su svojstvene vrijednosti RDA analize za odnos između ribljih vrsta i pripadajuće ishrane na lokaciji Medsave. Monte Carlo testom pokazala se statistički značajna razlika između riba na prvoj ordinati (F = 45,930; p=0,002) i svim ordinatama (F = 14,241; p=0,002). U tablici 4.4.2. prikazane su svojstvene vrijednosti RDA analize za odnos između ribljih vrsta i pripadajuće ishrane na lokaciji Jarun. Monte Carlo testom pokazala se statistički značajna razlika između riba na prvoj ordinati (F = 74,835; p=0,001) i svim ordinatama (F = 11,843; p=0,001). Na slikama 4.4.1. i 4.4.2. moguće je vidjeti kompoziciju ishrane kroz 2004. i 2005. godinu za svaku pojedinu vrstu na obje lokacije.

Tablica 4.4.1. Svojstvene vrijednosti RDA analize za odnos između ribljih vrsta i pripadajuće ishrane na lokaciji Medsave za 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,064</td>
<td>0,046</td>
<td>0,011</td>
<td>0,04</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,586</td>
<td>0,565</td>
<td>0,320</td>
<td>0,205</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>6,4</td>
<td>11,0</td>
<td>12,0</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>- između zavisnih i nezavisnih varijabli</td>
<td>49,5</td>
<td>85,2</td>
<td>93,5</td>
<td>96,7</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>Suma svih kanoničkih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,129</td>
</tr>
</tbody>
</table>

Tablica 4.4.2. Svojstvene vrijednosti RDA analize za odnos između ribljih vrsta i pripadajuće ishrane na lokaciji Jarun za 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Ordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Ukupna varijanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svojstvena vrijednost</td>
<td>0,072</td>
<td>0,032</td>
<td>0,007</td>
<td>0,003</td>
<td>1,000</td>
</tr>
<tr>
<td>Korelacija između nezavisnih i zavisnih varijabli</td>
<td>0,551</td>
<td>0,493</td>
<td>0,306</td>
<td>0,216</td>
<td></td>
</tr>
<tr>
<td>Kumulativni postotak varijance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zavisnih varijabli</td>
<td>7,2</td>
<td>10,4</td>
<td>11,1</td>
<td>11,4</td>
<td></td>
</tr>
<tr>
<td>- između zavisnih i nezavisnih varijabli</td>
<td>60,5</td>
<td>87,0</td>
<td>93,2</td>
<td>95,4</td>
<td></td>
</tr>
<tr>
<td>Suma svih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>Suma svih kanoničkih svojstvenih vrijednosti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,119</td>
</tr>
</tbody>
</table>
Na sl. 4.4.1. prikazane su hranidbene navike istraživanih vrsta riba na lokaciji Medsave tijekom obje istraživane godine. Podust je usko povezan sa biljnim svojttama, uklija i dvoprugasta uklija sa manjim dvokrilcima i zooplanktonskim organizmima, a mrena i krkuša sa većim bentošnim beskralježnjacima. Nosara je povezana sa biljnim plijenom i hranom koju su uzimale krkuša i mrena. Klen i bodorka nalaze se između podusta i uklije s time da je bodorka slabije povezana s obzirom na ostale vrste i plijen.
Na lokaciji Jarun ribe su raspoređene na sličan način kao i na lokaciji Medsave. Ovdje su prikazane još plotica, deverika i potočna mrena. Njihova ishrana je na prijelazu između herbivornih i bentivornih vrsta. I ovdje je bodorka imala slabu korelaciju u odnosu na druge riblje vrste i plijen, a nalazila se između podusta i mrene, odnosno deverike, potočne mrene i plotice (Sl. 4.4.2.).
4.4.1. Sastav ishrane klena

Na lokaciji Medsave analizirano je ukupno 497 jedinki klena između 3,8 i 25,2 cm standardne dužine. Pregledan je sadržaj probavila 449 jedinki ukupne dužine probavila između 6,0 i 34,6 cm. Na lokaciji Jarun analizirana je ukupno 301 jedinka klena između 2,9 i 19,6 cm standardne dužine. Pregledan je sadržaj probavila 255 jedinke ukupne dužine probavila između 5,2 i 24,4 cm (Sl. 4.4.1.1.).

Sl. 4.4.1.1. Distribucija standardnih dužina analiziranih jedinki klena na obje lokacije (σ = standardna devijacija, \bar{x} = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 41,4 % bilo je prazno na lokaciji Medsave, a 34,1 % na lokaciji Jarun. U 37,8 % probavila pronađeni su paraziti iz skupine Acantocephala na lokaciji Medsave, a 29,80 % na lokaciji Jarun. Paraziti nisu uključeni u naredne analize hranidbenih svojstava.
Koeficijent punoće (Jr) i koeficijent praznosti probavila (V) upotrijebljeni su za praćenje promjena sastava ishrane tijekom mjesečnog ciklusa i prema dužinskim razredima riba. Dužinski razredi se odnose na standardnu dužinu ribe. Tjelesno stanje riba opisuje se izrazom "kondicija", a posljedica je dužinsko masenog odnosa, pa je za usporedbu upotrijebljen i Fultonov koeficijent kondicije (CF).

U Tablicama 4.4.1.1. i 4.4.1.2. prikazane su prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokacijama Medsave i Jarun, a u tablicama 4.4.1.3. i 4.4.1.4. prema dužinskim razredima riba na obje lokacije.

Vrijednosti punoće probavila prema dužinskim razredima pokazuju povećanje sa veličinom ribe na lokaciji Medsave, a smanjenje na lokaciji Jarun. Slično ponašanje pokazuje i koeficijent praznosti. Najveće oscilacije mogu se uočiti kod najmanjih i najvećih primjeraka. Ovakve razlike mogu biti uzrokovane i malim brojem analiziranih primjeraka koji na lokaciji Medsave iznosi 5 kod dužina većih od 20 cm, a 10 na lokaciji Jarun. Veće ribe uzimaju veći plijen pa je i vjerojatnost potpuno praznih probavila je veća (Kovačić, 1998.). Koeficijent kondicije je veći kod većih dužinskih razreda na obje lokacije.
Tablica 4.4.1.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n= broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>57</td>
<td>45</td>
<td>86</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>15,2</td>
<td>16,8</td>
<td>20,5</td>
<td>16,9</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>2,68</td>
<td>0,59</td>
<td>0,99</td>
<td>1,55</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>61,40</td>
<td>40,00</td>
<td>40,70</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,97±0,10</td>
<td>1,04±0,06</td>
<td>1,02±0,09</td>
<td>1,02±0,13</td>
</tr>
</tbody>
</table>

Tablica 4.4.1.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n= broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
</tr>
<tr>
<td>n</td>
<td>28</td>
<td>1</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>19,9</td>
<td>18,8</td>
<td>17,3</td>
<td>15,0</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,48</td>
<td>2,99</td>
<td>1,66</td>
<td>0,96</td>
</tr>
<tr>
<td>V (%)</td>
<td>42,86</td>
<td>0,00</td>
<td>32,00</td>
<td>40,91</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,98±0,05</td>
<td>0,99</td>
<td>1,02±0,08</td>
<td>1,04</td>
</tr>
</tbody>
</table>
Tablica 4.4.1.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima klena na lokaciji Medsave (n= broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><10,0</th>
<th>10,1-15,0</th>
<th>15,1-20,0</th>
<th>>20,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>187</td>
<td>216</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,14</td>
<td>1,41</td>
<td>2,48</td>
<td>1,57</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,80</td>
<td>37,5</td>
<td>24,39</td>
<td>20</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,03±0,10</td>
<td>1,06±0,12</td>
<td>1,08±0,22</td>
<td>1,16±0,11</td>
</tr>
</tbody>
</table>

Tablica 4.4.1.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima klena na lokaciji Jarun (n= broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><5,0</th>
<th>5,1-10,0</th>
<th>10,1-15,0</th>
<th>>15,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>11</td>
<td>155</td>
<td>79</td>
<td>10</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>3,74</td>
<td>1,21</td>
<td>1,83</td>
<td>1,05</td>
</tr>
<tr>
<td>V (%)</td>
<td>27,3</td>
<td>41,94</td>
<td>27,85</td>
<td>60,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,93±0,05</td>
<td>0,98±0,11</td>
<td>1,05±0,13</td>
<td>1,09±0,10</td>
</tr>
</tbody>
</table>
Tablica 4.4.1.5. Postotak učestalosti pojavljanja (F) pojedinih svojti plijen a u probavilu klena na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>2,04</td>
<td>4,82</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>4,08</td>
<td>13,25</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>8,43</td>
<td>15,91</td>
</tr>
<tr>
<td>Xanthophyceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaucheria sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>6,67</td>
<td>18,37</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>4,08</td>
<td>2,41</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>6,67</td>
<td>0,76</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>6,67</td>
<td>2,04</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>1,20</td>
<td>1,37</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>1,20</td>
<td>3,03</td>
</tr>
<tr>
<td>Lithoglyphus naticoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>33,33</td>
<td>18,37</td>
</tr>
<tr>
<td>Chironomidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,20</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>1,20</td>
<td>0,76</td>
</tr>
<tr>
<td>Plecoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>6,85</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>6,67</td>
<td>0,76</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>2,04</td>
<td>4,11</td>
</tr>
<tr>
<td>Pisces</td>
<td>4,08</td>
<td>0,76</td>
</tr>
<tr>
<td>Ikra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>40,00</td>
<td>44,90</td>
</tr>
</tbody>
</table>
Tablica 4.4.1.6. Postotak brojnosti (N) pojedinih svojih plijena u probavilu klena na lokaciji Medsave tijekom 2004. i 2005. g. (+ prisutnost algi i makrofita)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaucheria sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>6,25</td>
<td>4,17</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>6,25</td>
<td>4,17</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>1,85</td>
<td>31,58</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>1,85</td>
<td>31,58</td>
</tr>
<tr>
<td>Lithoglyphus naticoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>75,00</td>
<td>75,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>20,37</td>
<td></td>
</tr>
<tr>
<td>Simuliidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>5,56</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>3,70</td>
<td>5,26</td>
</tr>
<tr>
<td>Plecoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>12,50</td>
<td>5,26</td>
</tr>
<tr>
<td>Odonata</td>
<td>12,50</td>
<td>5,26</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>12,50</td>
<td>5,26</td>
</tr>
<tr>
<td>Pisces</td>
<td>8,33</td>
<td>5,26</td>
</tr>
<tr>
<td>Ikra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.1.7. Postotak mase (W) pojedinih svojti plijena u probavilu klena na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Svibanj</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
<td>0,02</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,15</td>
<td>1,82</td>
<td>10,79</td>
<td>0,65</td>
<td>0,20</td>
<td>0,85</td>
<td>0,10</td>
<td>7,02</td>
<td>7,94</td>
<td>5,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>21,45</td>
<td>22,34</td>
<td><0,01</td>
<td>20,30</td>
<td>4,41</td>
<td>9,39</td>
<td>2,93</td>
<td>0,04</td>
<td>14,43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xantophyceae</td>
<td>Vaucheria sp.</td>
<td>0,14</td>
<td>0,30</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>0,33</td>
<td>26,02</td>
<td>0,50</td>
<td>0,65</td>
<td>1,30</td>
<td>14,41</td>
<td>0,10</td>
<td>13,19</td>
<td>0,08</td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>13,28</td>
<td>0,30</td>
<td>1,18</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>0,61</td>
<td>1,29</td>
<td>4,03</td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>9,12</td>
<td>6,61</td>
<td>1,23</td>
<td>2,80</td>
<td>0,56</td>
<td>7,49</td>
<td>10,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td>0,14</td>
<td>0,69</td>
<td>1,64</td>
<td>0,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0,05</td>
<td>0,80</td>
<td>0,71</td>
<td>0,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithoglyphus naticoides</td>
<td>8,20</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>25,26</td>
<td>2,49</td>
<td>10,95</td>
<td>0,73</td>
<td>13,46</td>
<td>0,42</td>
<td>10,74</td>
<td>23,16</td>
<td>12,21</td>
<td>4,84</td>
<td>12,03</td>
<td>2,27</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0,85</td>
<td>1,67</td>
<td>2,63</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>0,05</td>
<td>0,01</td>
<td>0,10</td>
<td>0,42</td>
<td>0,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>4,56</td>
<td>5,26</td>
<td>0,24</td>
<td>0,13</td>
<td>0,27</td>
<td>4,84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>6,15</td>
<td>3,56</td>
<td>1,84</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>3,44</td>
<td>0,98</td>
<td>2,98</td>
<td>0,27</td>
<td>0,31</td>
<td>1,32</td>
<td>3,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>5,04</td>
<td>1,34</td>
<td>2,79</td>
<td>1,73</td>
<td>15,69</td>
<td>5,93</td>
<td>4,86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikra</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>60,12</td>
<td>42,97</td>
<td>62,67</td>
<td>56,46</td>
<td>72,81</td>
<td>99,99</td>
<td>71,49</td>
<td>51,63</td>
<td>37,30</td>
<td>57,68</td>
<td>84,63</td>
<td>65,00</td>
<td>73,99</td>
</tr>
</tbody>
</table>
Iz prikazanih podataka mogu se uočiti visoke vrijednosti detritusa kod postotka učestalosti pojavljivanja i postotka mase. Detritus predstavlja ostatke sluzi, nedeterminirani biljni i životinjski materijali, šljunak i pijesak. Manje detritusa pronađeno je kod primjeraka koji su se hranili neposredno prije ulova.

Kod prikaza rezultata postotka brojnosti pojedinih svojti plijena, označena je samo prisutnost algi kremenjašica, zelenih algi i ostalih vrsta biljnog plijena. Da je prikazana brojnost ovih svojti, rezultati brojnosti većega plijena ne bi bili zadovoljavajući (Holden i Raitt, 1974.).

Na lokaciji Medsave najveći postotak učestalosti pojavljivanja, postotak brojnosti i postotak mase uočen je za Insecta tijekom svih analiziranih mjeseci, s manjim oscilacijama. Vrlo je interesantno da se Cladophora sp. pojavljuje vrlo učestalo i u visokoj masi u ishrani klena, naročito tijekom rujna 2004. g. (F=15,91; W=22,34) i travnja 2005. g. (F=18,18; W=20,30). Tijekom lipnja 2004. g., kolovoza i listopada 2005. g. nije pronađena niti jedna jedinka koja se hranila biljnim svojtom. U ožujku 2005. g. pronađene su samo alge kremenjašice s niskom učestalosti pojavljivanja i brojnošću (F=9,09; W=<0,01). Ostale svojte plijena se povremeno češće pojavljuju, kao što je Ephemeroptera, Odonata, Trichoptera, Gastropoda i Pisces (Tablice 4.4.1.5., 4.4.1.6. i 4.4.1.7.).

Na lokaciji Jarun, također, najčešće se pojavljivaju Insecta, ali u nešto manjoj masi. Visoke vrijednosti postotka mase zabilježene su za svojte iz skupine Pisces i to u lipnju (W=24,65), kolovozu (W=14,87) i rujnu (W=15,36) 2004. g. i srpnju (W=28,78) 2005. g. Hranili su se manjim primjercima vrsta Leuciscus cephalus i Leuciscus leuciscus. Povremeno su zabilježene i visoke vrijednosti vrste Cladophora sp. te ostalih algi i makrofita. Povremeno se više pojavljuju Oligochaeta, Hirudinea, Coleoptera, Odonata, Trichoptera, ličinke i imago Diptera (Tablice 4.4.1.8., 4.4.1.9. i 4.4.1.10.).
Tablica 4.4.1.8. Postotak učestalosti pojavljivanja (F) pojedinih svojti plijena u probavilu klena na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>12,82</td>
<td>25,00</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td>2,86</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>2,27</td>
<td>2,86</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>12,82</td>
<td>12,50</td>
</tr>
<tr>
<td>Makrofita</td>
<td>25,00</td>
<td>15,91</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>2,27</td>
<td></td>
</tr>
<tr>
<td>Turbellaria</td>
<td>2,86</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>25,00</td>
<td>2,86</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>2,27</td>
<td>2,86</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>8,33</td>
<td>2,86</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>5,13</td>
<td>2,86</td>
</tr>
<tr>
<td>Crustacea</td>
<td>2,86</td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>5,13</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>10,26</td>
<td>6,82</td>
</tr>
<tr>
<td>Diptera</td>
<td>2,56</td>
<td>6,12</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>2,56</td>
<td>11,43</td>
</tr>
<tr>
<td>Simuliiidae</td>
<td>2,56</td>
<td>2,27</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>2,56</td>
<td>2,27</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>2,56</td>
<td>2,86</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>2,56</td>
<td>2,86</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>2,56</td>
<td>2,86</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>2,56</td>
<td>2,86</td>
</tr>
<tr>
<td>Odonata</td>
<td>2,56</td>
<td>2,27</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>2,56</td>
<td>2,27</td>
</tr>
<tr>
<td>Pisces</td>
<td>2,56</td>
<td>2,27</td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td>2,56</td>
<td>2,86</td>
</tr>
<tr>
<td>Leuciscus leuciscus</td>
<td>2,56</td>
<td>2,86</td>
</tr>
<tr>
<td>Detritus</td>
<td>33,33</td>
<td>25,00</td>
</tr>
</tbody>
</table>
Tablica 4.4.1.9. Postotak brojnosti (N) pojedinih svojti plijena u probavilu klena na lokaciji Jarun tijekom 2004. i 2005. g. (+ prisutnost algi i makrofita)

<table>
<thead>
<tr>
<th>Takson</th>
<th>2004.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listopad</td>
<td>Ožujak</td>
<td>Travanj</td>
<td>Svibanj</td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listopad</td>
<td>Studeni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Xanthophyceae</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Turbellaria</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>100</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>1,20</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>10,34</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>17,24</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>20,69</td>
<td>9,64</td>
<td>19,27</td>
<td>38,46</td>
<td>33,33</td>
<td>100</td>
<td>50</td>
<td>33,33</td>
<td>71,43</td>
<td>47,06</td>
<td>20,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>3,45</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>24,14</td>
<td>73,39</td>
<td></td>
</tr>
<tr>
<td>Simulidae</td>
<td>3,45</td>
<td>4,82</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,20</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>1,20</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>6,90</td>
<td>2,75</td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>31,33</td>
<td>30,77</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>1,20</td>
<td>7,69</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>49,40</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>10,34</td>
<td>1,20</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Leuciscus leuciscus</td>
<td></td>
</tr>
</tbody>
</table>

83
Tablica 4.4.1.10. Postotak mase (W) pojedinih svojt i plijena u probavilu klena na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Xanthophyceae</td>
<td><0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,10</td>
<td></td>
<td>0,05</td>
<td>0,17</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>2,99</td>
<td></td>
<td>8,74</td>
<td>0,25</td>
</tr>
<tr>
<td>Makrofita</td>
<td>80,00</td>
<td>19,71</td>
<td>0,25</td>
<td>0,80</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbellaria</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>0,01</td>
<td>10,19</td>
<td></td>
<td>60,04</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>0,41</td>
<td>2,00</td>
<td></td>
<td>0,47</td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td></td>
<td>14,33</td>
<td>0,47</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>12,39</td>
<td>0,91</td>
<td></td>
<td>0,36</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>4,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>3,75</td>
<td>15,92</td>
<td>20,48</td>
<td>3,14</td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
<td></td>
<td>5,06</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>2,15</td>
<td>4,04</td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>Simuliidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0,58</td>
<td>0,14</td>
<td></td>
<td>16,73</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>0,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>1,30</td>
<td>0,62</td>
<td></td>
<td>4,41</td>
</tr>
<tr>
<td>Plecoptera</td>
<td></td>
<td></td>
<td>0,16</td>
<td>0,30</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>5,02</td>
<td>10,21</td>
<td></td>
<td>8,36</td>
</tr>
<tr>
<td>Odonata</td>
<td>1,95</td>
<td>0,09</td>
<td>2,77</td>
<td>22,14</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1,54</td>
<td></td>
<td>7,31</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>24,65</td>
<td>14,87</td>
<td>0,33</td>
<td>2,13</td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td></td>
<td>15,03</td>
<td></td>
<td>18,47</td>
</tr>
<tr>
<td>Leuciscus leuciscus</td>
<td></td>
<td></td>
<td></td>
<td>18,47</td>
</tr>
<tr>
<td>Detritus</td>
<td>45,89</td>
<td>19,97</td>
<td>41,57</td>
<td>46,40</td>
</tr>
</tbody>
</table>
Primjercima riba koji su manji od 5 cm standardne dužine na lokaciji Medsave nije pregledan sadržaj probavila, pa imaju jedan dužinski razred manje nego na lokaciji Jarun. Osim toga, na lokaciji Jarun nije ulovljen niti jedan klen duži od 20 cm standardne dužine.

Uočeno je da manji primjerci klena imaju vrlo raznoliku prehranu. Podjednako su zastupljene biljne i životinjske svojte plijena. Veći primjerci klena više biraju svoju hranu, na lokaciji Medsave primjerci veći od 20,1 cm, a na lokaciji Jarun primjerci veći od 15,1 cm, i znatnije su zastupljene krupnije svojte plijena kao što su Pisces i Gastropoda (Tablice 4.4.1.11. i 4.4.1.12.).
<table>
<thead>
<tr>
<th>Takson</th>
<th><10,0</th>
<th>10,1-15,0</th>
<th>15,1-20,0</th>
<th>> 20,1</th>
<th><10,0</th>
<th>10,1-15,0</th>
<th>15,1-20,0</th>
<th>>20,1</th>
<th><10,0</th>
<th>10,1-15,0</th>
<th>15,1-20,0</th>
<th>>20,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td>8,44</td>
<td>6,07</td>
<td>5,32</td>
<td>7,69</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>5,78</td>
<td>10,29</td>
<td>8,51</td>
<td>15,38</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1,93</td>
<td>4,46</td>
<td>3,59</td>
<td>1,62</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>5,78</td>
<td>7,12</td>
<td>7,45</td>
<td>7,69</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3,69</td>
<td>9,81</td>
<td>6,02</td>
<td>3,02</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td></td>
</tr>
<tr>
<td>Vaucheria sp.</td>
<td>0,79</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>2,22</td>
<td>7,39</td>
<td>10,64</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1,99</td>
<td>8,99</td>
<td>4,42</td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>0,89</td>
<td>1,85</td>
<td>1,06</td>
<td>7,69</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0,05</td>
<td>1,55</td>
<td>0,01</td>
<td>1,20</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>0,44</td>
<td>0,53</td>
<td>1,06</td>
<td>0,60</td>
<td>1,02</td>
<td>1,47</td>
<td></td>
<td></td>
<td>2,62</td>
<td>0,27</td>
<td>2,10</td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>1,78</td>
<td>0,79</td>
<td></td>
<td>3,01</td>
<td>1,52</td>
<td></td>
<td></td>
<td></td>
<td>3,77</td>
<td>2,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td>0,44</td>
<td>0,53</td>
<td>2,13</td>
<td>0,60</td>
<td>1,02</td>
<td>2,94</td>
<td></td>
<td></td>
<td>0,44</td>
<td>0,08</td>
<td>1,24</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0,89</td>
<td>1,06</td>
<td>3,19</td>
<td>1,20</td>
<td>3,05</td>
<td>4,41</td>
<td></td>
<td></td>
<td>0,05</td>
<td>0,18</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td>Lithoglyphus naticoides</td>
<td></td>
<td></td>
<td></td>
<td>7,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62,50</td>
<td>9,71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>14,67</td>
<td>15,57</td>
<td>10,64</td>
<td>7,69</td>
<td>43,37</td>
<td>61,42</td>
<td>44,12</td>
<td>12,50</td>
<td>11,81</td>
<td>10,44</td>
<td>9,55</td>
<td>9,78</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>0,44</td>
<td>0,53</td>
<td>2,13</td>
<td>0,60</td>
<td>2,54</td>
<td>7,35</td>
<td></td>
<td></td>
<td>0,06</td>
<td>0,01</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,33</td>
<td>0,53</td>
<td></td>
<td>4,22</td>
<td>2,03</td>
<td></td>
<td></td>
<td></td>
<td>1,54</td>
<td>1,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>1,33</td>
<td>1,58</td>
<td>1,06</td>
<td>3,61</td>
<td>8,63</td>
<td>4,41</td>
<td></td>
<td></td>
<td>0,55</td>
<td>0,12</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td>0,26</td>
<td></td>
<td></td>
<td>0,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>1,33</td>
<td>2,37</td>
<td>3,19</td>
<td>3,01</td>
<td>6,60</td>
<td>10,29</td>
<td></td>
<td></td>
<td>0,85</td>
<td>2,34</td>
<td>0,37</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>0,89</td>
<td>1,32</td>
<td>2,13</td>
<td>1,20</td>
<td>3,05</td>
<td>4,41</td>
<td></td>
<td></td>
<td>0,95</td>
<td>2,27</td>
<td>4,00</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>2,67</td>
<td>2,11</td>
<td>4,26</td>
<td>6,63</td>
<td>5,58</td>
<td>13,24</td>
<td></td>
<td></td>
<td>5,34</td>
<td>1,46</td>
<td>0,31</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>1,33</td>
<td>1,58</td>
<td>5,32</td>
<td>15,38</td>
<td>1,81</td>
<td>3,05</td>
<td>7,35</td>
<td>25,00</td>
<td>0,94</td>
<td>2,22</td>
<td>2,92</td>
<td>21,78</td>
</tr>
<tr>
<td>Ikra</td>
<td>0,44</td>
<td></td>
<td></td>
<td>30,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>48,99</td>
<td>37,73</td>
<td>31,91</td>
<td>30,77</td>
<td>63,34</td>
<td>52,59</td>
<td>64,89</td>
<td>52,89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.1.12. Postotak učestalosti pojavljuvanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima klena na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5,1</td>
<td>5,1-10,0</td>
<td>10,1-15,0</td>
<td>> 15,1</td>
<td><5,1</td>
<td>5,1-10,0</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>50,00</td>
<td>16,74</td>
<td>9,78</td>
<td>9,09</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td>0,45</td>
<td>+</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>2,71</td>
<td>8,15</td>
<td>9,09</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>6,79</td>
<td>7,61</td>
<td>9,09</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>2,26</td>
<td>5,98</td>
<td>9,09</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>0,45</td>
<td>+</td>
<td>0,09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbellaria</td>
<td>0,54</td>
<td></td>
<td>0,17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>1,36</td>
<td>0,54</td>
<td>2,07</td>
<td>0,67</td>
<td></td>
<td>5,41</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>1,09</td>
<td></td>
<td>0,33</td>
<td>0,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td>2,26</td>
<td>2,17</td>
<td>3,63</td>
<td>1,67</td>
<td>4,21</td>
<td>2,54</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0,45</td>
<td>1,09</td>
<td>9,09</td>
<td>1,04</td>
<td>0,17</td>
<td>14,29</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>0,45</td>
<td>0,54</td>
<td>1,04</td>
<td>0,50</td>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>11,31</td>
<td>9,78</td>
<td>9,09</td>
<td>21,24</td>
<td>7,01</td>
<td>71,43</td>
</tr>
<tr>
<td>Diptera</td>
<td>0,45</td>
<td>1,63</td>
<td>0,52</td>
<td>10,02</td>
<td>0,01</td>
<td>1,31</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>0,90</td>
<td>2,17</td>
<td>22,28</td>
<td>8,01</td>
<td>0,33</td>
<td>0,19</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0,90</td>
<td>2,17</td>
<td>2,59</td>
<td>11,19</td>
<td>0,17</td>
<td>4,34</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>0,45</td>
<td></td>
<td>0,52</td>
<td>0,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeropera</td>
<td>0,45</td>
<td>2,72</td>
<td>1,04</td>
<td>13,02</td>
<td>0,15</td>
<td>1,18</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>1,09</td>
<td></td>
<td>1,50</td>
<td>0,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>3,17</td>
<td>4,35</td>
<td>14,51</td>
<td>14,86</td>
<td>3,73</td>
<td>2,48</td>
</tr>
<tr>
<td>Odonata</td>
<td>2,71</td>
<td>2,17</td>
<td>3,11</td>
<td>19,53</td>
<td>0,93</td>
<td>5,75</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>3,17</td>
<td>3,26</td>
<td>24,35</td>
<td>10,52</td>
<td>2,56</td>
<td>1,96</td>
</tr>
<tr>
<td>Pisces</td>
<td>1,81</td>
<td>1,63</td>
<td>9,09</td>
<td>2,07</td>
<td>0,50</td>
<td>14,29</td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td>0,54</td>
<td></td>
<td>0,17</td>
<td>0,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuciscus leuciscus</td>
<td>0,54</td>
<td></td>
<td>0,17</td>
<td>2,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>40,72</td>
<td>30,43</td>
<td>36,36</td>
<td>99,80</td>
<td>61,47</td>
</tr>
</tbody>
</table>
4.4.2. Sastav ishrane uklije

Na lokaciji Medsave analizirano je ukupno 148 jedinki uklije između 4,3 i 13,1 cm standardne dužine. Pregledan je sadržaj probavila 99 jedinki ukupne dužine probavila između 5,5 i 18 cm. Na lokaciji Jarun analizirano je ukupno 54 jedinki uklije između 4,8 i 12,4 cm standardne dužine. Pregledan je sadržaj probavila 53 jedinke ukupne dužine probavila između 5,5 i 14,2 cm (Sl. 4.4.2.1).

Sl. 4.4.2.1. Distribucija standardnih dužina analiziranih jedinki uklije na obje lokacije (σ = standardna devijacija, \(\bar{x} \) = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 34,34 % bilo je prazno na lokaciji Medsave, a 32,08 % na lokaciji Jarun. U 3,03 % probavila pronađeni su paraziti iz skupine Acantocephala na lokaciji Medsave, a 3,77 % na lokaciji Jarun. Paraziti nisu uključeni u naredne analize hranidbenih svojti.

\[
\begin{align*}
\text{Medsave} & \quad \sigma = 1.44 \\
& \quad \bar{x} = 8.23 \\
& \quad n = 148 \\
\text{Jarun} & \quad \sigma = 1.58 \\
& \quad \bar{x} = 9.0 \\
& \quad n = 54
\end{align*}
\]
Tablica 4.4.2.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n= broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>n</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>15,2</td>
<td>16,8</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,31</td>
<td>0,51</td>
</tr>
<tr>
<td>V (%)</td>
<td>59,89</td>
<td>50,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,81±0,07</td>
<td>0,70±0,04</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave najveće vrijednosti punoće probavila, a najmanje vrijednosti praznosti probavila zabilježene su u ožujku (Jr=1,82; V=14,29), travnju (Jr=1,86; V=42,86) i srpnju (Jr=3,10; V=0,00) 2005. g. Faktor kondicije bio je najveći tijekom ljetnih mjeseci u lipnju i srpnju obje sezone (Tablica 4.4.2.1.).

Tablica 4.4.2.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n= broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>19,9</td>
<td>17,3</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,40</td>
<td>1,69</td>
</tr>
<tr>
<td>V (%)</td>
<td>37,5</td>
<td>50,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,83±0,05</td>
<td>0,71±0,06</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave najveće vrijednosti punoće probavila, a najmanje vrijednosti praznosti probavila zabilježene su u ožujku (Jr=1,82; V=14,29), travnju (Jr=1,86; V=42,86) i srpnju (Jr=3,10; V=0,00) 2005. g. Faktor kondicije bio je najveći tijekom ljetnih mjeseci u lipnju i srpnju obje sezone (Tablica 4.4.2.1.).

Na lokaciji Jarun uključena se pojavljivala češće tijekom obje sezone, ali u znatno manjem broju primjeraka. U ožujku i listopadu 2005. g. ulovljen je po jedan primjerak praznog probavila. Najveće vrijednosti punoće probavila zabilježene su u kolovozu 2004. g., srpnju, rujnu i studenom 2005. g. Faktor kondicije je i u ovom slučaju najveće vrijednosti pokazivao tijekom ljetnih mjeseci (Tablica 4.4.2.2.).
Tablica 4.4.2.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima uklje na lokaciji Medsave (n= broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>9,1-11,0</th>
<th>>11,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>4</td>
<td>59</td>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,33</td>
<td>0,83</td>
<td>1,59</td>
<td>1,94</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,0</td>
<td>47,46</td>
<td>12,90</td>
<td>0,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,73±0,14</td>
<td>0,73±0,09</td>
<td>0,74±0,08</td>
<td>0,76±0,07</td>
</tr>
</tbody>
</table>

Tablica 4.4.2.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima uklje na lokaciji Jarun (n= broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>9,1-11</th>
<th>>11,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2</td>
<td>18</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>2,60</td>
<td>0,83</td>
<td>1,01</td>
<td>1,58</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>33,33</td>
<td>30,77</td>
<td>42,86</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,63±0,06</td>
<td>0,73±0,10</td>
<td>0,74±0,08</td>
<td>0,77±0,06</td>
</tr>
</tbody>
</table>

Kako su uklije ribe koje maksimalno rastu do 25 cm totalne dužine (Billard, 1997) tako su dužinski razredi podijeljeni na nešto uže razrede nego u klena. Na lokaciji Medsave koeficijent punoće probavila lagano se povećavao sa dužinom ribe. I na lokaciji Jarun slična je situacija ne uzevši u obzir prvi dužinski razred gdje su analizirana samo dva primjerka. Faktor kondicije je veći kod većih primjeraka na obje lokacije (Tablice 4.4.2.3. i 4.4.2.4.)
Tablica 4.4.2.5. Postotak učestalosti pojavljivanja (F) pojedinih svojti plijena u probavilu uključeno na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Lipanj</th>
<th>Srpanj</th>
<th>Ožujak</th>
<th>Travanj</th>
<th>Lipanj</th>
<th>Srpanj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td></td>
<td></td>
<td>1,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>5,56</td>
<td></td>
<td></td>
<td></td>
<td>50,00</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td></td>
<td></td>
<td>1,30</td>
<td>33,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>33,33</td>
<td>27,27</td>
<td>45,45</td>
<td>28,57</td>
<td>33,33</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td></td>
<td></td>
<td></td>
<td>16,88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td>9,09</td>
<td>3,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>16,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td>1,30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
<td>1,30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>44,44</td>
<td>63,64</td>
<td>54,55</td>
<td>45,45</td>
<td>33,33</td>
<td>50,00</td>
</tr>
</tbody>
</table>

Tablica 4.4.2.6. Postotak brojnosti (N) pojedinih svojti plijena u probavilu uključeno na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>0,63</td>
<td>50</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>57,14</td>
<td>66,67</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>38,75</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>33,33</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>42,86</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1,25</td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.2.7. Postotak mase (W) pojedinih svojti plijena u probavilu uklijena na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Ožujak</td>
<td>Travanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td><0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofitna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>1,72</td>
<td></td>
<td>90,00</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>0,19</td>
<td>70,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>35,07</td>
<td>13,60</td>
<td>23,05</td>
<td>30,20</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td></td>
<td></td>
<td></td>
<td>14,79</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>5,40</td>
<td></td>
<td></td>
<td>2,76</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>37,79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td></td>
<td>5,75</td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
<td></td>
<td>0,07</td>
</tr>
<tr>
<td>Detritus</td>
<td>25,43</td>
<td>81,01</td>
<td>76,95</td>
<td>46,23</td>
</tr>
</tbody>
</table>

Najveći postotak učestalosti pojavljivanja, brojnosti i mase imao je nedeterminirani plijen iz skupine Insecta kroz cijelo istraživano razdoblje na lokaciji Medsave. U pojedinom razdoblju u većem postotku pojavljuju se Coleoptera (lipanj 2004. F=16,67; N=42,86; W=37,79) i Ceratopogonidae (travanj 2005. F=16,88; N=38,75; W=14,79). Manje su prisutni Ephemeroptera, Odonata, Trichoptera i Oligochaeta. Samo u travnju 2005. pronađene su Bacillariophyceae (Tablice 4.4.2.5., 4.4.2.6. i 4.4.2.7.).
Tablica 4.4.2.8. Postotak učestalosti pojavljivanja (F) pojedinih svojih plijena u probavilu uključeno na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>15,79</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>10,53</td>
<td></td>
</tr>
<tr>
<td>Nematoda</td>
<td>18,18</td>
<td>20,00</td>
</tr>
<tr>
<td>Arachnida</td>
<td>3,57</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>18,18</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>5,26</td>
<td>10,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>5,26</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>15,79</td>
<td>9,09</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>9,09</td>
<td>14,29</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>21,05</td>
<td>18,18</td>
</tr>
<tr>
<td>Odonata</td>
<td>18,18</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>3,57</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>26,32</td>
<td>36,36</td>
</tr>
</tbody>
</table>

Tablica 4.4.2.9. Postotak brojnosti (N) pojedinih svojih plijena u probavilu uključeno na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nematoda</td>
<td>2,63</td>
<td></td>
</tr>
<tr>
<td>Arachnida</td>
<td>2,63</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>38,89</td>
<td>33,33</td>
</tr>
<tr>
<td>Diptera</td>
<td>5,88</td>
<td>33,33</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>11,76</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>52,94</td>
<td>16,67</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>29,41</td>
<td>33,33</td>
</tr>
<tr>
<td>Odonata</td>
<td>11,11</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>2,63</td>
<td></td>
</tr>
<tr>
<td>Hydropsyche sp.</td>
<td>2,63</td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.2.10. Postotak mase (W) pojedinih svojti plijena u probavilu uklje na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Nematoda</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>Arachnida</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>37,14</td>
<td>3,42</td>
</tr>
<tr>
<td>Diptera</td>
<td>1,75</td>
<td>1,27</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>1,40</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>26,64</td>
<td>5,14</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td>8,99</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>33,62</td>
<td>6,64</td>
</tr>
<tr>
<td>Odonata</td>
<td>10,34</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td>12,78</td>
</tr>
<tr>
<td>Hydropsyche sp.</td>
<td></td>
<td>8,74</td>
</tr>
<tr>
<td>Detritus</td>
<td>36,59</td>
<td>40,74</td>
</tr>
</tbody>
</table>

I na lokaciji Jarun dominiraju Insecta, a još se češće pojavljuju Ceratopogonidae i Coleoptera sa visokom učestalosti pojavljanja, brojnosti i masom, naročito u lipnju 2004. g. Za razliku od lokacije Medsave češće su pronađene i biljne svojte (lipanj 2004., rujan i studeni 2005.). U kolovozu 2005. pronađene su i svojte iz skupina Nematoda i Arachnida (Tablice 4.4.2.8., 4.4.2.9. i 4.4.2.10.).
Tablica 4.4.2.11. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima uklije na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7,0</td>
<td>7,1-9,0</td>
<td>9,1-11,0</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>1,61</td>
<td>1,79</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>1,61</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>25,00</td>
<td>1,61</td>
<td>+</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>3,57</td>
<td>+</td>
<td>2,25</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>33,87</td>
<td>30,36</td>
<td>15,38</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>4,84</td>
<td>14,29</td>
<td>15,38</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>3,23</td>
<td>1,79</td>
<td>15,38</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>25,00</td>
<td>3,23</td>
<td>100,00</td>
</tr>
<tr>
<td>Odonata</td>
<td>7,69</td>
<td>+</td>
<td>2,38</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>7,69</td>
<td>4,76</td>
<td>0,29</td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>50,00</td>
<td>48,21</td>
</tr>
</tbody>
</table>
Tablica 4.4.2.12. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima uključive na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7,0</td>
<td>7,1-9,0</td>
<td>9,1-11,0</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>15,63</td>
<td>2,22</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>6,25</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Nematoda</td>
<td>2,22</td>
<td></td>
<td>1,79</td>
</tr>
<tr>
<td>Arachnida</td>
<td>2,22</td>
<td></td>
<td>1,79</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>50,00</td>
<td>3,13</td>
<td>22,22</td>
</tr>
<tr>
<td>Diptera</td>
<td>6,25</td>
<td>12,00</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>3,13</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>15,63</td>
<td>6,68</td>
<td>11,11</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>2,22</td>
<td>11,11</td>
<td>1,79</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>12,50</td>
<td>13,33</td>
<td>20,00</td>
</tr>
<tr>
<td>Odonata</td>
<td>2,22</td>
<td>11,11</td>
<td>1,79</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>6,67</td>
<td>7,14</td>
<td>9,95</td>
</tr>
<tr>
<td>Hydropsyche sp.</td>
<td></td>
<td>11,11</td>
<td>16,67</td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>37,50</td>
<td>40,00</td>
</tr>
</tbody>
</table>

Detalji o postotcima učestalosti, postotka brojnosti i postotka mase plijena prema dužinskim razredima.
Na obje lokacije se može uočiti da manji dužinski razredi preferiraju i manji plijen. Tako je najviše biljnih svojstva pronađeno kod dužinskog razreda 7,1 – 9,0 cm u kombinaciji sa sitnijim plijenom iz skupine Insecta n. det, Ceratopogonidae, Ephemeroptera, Coleoptera i Diptera n.det. Veći primjerči uključuju (>11,1 cm) uz Ephemeroptera, Ceratopogonidae, Insecta n. det uzimaju još Odonata i Trichoptera što predstavlja veći plijen (Tablice 4.4.2.11. i 4.4.2.12.).
4.4.3. Sastav ishrane dvoprugaste uklje

Na lokaciji Medsave analizirano je ukupno 361 jedinki dvoprugaste uklje između 3,1 i 9,9 cm standardne dužine. Pregledan je sadržaj probavila 296 jedinki ukupne dužine probavila između 4,0 i 13,0 cm. Na lokaciji Jarun analizirano je ukupno 92 jedinke dvoprugaste uklje između 3,35 i 10,0 cm standardne dužine. Pregledan je sadržaj probavila 82 jedinke ukupne dužine probavila između 5,8 i 11,5 cm (Sl. 4.4.3.1.).

Sl. 4.4.3.1. Distribucija standardnih dužina analiziranih jedinki dvoprugaste uklje na obje lokacije (σ = standardna devijacija, \(\bar{x} \) = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 31,08 % bilo je prazno na lokaciji Medsave, a 30,49 % na lokaciji Jarun. U 20,61 % probavila pronađeni su paraziti iz skupine Acantocephala na lokaciji Medsave, a 23,39 % na lokaciji Jarun. Paraziti nisu uključeni u naredne analize hranidbenih svojti.
Tablica 4.4.3.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n= broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>15,2</td>
<td>16,8</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,87</td>
<td>0,52</td>
</tr>
<tr>
<td>V (%)</td>
<td>46,67</td>
<td>60,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,01±0,12</td>
<td>0,81±0,06</td>
</tr>
</tbody>
</table>

Tablica 4.4.3.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n= broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>19,9</td>
<td>18,8</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,17</td>
<td>1,25</td>
</tr>
<tr>
<td>V (%)</td>
<td>71,43</td>
<td>0,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,93±0,11</td>
<td>0,89±0,07</td>
</tr>
</tbody>
</table>
Tablica 4.4.3.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima dvoprugaste uklije na lokaciji Medsave (n= broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>>9,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>108</td>
<td>176</td>
<td>12</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,60</td>
<td>1,70</td>
<td>2,12</td>
</tr>
<tr>
<td>V (%)</td>
<td>35,19</td>
<td>30,68</td>
<td>8,33</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,99±0,15</td>
<td>0,99±0,11</td>
<td>0,10±0,10</td>
</tr>
</tbody>
</table>

Tablica 4.4.3.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima dvoprugaste uklije na lokaciji Jarun (n= broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>>9,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>26</td>
<td>52</td>
<td>4</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,21</td>
<td>1,48</td>
<td>0,73</td>
</tr>
<tr>
<td>V (%)</td>
<td>26,92</td>
<td>30,77</td>
<td>50,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,93±0,07</td>
<td>0,96±0,13</td>
<td>1,06±0,14</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave najpunija probavila zabilježena su u kolovozu (Jr=1,17) i listopadu (Jr=2,72) 2004. g., travnju (Jr=1,38), svibnju (Jr=2,43), kolovozu (Jr=1,91), rujnu (Jr=2,22), listopadu (Jr=2,92) i studenom (Jr=2,26) 2005. g. U lipnju i srpnju u oba navrata zabilježene su visoke vrijednosti praznosti probavila (od 46,67 do 60 %). Faktor kondicije se kretao od 0,81 u srpnju 2004 do 1,08 u lipnju 2005. g. (Tablica 4.4.3.1.). Najpunija probavila imale su rive dužine >9,1 cm (Jr=2,12) dok je faktor kondicije pokazao konstantne vrijednosti (Tablica 4.4.3.3.).
Na lokaciji Jarun najpunija probavila zabilježena su u listopadu (Jr=2,25) 2004. g., lipnju (Jr=2,87), srpnju (Jr=3,66), rujnu (Jr=1,78), listopadu (Jr=1,95) i studenom (Jr=2,04) 2005. g. Visoke vrijednosti praznosti probavila zabilježene su u lipnju 2004. g. i svibnju 2005.g. (V=71,43 i V=100,00). Faktor kondicije se kretao od 0,85 do 1,14 (Tablica 4.4.3.2.). Najpunija probavila imale su ribe dužine između 7,1 i 9,0 cm (Jr= 1,48), a faktor kondicije povećavao se sa većom dužinom dvoprugastih ukljuka (Tablica 4.4.3.4.).

Analizom hranidbene komponente na lokaciji Medsave ustanovljeno je da je najčešći plijen Insecta n. det., Chironomidae, Ceratopogonidae, Ephemeroptera, Coleoptera i Trichoptera tijekom cijelog istraživanog razdoblja. Povremeno se pojavljuje i krupniji plijen iz skupine Pisces (ožujak, kolovoz i rujan 2005. g.). Osim hrane životinjskog porijekla, pronađeno je i sitnijih algi te makrofita u probavilima dvoprugaste ukljuka (Tablice 4.4.3.5., 4.4.3.6. i 4.4.3.7.).

Na lokaciji Jarun najčešći plijen bio je iz skupine Insecta n. det., Ceratopogonidae i Trichoptera, a nešto manje bilo je prisutno biljne komponente (Tablice 4.4.3.8, 4.4.3.9. i 4.4.3.10.).

Manji primjerci dvoprugaste ukljue na obje lokacije hrane se manjim primjercima Insecta u kombinaciji sa biljnim materijalom. U probavilima manjih primjeraka na lokaciji Medsave pronađeni su i ostaci plijena iz skupine Pisces. Primjerci veći od 9,1 cm imali su manji broj svojti, a uzimali su dosta makrofita. Manji broj pronađenih svojti plijena vjerovatno je uzrokom manjeg broja ulovljenih primjeraka ovih veličina (Tablice 4.4.3.11. i 4.4.3.12.).
Tablica 4.4.3.5. Postotak učestalosti pojavljuivanja (F) pojedinih svojti plijen a u probavilu dvoprugaste ukljice na lokaciji Medsava tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpaj</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td>5,26</td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td>12,90</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>23,08</td>
<td>3,23</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>3,57</td>
<td>0,76</td>
</tr>
<tr>
<td>Makrofita</td>
<td>3,57</td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladocera</td>
<td>1,22</td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td>1,22</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>2,44</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>5,26</td>
<td>7,69</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>5,26</td>
<td>50,00</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>15,79</td>
<td>6,45</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>10,53</td>
<td>30,77</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>10,53</td>
<td>0,76</td>
</tr>
<tr>
<td>Gyrinidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>1,52</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>5,26</td>
<td>22,58</td>
</tr>
<tr>
<td>Pisces</td>
<td>3,57</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>42,11</td>
<td>50,00</td>
</tr>
</tbody>
</table>
Tablica 4.4.3.6. Postotak brojnosti (N) pojedinih svojih plijena u probavilu dvoprugaste uklje na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Listopad</td>
<td>Ožujak</td>
<td>Travanj</td>
<td>Svibanj</td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listopad</td>
<td>Studeni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
</tr>
<tr>
<td>Cladocera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>7,69</td>
<td>11,11</td>
<td>7,69</td>
<td>62,50</td>
<td>76,03</td>
<td>50,00</td>
<td>71,43</td>
<td>16,67</td>
<td>60,00</td>
<td>44,74</td>
<td>50,00</td>
<td>55,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>15,38</td>
<td>100,00</td>
<td></td>
<td>21,43</td>
<td>33,33</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>34,62</td>
<td>23,08</td>
<td>2,05</td>
<td>18,18</td>
<td>5,26</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>11,54</td>
<td>88,89</td>
<td>20,51</td>
<td>18,49</td>
<td>22,73</td>
<td>7,14</td>
<td>2,63</td>
<td>50,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>19,23</td>
<td>0,68</td>
<td>4,55</td>
<td>16,67</td>
<td>8,00</td>
<td>36,84</td>
<td></td>
</tr>
<tr>
<td>Gyrinidae</td>
<td></td>
<td></td>
<td></td>
<td>4,00</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td></td>
<td>1,37</td>
<td>4,00</td>
<td>2,63</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>11,54</td>
<td>48,72</td>
<td>25,00</td>
<td>1,37</td>
<td>4,55</td>
<td>33,33</td>
<td>16,00</td>
<td>2,63</td>
<td>11,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
<td></td>
<td>12,50</td>
<td>4,00</td>
<td>5,26</td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.3.7. Postotak mase (W) pojedinih svojti plijena u probavilu dvoprugaste ukljene na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpaj</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,14</td>
<td><0,01</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td><0,01</td>
<td>0,02</td>
</tr>
<tr>
<td>Makrofita</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladocera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>2,98</td>
<td>23,51</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>1,63</td>
<td>61,83</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>28,02</td>
<td>5,17</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>2,08</td>
<td>53,92</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>25,47</td>
<td></td>
</tr>
<tr>
<td>Gyrinidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td>0,26</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>12,30</td>
<td>42,31</td>
</tr>
<tr>
<td>Pisces</td>
<td>2,32</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>27,51</td>
<td>38,17</td>
</tr>
</tbody>
</table>
Tablica 4.4.3.8. Postotak učestalosti pojavljivanja (F) pojedinih svojti plijena u probavilu dvoprugaste uklje na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td>3,45</td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>17,24</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>3,57</td>
<td>6,90</td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td>6,90</td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbellaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>3,45</td>
<td>9,09</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>32,14</td>
<td>50,00</td>
</tr>
<tr>
<td>Diptera</td>
<td>3,57</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>3,57</td>
<td>11,11</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>50,00</td>
<td>3,57</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>7,14</td>
<td>16,67</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>3,57</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td>22,22</td>
</tr>
<tr>
<td>Ikra</td>
<td>3,57</td>
<td>3,45</td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>39,29</td>
</tr>
</tbody>
</table>
Tablica 4.4.3.9. Postotak brojnosti (N) pojedinih svojti plijena u probavilu dvoprugaste uklje na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Turbellaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td></td>
<td>11,76</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td></td>
<td>8,70</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>38,46</td>
<td>100</td>
</tr>
<tr>
<td>Diptera</td>
<td>3,85</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>7,69</td>
<td>14,29</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>100</td>
<td>11,54</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>23,08</td>
<td>62,50</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>11,54</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td>52,38</td>
</tr>
<tr>
<td>Ikra</td>
<td>3,85</td>
<td>13,04</td>
</tr>
</tbody>
</table>
Tablica 4.4.3.10. Postotak mase (W) pojedinih svojsti plijena u probavilu dvoprugaste uklje na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,10</td>
<td>11,11</td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbellaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>37,21</td>
<td>10,00</td>
</tr>
<tr>
<td>Diptera</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>0,20</td>
<td>2,78</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>73,95</td>
<td>11,94</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>8,30</td>
<td>17,39</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>31,02</td>
<td>0,90</td>
</tr>
<tr>
<td>Ikra</td>
<td><0,01</td>
<td>0,05</td>
</tr>
<tr>
<td>Detritus</td>
<td>26,05</td>
<td>40,93</td>
</tr>
</tbody>
</table>
Tablica 4.4.3.11. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima dvoprugaste uklje na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7,0</td>
<td>7,1-9,0</td>
<td>>9,1</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td>0,66</td>
<td>0,34</td>
<td>+</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>2,63</td>
<td>11,03</td>
<td>20,69</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>2,63</td>
<td>6,21</td>
<td>13,79</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td>1,03</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>0,34</td>
<td>6,90</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>0,34</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cladocera</td>
<td>0,34</td>
<td></td>
<td>1,05</td>
</tr>
<tr>
<td>Copepoda</td>
<td>0,34</td>
<td></td>
<td>0,52</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0,34</td>
<td></td>
<td>0,52</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>28,29</td>
<td>19,31</td>
<td>17,24</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>1,32</td>
<td>0,34</td>
<td>4,49</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>2,63</td>
<td>2,41</td>
<td>5,77</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>8,55</td>
<td>5,17</td>
<td>17,95</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>3,29</td>
<td>3,10</td>
<td>5,13</td>
</tr>
<tr>
<td>Gyrinidae</td>
<td>0,34</td>
<td></td>
<td>0,52</td>
</tr>
<tr>
<td>Odonata</td>
<td>0,66</td>
<td>1,03</td>
<td>0,64</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1,32</td>
<td>5,86</td>
<td>3,45</td>
</tr>
<tr>
<td>Pisces</td>
<td>1,97</td>
<td>0,34</td>
<td>1,92</td>
</tr>
<tr>
<td>Detritus</td>
<td>46,05</td>
<td>41,72</td>
<td>37,93</td>
</tr>
</tbody>
</table>
Tablica 4.4.3.12. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima dvoprugaste uklije na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7,0</td>
<td>7,1-9,0</td>
<td>>9,1</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td>1,20</td>
<td>+</td>
<td><0,01</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>8,43</td>
<td>+</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>2,27</td>
<td>3,61</td>
<td>0,04</td>
</tr>
<tr>
<td>Makrofita</td>
<td>2,27</td>
<td>12,50</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>2,41</td>
<td>12,50</td>
<td>+</td>
</tr>
<tr>
<td>Turbellaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>1,20</td>
<td>12,50</td>
<td>1,18</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>2,27</td>
<td>1,20</td>
<td>2,78</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>22,73</td>
<td>16,87</td>
<td>12,50</td>
</tr>
<tr>
<td>Diptera</td>
<td>2,27</td>
<td>2,78</td>
<td>0,18</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>3,61</td>
<td>10,59</td>
<td>0,54</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>11,36</td>
<td>2,41</td>
<td>12,50</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>2,27</td>
<td>3,61</td>
<td>8,33</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>2,27</td>
<td>8,33</td>
<td>0,45</td>
</tr>
<tr>
<td>Odonata</td>
<td>1,20</td>
<td>1,18</td>
<td>0,35</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>6,82</td>
<td>9,64</td>
<td>12,50</td>
</tr>
<tr>
<td>Ikra</td>
<td>2,27</td>
<td>1,20</td>
<td>8,33</td>
</tr>
<tr>
<td>Detritus</td>
<td>43,18</td>
<td>43,37</td>
<td>25,00</td>
</tr>
</tbody>
</table>
4.4.4. Sastav ishrane mrene

Na lokaciji Medsave analizirano je ukupno 81 jedinki mrene između 4,2 i 37,5 cm standardne dužine. Pregledan je sadržaj probavila 71 jedinki ukupne dužine probavila između 10,2 i 70 cm.

Na lokaciji Jarun analizirano je ukupno 56 jedinki mrene između 4,3 i 23,6 cm standardne dužine. Pregledan je sadržaj probavila 55 jedinke ukupne dužine probavila između 9,7 i 45,5 cm (Sl. 4.4.4.1).

Sl. 4.4.4.1. Distribucija standardnih dužina analiziranih jedinki mrene na obje lokacije (σ = standardna devijacija, \(\bar{x}\) = prosječna vrijednost, n= broj primjeraka)

![Histogram (Medsave)](image1)

![Histogram (Jarun)](image2)

Od ukupnog broja pregledanih probavila 11,27 % bilo je prazno na lokaciji Medsave, a 37,73 % na lokaciji Jarun. U 15,49 % probavila pronađeni su paraziti iz skupine Acantocephala na lokaciji Medsave, a 7,27 % na lokaciji Jarun. Paraziti nisu uključeni u naredne analize hranidbenih svojti.
Tablica 4.4.4.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>15,2</td>
<td>16,8</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>3,06</td>
<td>1,43</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,83±0,11</td>
<td>0,76</td>
</tr>
</tbody>
</table>

Tablica 4.4.4.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>19,9</td>
<td>18,8</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,43</td>
<td>1,11</td>
</tr>
<tr>
<td>V (%)</td>
<td>33,33</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,95±0,11</td>
<td>0,83</td>
</tr>
</tbody>
</table>
Tablica 4.4.4.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima mrene na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>8,1-12,0</th>
<th>12,1-16,0</th>
<th>16,1-20,0</th>
<th>>20,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>17</td>
<td>26</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,71</td>
<td>1,76</td>
<td>2,05</td>
<td>1,77</td>
<td>1,50</td>
</tr>
<tr>
<td>V (%)</td>
<td>12,5</td>
<td>5,88</td>
<td>11,54</td>
<td>9,09</td>
<td>22,22</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,92±0,08</td>
<td>0,86±0,08</td>
<td>0,83±0,09</td>
<td>0,79±0,04</td>
<td>0,73±0,05</td>
</tr>
</tbody>
</table>

Tablica 4.4.4.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima mrene na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>8,1-12,0</th>
<th>12,1-16,0</th>
<th>>16,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>6</td>
<td>10</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,68</td>
<td>1,55</td>
<td>2,34</td>
<td>1,35</td>
</tr>
<tr>
<td>V (%)</td>
<td>16,67</td>
<td>20,00</td>
<td>41,44</td>
<td>25,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,93±0,07</td>
<td>0,98±0,07</td>
<td>0,84±0,08</td>
<td>0,83±0,06</td>
</tr>
</tbody>
</table>

Visoke vrijednosti punoće probavila zabilježene su tijekom 2004. i 2005. g. na lokaciji Medsave i na lokaciji Jarun. Potpuno prazna probavila pronađena su u ožujku 2005. na lokaciji Medsave, a najniže vrijednosti punoće probavila zabilježene su u travnju (0,25) i listopadu (0,46) 2005. g. na lokaciji Jarun. Faktor kondicije kretao se od 0,71 do 0,93 na lokaciji Medsave, a od 0,63 do 0,95 na lokaciji Jarun (Tablice 4.4.4.1. i 4.4.4.2.).

Na lokaciji Jarun ulovljeni su nešto manji primjeraci mrene koja su imala puna probavila nego na lokaciji Medsave, stoga posljednji razred preko 20,0 cm nedostaje. Dosta visoke vrijednosti punoće probavila zabilježene su za sve dužinske razrede, s vrlo malim postotkom praznosti. Faktor kondicije bio je veći kod manjih primjeraka na obje lokacije (Tablice 4.4.4.3. i 4.4.4.4.).
Vrlo visoke vrijednosti zabilježene su za Chironomidae kroz cijelo istraživano razdoblje na lokaciji Medsave. Osim njih, glavna hranidbena komponenta je i Trichoptera. Povremeno se pojavljuju Oligochaeta, Gastropoda Crustacea, Ephemeroptera Plecoptera, Odonata i Pisces (Tablice 4.4.4.5., 4.4.4.6. i 4.4.4.7.).

I na lokaciji Jarun najčešće se susreću Chironomidae, ali povremeno je povećana biomasa algi u probavilima mrene. Najveće vrijednosti postotka mase Chlorophyceae zabilježene su u srpnju 2004. g. (W=40), rujnu 2005. g. (W=16,89) i studenom (W=58,33). Od ostalog plijena zabilježene su veće vrijednosti za Trichoptera, Gastropoda i Oligochaeta (Tablice 4.4.4.8., 4.4.4.9., i 4.4.4.10.).

Mrne manjih dužina preferiraju hranidbu sa Chironomidae u kombinaciji sa manjim plijenom. Mrne većih dužina uzimaju veću hranu kao što su Trichoptera i Pisces. Također, veći primjerči se hrane i sa više biljnog materijala (Tablice 4.4.4.11. i 4.4.4.12.)
Tablica 4.4.4.5. Postotak učestalosti pojavljivanja (F) pojedinih svojti plijena u probavilu mrente na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Rujan</td>
<td>Listopad</td>
<td>Svibanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Studeni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xantophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.49</td>
<td>9.09</td>
<td>18.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>25.00</td>
<td>2.56</td>
<td>6.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.49</td>
<td></td>
<td></td>
<td></td>
<td>3.03</td>
</tr>
<tr>
<td>Makrolita</td>
<td>33.33</td>
<td>12.82</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.29</td>
<td>9.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.00</td>
<td>14.29</td>
<td>18.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bythinia tentaculata</td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>40.00</td>
<td>25.00</td>
<td>33.33</td>
<td>5.13</td>
<td>17.44</td>
<td>30.00</td>
<td>7.14</td>
<td>9.09</td>
<td>15.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>4.65</td>
<td></td>
<td>7.14</td>
<td></td>
<td>11.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipulidae</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>Simulilidae</td>
<td></td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td></td>
<td>9.09</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td>3.03</td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
</tr>
<tr>
<td>Megaloptera</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>20.00</td>
<td>25.00</td>
<td>17.95</td>
<td>11.63</td>
<td>20.00</td>
<td>7.14</td>
<td>9.09</td>
<td>9.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
</tr>
<tr>
<td>Rutilus rutilus</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>40.00</td>
<td>25.00</td>
<td>33.33</td>
<td>38.46</td>
<td>26.74</td>
<td>35.00</td>
<td>35.71</td>
<td>27.27</td>
<td>18.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.4.6. Postotak brojnosti (N) pojedinih svojti plijena u probavilu mrene na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>14,29</td>
<td>0,23</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>10,71</td>
<td>0,23</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>2,52</td>
<td>28,57</td>
</tr>
<tr>
<td>Bythnia tentaculata</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>Crustacea</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>4,50</td>
<td>14,29</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>95,74</td>
<td>75,00</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>2,25</td>
<td>56,74</td>
</tr>
<tr>
<td>Tipulidae</td>
<td>3,57</td>
<td>2,52</td>
</tr>
<tr>
<td>Simuliidae</td>
<td>0,71</td>
<td>0,71</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>21,40</td>
<td>8,11</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>2,70</td>
<td>2,70</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>0,71</td>
<td>0,71</td>
</tr>
<tr>
<td>Odonata</td>
<td>3,57</td>
<td>0,23</td>
</tr>
<tr>
<td>Megaloptera</td>
<td>1,79</td>
<td>1,79</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>4,26</td>
<td>25,00</td>
</tr>
<tr>
<td>Pisces</td>
<td>1,79</td>
<td>1,79</td>
</tr>
</tbody>
</table>
Tablica 4.4.4.7. Postotak mase (W) pojedinih svojti plijena u probavilu mrene na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Lipanj</th>
<th>Sranj</th>
<th>Rujan</th>
<th>Listopad</th>
<th>Svibanj</th>
<th>Sranj</th>
<th>Kolovoz</th>
<th>Rujan</th>
<th>Studeni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanophyta/Cyanobacteria</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td></td>
<td></td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Makrolita</td>
<td>2,64</td>
<td>0,06</td>
<td>33,16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>5,00</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>12,89</td>
<td>4,29</td>
<td>22,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hrudinea</td>
<td>3,44</td>
<td>0,07</td>
<td>11,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18,77</td>
<td>5,43</td>
</tr>
<tr>
<td>Bythnia tentaculata</td>
<td>1,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>40,53</td>
<td>1,00</td>
<td>15,00</td>
<td>0,11</td>
<td>2,91</td>
<td>6,22</td>
<td>0,04</td>
<td>12,86</td>
<td>3,18</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipullidae</td>
<td>0,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simuliiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>3,21</td>
<td>1,69</td>
<td>0,03</td>
<td>0,37</td>
<td>0,03</td>
<td>0,37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td>0,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>0,07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>0,06</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaloptera</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>12,63</td>
<td>5,00</td>
<td>4,40</td>
<td>9,26</td>
<td>17,85</td>
<td>0,36</td>
<td>0,11</td>
<td>5,02</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutillus rutilus</td>
<td>46,84</td>
<td>64,00</td>
<td>80,00</td>
<td>73,05</td>
<td>56,56</td>
<td>55,47</td>
<td>26,37</td>
<td>42,16</td>
<td>81,90</td>
</tr>
</tbody>
</table>

Detritus 46,84 64,00 80,00 73,05 56,56 55,47 26,37 42,16 81,90
Tablica 4.4.4.8. Postotak učestalosti pojavljivanja (F) pojedinih svojti plijena u probavilu mrene na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>20,00</td>
<td>14,29</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>33,33</td>
<td>20,00</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>20,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td>2,56</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia</td>
<td>14,29</td>
<td>10,00</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>14,29</td>
<td>10,00</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>33,33</td>
<td>14,29</td>
</tr>
<tr>
<td>Tipulidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulilidae</td>
<td></td>
<td>10,00</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>14,29</td>
<td>10,00</td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>10,00</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>16,67</td>
<td>15,38</td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>33,33</td>
<td>20,00</td>
</tr>
</tbody>
</table>
Tablica 4.4.4.9. Postotak brojnosti (N) pojedinih svojti plijena u probavilu mrene na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia</td>
<td>11,63</td>
<td>0,49</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>6,98</td>
<td>0,49</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>100,00</td>
<td>65,12</td>
</tr>
<tr>
<td>Tipulidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simuliidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>16,28</td>
<td>1,47</td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td>0,98</td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.4.10. Postotak mase (W) pojedinih svojt i plijena u probavilu mrene na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Travanj</td>
<td>Srpanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listopad</td>
<td>Studeni</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,043</td>
<td>40,00</td>
<td>0,50</td>
<td>16,89</td>
<td>5,16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td></td>
<td></td>
<td>53,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrotita</td>
<td>10,00</td>
<td>0,16</td>
<td></td>
<td>1,57</td>
<td>2,84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td></td>
<td></td>
<td>0,05</td>
<td>0,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>0,22</td>
<td></td>
<td>15,12</td>
<td>3,74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td></td>
<td></td>
<td>6,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia</td>
<td>10,00</td>
<td>0,53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>20,00</td>
<td>0,95</td>
<td>1,05</td>
<td>0,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td></td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>26,32</td>
<td>8,00</td>
<td>80,00</td>
<td>7,95</td>
<td>1,79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipulidae</td>
<td></td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulidae</td>
<td></td>
<td>7,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>5,00</td>
<td>0,32</td>
<td>2,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>32,26</td>
<td>5,90</td>
<td>19,13</td>
<td>4,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td>5,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>73,25</td>
<td>49,78</td>
<td>56,50</td>
<td>20,00</td>
<td>81,41</td>
<td>51,52</td>
<td>63,76</td>
<td>70,53</td>
<td>34,48</td>
</tr>
</tbody>
</table>
Tablica 4.4.4.11. Postotak učestalosti pojavljanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima mrene na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8,0</td>
<td>8,1-12,0</td>
<td>12,1-16,0</td>
</tr>
<tr>
<td>Cyanophyta/ Cyanobacteria</td>
<td>1,12</td>
<td>+</td>
<td><0,01</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td>1,12</td>
<td>+</td>
<td><0,01</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>5,26</td>
<td>1,89</td>
<td>6,06</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>5,66</td>
<td>6,74</td>
<td>4,76</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>1,89</td>
<td>2,25</td>
<td>3,03</td>
</tr>
<tr>
<td>Makrofita</td>
<td>1,12</td>
<td>3,03</td>
<td>0,26</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>2,25</td>
<td>14,29</td>
<td>0,34</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>1,89</td>
<td>3,03</td>
<td>1,76</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>5,26</td>
<td>1,89</td>
<td>0,34</td>
</tr>
<tr>
<td>Bythina tentaculata</td>
<td>1,12</td>
<td>1,05</td>
<td>0,17</td>
</tr>
<tr>
<td>Crustacea</td>
<td>3,03</td>
<td>1,76</td>
<td>1,01</td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>1,01</td>
<td>1,85</td>
<td>1,32</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>1,85</td>
<td>1,32</td>
<td>1,12</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>4,76</td>
<td>1,76</td>
<td><0,01</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Tipulidae</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Simuliidae</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Odonata</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Megaloptera</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Pisces</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Rutilus rutilus</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
<tr>
<td>Detritus</td>
<td>1,12</td>
<td>1,05</td>
<td>1,12</td>
</tr>
</tbody>
</table>
Tablica 4.4.4.12. Postotak učestalosti pojavljanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima mrene na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
<th><8,0</th>
<th>8,1-12,0</th>
<th>12,1-16,0</th>
<th>>16,1</th>
<th><8,0</th>
<th>8,1-12,0</th>
<th>12,1-16,0</th>
<th>>16,1</th>
<th><8,0</th>
<th>8,1-12,0</th>
<th>12,1-16,0</th>
<th>>16,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td>6,90</td>
<td>5,88</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td><0,01</td>
<td><0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>11,76</td>
<td>10,34</td>
<td>5,88</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0,15</td>
<td>16,04</td>
<td>7,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>3,45</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>9,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>10,00</td>
<td>3,45</td>
<td>17,65</td>
<td>+</td>
<td></td>
<td>+</td>
<td>9,99</td>
<td>0,02</td>
<td>3,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>1,72</td>
<td>5,88</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>10,28</td>
<td>6,18</td>
<td>0,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>1,72</td>
<td>0,29</td>
<td></td>
<td>1,13</td>
<td></td>
<td></td>
<td>0,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>5,88</td>
<td>5,17</td>
<td>4,35</td>
<td>2,33</td>
<td></td>
<td>3,17</td>
<td>1,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>5,88</td>
<td>2,90</td>
<td>82,61</td>
<td>53,06</td>
<td></td>
<td>9,07</td>
<td>3,89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>11,76</td>
<td>6,90</td>
<td>82,61</td>
<td>53,06</td>
<td></td>
<td>9,07</td>
<td>3,89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipulidae</td>
<td>1,72</td>
<td></td>
<td>0,29</td>
<td>0,01</td>
<td></td>
<td></td>
<td>0,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulidae</td>
<td>1,72</td>
<td></td>
<td>28,28</td>
<td>0,46</td>
<td></td>
<td></td>
<td>0,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>10,00</td>
<td>3,45</td>
<td>61,54</td>
<td>4,96</td>
<td></td>
<td>10,54</td>
<td>0,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>1,72</td>
<td></td>
<td>0,58</td>
<td>0,79</td>
<td></td>
<td></td>
<td>0,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>1,72</td>
<td></td>
<td>0,58</td>
<td>0,11</td>
<td></td>
<td></td>
<td>0,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>30,00</td>
<td>17,65</td>
<td>6,90</td>
<td>17,65</td>
<td>38,46</td>
<td>7,25</td>
<td>4,08</td>
<td>80,77</td>
<td>15,16</td>
<td>3,47</td>
<td>5,41</td>
<td>15,81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td>1,72</td>
<td>0,29</td>
<td></td>
<td>4,69</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>35,29</td>
<td>31,03</td>
<td>35,29</td>
<td></td>
<td>64,31</td>
<td>72,59</td>
<td>47,84</td>
<td>71,88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4.5. Sastav ishrane krkuše

Na lokaciji Medsave analizirano je ukupno 60 jedinki krkuše između 4,9 i 11,1 cm standardne dužine. Pregledan je sadržaj probavila 57 jedinki, ukupne dužine probavila između 4,2 i 11,5 cm. Na lokaciji Jarun analizirano je ukupno 45 jedinki krkuše između 3,3 i 12,0 cm standardne dužine (Sl. 4.4.5.1.). Pregledan je sadržaj probavila 35 jedinki ukupne dužine probavila između 5,5 i 15,3 cm.

Sl. 4.4.5.1. Distribucija standardnih dužina analiziranih jedinki krkuše na obje lokacije (σ = standardna devijacija, \(\bar{x} \) = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 26,32 % bilo je prazno na lokaciji Medsave, a 42,86 % na lokaciji Jarun. U 8,77 % probavila pronađeni su paraziti iz skupine Acantocephala na lokaciji Medsave, a 11, 43 % na lokaciji Jarun. Paraziti nisu uključeni u naredne analize hranidbenih svojst.

\[
\begin{align*}
\text{Medsave} & \quad \sigma = 1,47 \\
& \quad \bar{x} = 8,13 \\
& \quad n = 60 \\
\text{Jarun} & \quad \sigma = 1,85 \\
& \quad \bar{x} = 7,9 \\
& \quad n = 45
\end{align*}
\]
Tablica 4.4.5.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Rujan</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Temp. vode °C</td>
<td>15,2</td>
<td>16,9</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,53</td>
<td>1,46</td>
</tr>
<tr>
<td>V (%)</td>
<td>33,33</td>
<td>20,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,14±0,05</td>
<td>1,14±0,04</td>
</tr>
</tbody>
</table>

Tablica 4.4.5.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Temp. vode °C</td>
<td>19,9</td>
<td>17,3</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,02</td>
<td>1,07</td>
</tr>
<tr>
<td>V (%)</td>
<td>71,43</td>
<td>0,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,08±0,18</td>
<td>1,54</td>
</tr>
</tbody>
</table>
Koeficijent punoće na lokaciji Medsave kroz cijelo istraživano razdoblje bio je prilično ujednačen. Najniže vrijednosti zabilježene su u lipnju (Jr=0,92) i rujnu (Jr=0,98) 2005. g. Najviše praznih probavila bilo je u listopadu (V=50). 2004. g. Faktor kondicije je bio veći u ljetnom razdoblju, a smanjivao se tijekom zime (Tablica 4.4.5.1.). Na lokaciji Jarun najniže vrijednosti koeficijenta punoće zabilježene su u rujnu (Jr=0,34) 2004. g. i studenom (Jr=0,86) 2005. g., a bilo je i više praznih probavila nego na lokaciji Medsave. Potpuno prazna probavila bila su u ožujku 2005. g., dok se u lipnju 2004. g. i studenom 2005. g. koeficijent praznosti kretao od 71,43 do 75 %. Faktor kondicije najniži je bio u ožujku, travnju i studenom 2005. g. i kretao se od 0,85 do 0,97. (Tablica 4.4.5.2.).

Tablica 4.4.5.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima krkuše na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><6,0</th>
<th>6,1-8,0</th>
<th>8,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>3</td>
<td>22</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>2,01</td>
<td>1,60</td>
<td>1,41</td>
<td>0,95</td>
</tr>
<tr>
<td>V (%)</td>
<td>66,67</td>
<td>27,27</td>
<td>21,74</td>
<td>22,22</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,74±0,05</td>
<td>1,07±0,27</td>
<td>1,10±0,09</td>
<td>1,12±0,06</td>
</tr>
</tbody>
</table>

Tablica 4.4.5.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima krkuše na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>8,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>14</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,56</td>
<td>1,01</td>
<td>1,18</td>
</tr>
<tr>
<td>V (%)</td>
<td>42,86</td>
<td>52,94</td>
<td>0,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,06±0,14</td>
<td>1,06±0,15</td>
<td>1,35±0,15</td>
</tr>
</tbody>
</table>
Primjeri manjih dužina imali su više praznih probavila, a i veći koeficijent punoće na obje lokacije. Faktor kondicije se povećava sa dužinom krkuša, pa je na lokaciji Jarun za primjerke >10,1 cm iznosio čak 1,35 (Tablice 4.4.5.3. i 4.4.5.4.)

Tablica 4.4.5.5. Postotak učestalosti pojavljanja (F) pojedinih svojstva plijena u probavilu krkuše na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Rujan</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>2,63</td>
<td>5,88</td>
</tr>
<tr>
<td>Makrofita</td>
<td>8,33</td>
<td>5,88</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>5,26</td>
<td>12,50</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>12,50</td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td>12,50</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>8,33</td>
<td></td>
</tr>
<tr>
<td>Planorbis sp.</td>
<td>8,33</td>
<td>2,63</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>20,00</td>
<td>8,33</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>8,33</td>
<td>6,67</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>20,00</td>
<td>8,33</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>20,00</td>
<td>6,67</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>13,33</td>
<td>2,63</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>5,88</td>
<td></td>
</tr>
<tr>
<td>Haliplidae sp.</td>
<td>8,33</td>
<td>2,63</td>
</tr>
<tr>
<td>Odonata</td>
<td>6,67</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>8,33</td>
<td>28,95</td>
</tr>
<tr>
<td>Pisces</td>
<td>2,63</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>40,00</td>
<td>33,33</td>
</tr>
</tbody>
</table>

Vrlo učestalo se u probavilima krkuše na lokaciji Medsave pojavljuju Chironomidae, Gammarus sp. Ephemeroptera i Trichoptera. Rjeđe se hrane sa Gastropoda i Pisces. U dosta visokoj frekvenciji pojavljuju se makrofita i Bacillariophyceae (Tablica 4.4.5.5.)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sjenke</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>6,67</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Planorbus sp.</td>
<td>6,67</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>33,33</td>
<td>20,00</td>
<td>2,67</td>
<td>8,00</td>
<td>13,33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>6,67</td>
<td>1,33</td>
<td>1,27</td>
<td>4,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>50,00</td>
<td>33,33</td>
<td>100,00</td>
<td>89,33</td>
<td>39,24</td>
<td>40,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>16,67</td>
<td>2,67</td>
<td>6,33</td>
<td>25,00</td>
<td>44,00</td>
<td>26,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td>2,67</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>6,67</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Haliplidae sp.</td>
<td>2,53</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>1,33</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>20,00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Najbrojniji plijen u probavilima bili su Chironomidae, *Gammarus* sp. i Trichoptera tijekom cijelog istraživanog razdoblja. Slijedi Ephemeroptera i ostali nedeterminirani Insecta. U listopadu 2004. pronađen je plijen jedino iz skupine Chironomidae (Tablica 4.4.5.6.).
Tablica 4.4.5.7. Postotak mase (W) pojedinih svojti plijena u probavilu krkuše na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Rujan</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Makrofita</td>
<td>0,02</td>
<td>0,03</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>0,78</td>
<td>14,48</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>11,30</td>
<td></td>
</tr>
<tr>
<td>Planorbis sp.</td>
<td>1,98</td>
<td>0,55</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>17,75</td>
<td>15,54</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>0,99</td>
<td>18,49</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>4,45</td>
<td>3,45</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>5,56</td>
<td>0,43</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>2,69</td>
<td>0,70</td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haliplidae sp.</td>
<td>0,99</td>
<td>0,12</td>
</tr>
<tr>
<td>Odonata</td>
<td>0,94</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>18,83</td>
<td>18,21</td>
</tr>
<tr>
<td>Pisces</td>
<td>2,07</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>72,74</td>
<td>46,91</td>
</tr>
</tbody>
</table>

Iako su Chironomidae dominirali učestalošću pojavljivanja i brojnošću, masom dominiraju Trichoptera. U najvećem postotku prisutni su bili u rujnu 2004. g., srpnju, kolovozu i studenom 2005. g. U većoj masi pojavljuju se i Ephemeroptera u kolovozu i rujnu 2005. g., a Gammarus sp. u lipnu i rujnu 2004. g. (Tablica 4.4.5.7.).
Tablica 4.4.5.8. Postotak učestalosti pojavljanja (F) pojedinih svojti plijena u probavilu krkuše na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listopad</td>
<td>Travanj</td>
<td>Svibanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>50,00</td>
<td></td>
<td></td>
<td>50,00</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td></td>
<td></td>
<td>25,00</td>
<td>14,29</td>
<td>25,00</td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,11</td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>20,00</td>
<td>50,00</td>
<td></td>
<td>14,29</td>
<td>25,00</td>
<td>33,33</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td></td>
<td></td>
<td></td>
<td>14,29</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>20,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>20,00</td>
<td></td>
<td></td>
<td>25,00</td>
<td>14,29</td>
<td>25,00</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td></td>
<td>50,00</td>
<td>14,29</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>40,00</td>
<td>50,00</td>
<td>100,00</td>
<td>0,00</td>
<td>50,00</td>
<td>25,00</td>
</tr>
</tbody>
</table>

Tablica 4.4.5.9. Postotak brojnosti (N) pojedinih svojti plijena u probavilu krkuše na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listopad</td>
<td>Travanj</td>
<td>Svibanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>33,33</td>
<td>5,66</td>
<td>38,10</td>
<td>100,00</td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td></td>
<td>9,52</td>
<td>50,00</td>
<td>100,00</td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>50,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>16,67</td>
<td>100,00</td>
<td>38,10</td>
<td>50,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td>94,34</td>
<td>14,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablica 4.4.5.10. Postotak mase (W) pojedinih svojt i plijena u probavilu krkuše na lokaciji Jarun tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,35</td>
<td>0,09</td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>9,55</td>
<td>10,00</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>6,97</td>
<td>1,93</td>
</tr>
<tr>
<td>Diptera</td>
<td>47,73</td>
<td>5,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>1,59</td>
<td>5,00</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>90,00</td>
<td>0,21</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>40,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>41,14</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tablica 4.4.5.11. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima krkuše na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8,0</td>
<td>8,1-10,0</td>
<td>>10,1</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>6,25</td>
<td>5,26</td>
<td>11,11</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>12,50</td>
<td>5,26</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>5,26</td>
<td>5,26</td>
<td>+</td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>6,25</td>
<td>21,05</td>
<td>22,22</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>5,26</td>
<td>11,11</td>
<td>+</td>
</tr>
<tr>
<td>Diptera</td>
<td>5,26</td>
<td>3,41</td>
<td>+</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>12,50</td>
<td>5,26</td>
<td>11,11</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>6,25</td>
<td>5,26</td>
<td>+</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>6,25</td>
<td>5,26</td>
<td>+</td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>42,11</td>
<td>44,44</td>
</tr>
</tbody>
</table>
Tablica 4.4.5.12. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima krkuše na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8,0</td>
<td>8,1-10,0</td>
<td>>10,1</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>4,26</td>
<td>4,35</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>2,33</td>
<td>4,26</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>2,33</td>
<td>2,13</td>
<td>8,70</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea</td>
<td>2,13</td>
<td>1,32</td>
<td>4,38</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>2,13</td>
<td>1,32</td>
<td>2,88</td>
</tr>
<tr>
<td>Planorbis sp.</td>
<td>2,13</td>
<td>4,35</td>
<td>1,32</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>4,65</td>
<td>6,38</td>
<td>4,21</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>4,65</td>
<td>4,26</td>
<td>2,11</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>16,28</td>
<td>6,38</td>
<td>17,39</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>9,30</td>
<td>6,38</td>
<td>4,35</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>4,26</td>
<td>4,35</td>
<td>2,63</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>4,35</td>
<td>4,35</td>
<td>2,63</td>
</tr>
<tr>
<td>Haliplidae sp.</td>
<td>2,13</td>
<td>4,35</td>
<td>1,32</td>
</tr>
<tr>
<td>Odonata</td>
<td>2,33</td>
<td>1,05</td>
<td>0,29</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>16,28</td>
<td>14,89</td>
<td>17,39</td>
</tr>
<tr>
<td>Pisces</td>
<td>2,33</td>
<td>1,05</td>
<td>2,16</td>
</tr>
<tr>
<td>Detritus</td>
<td>39,53</td>
<td>38,30</td>
<td>30,43</td>
</tr>
</tbody>
</table>

Detalji o postotku: 8,0, 8,1-10,0, >10,1
Detalji o postotku: <8,0, 8,1-10,0, >10,1
Na lokaciji Jarun tijekom cijelog istraživanog razdoblja najčešće se pojavljuje *Gammarus* sp. U najvećoj brojnosti, vrlo učestalo i u najvećoj biomasi pronađen je u lipnju (F=14,29; N=38,10; W=31,35), kolovozu (F=25,00; N=100,00; W=52,24) i rujnu (F=33,33; N=100,00; W=40,39) 2005. g. *Gammarus* sp. se u listopadu 2004. g. pojavljivao u istoj frekvenciji kao i Ephemeroptera, ali je brojnošću i masom dominirala Ephemeroptera. U svibnju i srpnju 2005. g. dominirali su Chironomidae i Insecta n. det. Svojte biljnog porijekla pronađene su u kolovozu 2004. kada su bile i jedini pronađeni plijen, zatim u travnju, svibnju, lipnju, kolovozu i rujnu 2005. g. (Tablice 4.4.5.8., 4.4.5.9. i 4.4.5.10.).

Na lokaciji Jarun manji primjeri krkuše češće uzimaju plijen manjih dimenzija kao što su alge, Chironomidae i Ephemeroptera, dok se veći primjeri češće hrane vrstom *Gammarus* sp. koji je dominirao učestalošću, brojnošću i masom (Tablica 4.4.5.1.).

Na lokaciji Medsave kod manjih i kod većih primjeraka dominirali su Chironomidae i Trichoptera, a podjednako je zastupljen i ostali plijen (4.4.5.12.).
4.4.6. Sastav ishrane podusta

Na lokaciji Medsave analizirano je ukupno 226 jedinki podusta između 5,1 i 15,1 cm standardne dužine. Pregledan je sadržaj probavila 79 jedinki ukupne dužine probavila između 5,8 i 52,5 cm. Na lokaciji Jarun analizirano je ukupno 92 jedinke podusta između 3,1 i 17,5 cm standardne dužine (Sl. 4.4.6.1.). Pregledan je sadržaj probavila 42 jedinke ukupne dužine probavila između 13,5 i 52,2 cm.

Sl. 4.4.6.1. Distribucija standardnih dužina analiziranih jedinki podusta na obje lokacije (σ = standardna devijacija, \(\bar{x}\) = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 40,04 % bilo je prazno na lokaciji Medsave, a 57,14 % na lokaciji Jarun. Pronađen je parazit u samo jednom primjerku podusta, što nije uzeto u obzir prilikom analiza hranidbenih svojstava.
Tablica 4.4.6.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipan</td>
<td>Srpan</td>
<td>Listop</td>
<td>Ožujak</td>
<td>Travan</td>
<td>Studen</td>
<td>Lipan</td>
<td>Srpan</td>
<td>Listop</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>59</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>59</td>
<td>7</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>15,2</td>
<td>16,8</td>
<td>12,1</td>
<td>6,6</td>
<td>9,8</td>
<td>13,1</td>
<td>15,2</td>
<td>16,8</td>
<td>12,1</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,13</td>
<td>2,13</td>
<td>0,31</td>
<td>0,85</td>
<td>0,00</td>
<td>0,00</td>
<td>0,13</td>
<td>2,13</td>
<td>0,31</td>
</tr>
<tr>
<td>V (%)</td>
<td>85,71</td>
<td>32,20</td>
<td>85,71</td>
<td>25,00</td>
<td>100,0</td>
<td>100,0</td>
<td>85,71</td>
<td>32,20</td>
<td>85,71</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,87±0,12</td>
<td>0,83±0,09</td>
<td>0,80±0,07</td>
<td>0,74±0,16</td>
<td>0,94±0,03</td>
<td>0,79±0,07</td>
<td>0,87±0,12</td>
<td>0,83±0,09</td>
<td>0,80±0,07</td>
</tr>
</tbody>
</table>

Tablica 4.4.6.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srpan</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listop</td>
<td>Ožujak</td>
<td>Srpan</td>
<td>Kolovoz</td>
<td>Rujan</td>
<td>Listop</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>18,8</td>
<td>17,3</td>
<td>15,0</td>
<td>13,1</td>
<td>6,4</td>
<td>22,2</td>
<td>17,2</td>
<td>18,8</td>
<td>12,1</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,51</td>
<td>1,80</td>
<td>0,00</td>
<td>0,24</td>
<td>0,37</td>
<td>1,51</td>
<td>2,92</td>
<td>1,45</td>
<td>0,12</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,00</td>
<td>50,00</td>
<td>100,0</td>
<td>88,89</td>
<td>66,67</td>
<td>40,00</td>
<td>0,00</td>
<td>0,00</td>
<td>75,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,82±0,04</td>
<td>0,81±0,13</td>
<td>0,92</td>
<td>0,79±0,07</td>
<td>0,79±0,03</td>
<td>0,82±0,05</td>
<td>0,88±0,03</td>
<td>0,89±0,06</td>
<td>0,87±0,18</td>
</tr>
</tbody>
</table>

133
Na lokaciji Medsave podust je lovljen samo u lipnju, srpnju i listopadu 2004. g., i
u ožujku, travnju i studenom 2005. g. Analizom probavnog trakta ulovljenih
primjeraka u travnju i studenom 2005. g. probavila su bila potpuno prazna.
Primjeri ulovljeni u lipnju i listopadu 2004. imali su niske koeficijente punoće
(Jr=0,13 i 0,31) i visok koeficijent praznosti (V=85,71). Faktor kondicije bio je niži
u hladnijim mjesecima (Tablica 4.4.6.1.).
Vrlo mali broj primjeraka podusta je ulovljen na lokaciji Jarun. Podust nije bio
ulovljen u lipnju 2004. g., u travnju, svibnju i lipnju 2005. g. Zbog malog broja
primjeraka, povećana je mogućnost većeg broja praznih probavila. Tijekom
istraživanog razdoblja koeficijent praznosti se kretao od 40 % u srpnju 2005. g.
do 100 % u rujnu 2004. g. i studenom 2005. g. (Tablica 4.4.6.2.).

Tablica 4.4.6.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta
praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim
razredima podusta na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>9,1-11,0</th>
<th>11,1-13,0</th>
<th>>13,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>19</td>
<td>37</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,00</td>
<td>1,57</td>
<td>1,75</td>
<td>1,84</td>
<td>0,68</td>
</tr>
<tr>
<td>V (%)</td>
<td>100,0</td>
<td>56,25</td>
<td>47,06</td>
<td>33,33</td>
<td>50,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,79</td>
<td>0,81±0,13</td>
<td>0,83±0,09</td>
<td>0,81±0,09</td>
<td>0,87±0,05</td>
</tr>
</tbody>
</table>

Tablica 4.4.6.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta
praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim
razredima podusta na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>9,1-11,0</th>
<th>11,1-13,0</th>
<th>>13,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2</td>
<td>6</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,00</td>
<td>0,61</td>
<td>0,95</td>
<td>0,59</td>
<td>1,45</td>
</tr>
<tr>
<td>V (%)</td>
<td>100,0</td>
<td>83,33</td>
<td>53,85</td>
<td>54,55</td>
<td>40,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,77±0,03</td>
<td>0,82±0,08</td>
<td>0,79±0,07</td>
<td>0,82±0,06</td>
<td>0,89±0,09</td>
</tr>
</tbody>
</table>
Više praznih probavila zabilježeno je kod manjih primjeraka na obje lokacije. Podusti ispod 7 cm imali su potpuno prazna probavila, dok je kod primjeraka preko 11,1 cm bilo najmanje praznih probavila. Faktor kondicije se povećavao sa većim dužinskim razredima (Tablice 4.4.6.3. i 4.4.6.4.).

Tablica 4.4.6.5. Postotak učestalosti pojavljivanja (F) pojedinih svojst plijena u probavilu podusta na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>24,47</td>
<td>50,00</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>2,13</td>
<td>50,00</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>2,13</td>
<td>50,00</td>
</tr>
<tr>
<td>Makrofita</td>
<td>32,98</td>
<td>50,00</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>50,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>100,00</td>
<td>38,30</td>
</tr>
</tbody>
</table>

Tablica 4.4.6.6. Postotak mase (W) pojedinih svojst plijena u probavilu podusta na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,01</td>
<td>5,53</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td><0,01</td>
<td>30,00</td>
</tr>
<tr>
<td>Makrofita</td>
<td>5,53</td>
<td>100,00</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>30,00</td>
<td>70,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>100,00</td>
<td>94,46</td>
</tr>
</tbody>
</table>
U probavilima podusta pronađene su samo biljne svojte, pa nema odnosa postotka brojnosti za pojedini plijen. Na lokaciji Medsave, u lipnju je bio prisutan samo detritus, a visoke vrijednosti detritusa zabilježene su tijekom cijelog istraživanog razdoblja. Detritus se sastojao od pijeska, šljunka i neprepoznatljivog biljnog materijala. Najveći postotak učestalosti pojavljivanja pokazao se za Bacillariophyceae (srpanj 2004. i ožujak 2005. g.) i makrofita (srpanj i listopad 2004. g.). Pronađene biljne svojte bile su vrlo male mase, pa se većina sadržaja probavila odnosi na detritus (Tablice 4.4.6.5. i 4.4.6.6.).

Na lokaciji Jarun slična je kompozicija pronađenih svojti plijena. U srpnju 2004. g. pronađen je samo detritus, a tijekom ostalog istraživanog razdoblja učestalo se pojavljuju Bacillariophyceae, a ponekad su bile masovne (srpanj, kolovoz i rujan 2005.). Makrofita je bila prisutna u kolovozu 2004. g., ožujku i kolovozu 2005. g. (Tablice 4.4.6.7. i 4.4.6.8.).

Nema veće razlike u hranidbi većih i manjih primjeraka podusta na obje lokacije. Veći postotak mase makrofita u većih primjeraka jedini je pokazatelj da takve ribe uzimaju više hrane (Tablice 4.4.6.10. i 4.4.6.11.).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srpanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>33,33</td>
<td>37,50</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>12,50</td>
<td>25,00</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>12,50</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>33,33</td>
<td>12,50</td>
</tr>
<tr>
<td>Detritus</td>
<td>100,00</td>
<td>33,33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srpanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>1,00</td>
<td>1,06</td>
</tr>
<tr>
<td>Detritus</td>
<td>100,00</td>
<td>99,00</td>
</tr>
</tbody>
</table>
Tablica 4.4.6.9. Postotak učestalosti pojavljivanja (F) i postotak mase (W) plijena prema dužinskim razredima podusta na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><9,0</td>
<td>9,1-11,0</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>25,00</td>
<td>29,73</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>4,17</td>
<td>2,70</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>8,33</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>29,17</td>
<td>45,95</td>
</tr>
<tr>
<td>Sjemenke</td>
<td></td>
<td>25,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>33,33</td>
<td>51,35</td>
</tr>
</tbody>
</table>

Tablica 4.4.6.10. Postotak učestalosti pojavljivanja (F) i postotak mase (W) plijena prema dužinskim razredima podusta na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><9,0</td>
<td>9,1-11,0</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>33,33</td>
<td>42,86</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>33,33</td>
<td>14,29</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>10,00</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>7,14</td>
<td>10,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>33,33</td>
<td>35,71</td>
</tr>
</tbody>
</table>
4.4.7. Sastav ishrane nosare

Na lokaciji Medsave analizirano je ukupno 15 jedinki nosare između 6,0 i 13,3 cm standardne dužine. Pregledan je sadržaj probavila 12 jedinki ukupne dužine probavila između 8,4 i 13,9 cm. Na lokaciji Jarun analizirano je ukupno 41 jedinka nosare između 4,6 i 16,9 cm standardne dužine (Sl. 4.4.7.1.). Pregledan je sadržaj probavila 40 jedinki ukupne dužine probavila između 7,0 i 23,1 cm.

Sl. 4.4.7.1. Distribucija standardnih dužina analiziranih jedinki nosare na obje lokacije (σ = standardna devijacija, \(\bar{x} \) = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 8,33 % bilo je prazno na lokaciji Medsave, a 52,5 % na lokaciji Jarun. U 7,5 % probavila pronađeni su paraziti iz skupine Acantocephala na lokaciji Jarun. Paraziti nisu uključeni u naredne analize hranidbenih svojst
Tablica 4.4.7.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) provabila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srpanj</td>
<td>Listopad</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>16,8</td>
<td>12,1</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,64</td>
<td>1,32</td>
</tr>
<tr>
<td>V (%)</td>
<td>16,67</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,82±0,03</td>
<td>1,06</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave ulovljen je vrlo mali broj nosara i to samo u srpnju i listopadu 2004. te ožujku i svibnju 2005. g. Koeficijent punoće provabila bio je najveći u svibnju 2005. g. (Jr=2,46), a faktor kondicije u listopadu 2004. (CF=1,06). Na lokaciji Jarun, najveći broj primjeraka nosare ulovljen je u listopadu 2004. g. U lipnju 2004. g. i ožujku 2005. g. sva provabila bila su prazna. Najveći koeficijent punoće bio je u lipnju 2005. g. (Jr=3,07), a kondicijski koeficijent u listopadu 2005. g. (Tablice 4.4.7.1. i 4.4.7.2.)
Tablica 4.4.7.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima nosare na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>8,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>2,46</td>
<td>1,46</td>
<td>1,53</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>14,29</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,86</td>
<td>0,77±0,11</td>
<td>0,87±0,14</td>
</tr>
</tbody>
</table>

Tablica 4.4.7.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima nosare na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>8,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>12</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,09</td>
<td>0,45</td>
<td>0,61</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,00</td>
<td>52,17</td>
<td>60</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,77±0,12</td>
<td>0,90±0,09</td>
<td>0,91±0,14</td>
</tr>
</tbody>
</table>

Na obje lokacije primjeri nosare manji od 8 cm imali su veći koeficijent punoće i relativno nizak koeficijent praznosti. Najniži koeficijent praznosti zabilježen je kod primjeraka 8,1 do 10,0 cm na lokaciji Jarun (Jr=0,45). Koeficijent kondicije pokazuje rast s dužinom ribe (Tablice 4.4.7.3. i 4.4.7.4.).
Tablica 4.4.7.5. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojstva plijena u probavilu nosare na lokaciji Medsave tijekom 2004. i 2005. g

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td>11,11</td>
<td>8,33</td>
<td>+</td>
<td>+</td>
<td><0,01</td>
<td><0,01</td>
<td>11,11</td>
<td>8,33</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>11,11</td>
<td>+</td>
<td>5,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>27,28</td>
<td>50,00</td>
<td>+</td>
<td>+</td>
<td>19,87</td>
<td>90,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjemenke</td>
<td>5,56</td>
<td>+</td>
<td>0,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>8,33</td>
<td>5,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>8,33</td>
<td>55,56</td>
<td>46,07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>5,56</td>
<td>16,67</td>
<td>50,00</td>
<td>76,92</td>
<td>11,11</td>
<td>100,00</td>
<td>1,18</td>
<td>5,32</td>
<td>5,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>11,11</td>
<td>8,33</td>
<td>23,08</td>
<td>16,67</td>
<td>0,04</td>
<td>0,71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>8,33</td>
<td>5,56</td>
<td>2,09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>8,33</td>
<td>5,56</td>
<td>0,29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>27,28</td>
<td>50,00</td>
<td>33,33</td>
<td>50,00</td>
<td>72,66</td>
<td>10,00</td>
<td>45,50</td>
<td>95,00</td>
<td></td>
</tr>
</tbody>
</table>

142
Tablica 4.4.7.6. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojst v plijena u probavilu nosare na lokaciji Jarun tijekom 2004. i 2005. g

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Listopad</td>
<td>Lipanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>33,33</td>
<td>+</td>
<td>2,50</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>33,33</td>
<td>5,71</td>
<td>25,00</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>4,35</td>
<td>5,71</td>
<td>25,00</td>
</tr>
<tr>
<td>Planorbis sp.</td>
<td>25,00</td>
<td>5,88</td>
<td>0,50</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>8,70</td>
<td>58,80</td>
<td>19,28</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>17,39</td>
<td>40,00</td>
<td>1,90</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>25,00</td>
<td>53,85</td>
<td>1,73</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>25,00</td>
<td>23,08</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>25,00</td>
<td>35,29</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>8,70</td>
<td>37,14</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>60,87</td>
<td>25,00</td>
<td>25,00</td>
</tr>
</tbody>
</table>
Tablica 4.4.7.7. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima nosare na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8,0</td>
<td>8.1-10.0</td>
<td>>10,1</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>5,88</td>
<td>13,33</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>5,88</td>
<td>6,67</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>23,53</td>
<td>13,33</td>
<td>+</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>6,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>6,67</td>
<td>5,88</td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>6,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>100,00</td>
<td>75,00</td>
<td>11,76</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>11,76</td>
<td>6,67</td>
<td>18,75</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>5,88</td>
<td>6,25</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>6,67</td>
<td>5,88</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>35,29</td>
<td>26,67</td>
</tr>
</tbody>
</table>

Tablica 4.4.7.8. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima nosare na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8,0</td>
<td>8.1-10.0</td>
<td>>10,1</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>6,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>14,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>5,26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planorbis sp.</td>
<td>14,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>10,53</td>
<td>14,29</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>26,67</td>
<td>15,79</td>
<td>14,29</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>6,67</td>
<td>5,26</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>6,67</td>
<td>5,26</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>14,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>13,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>40,00</td>
<td>57,89</td>
<td>28,57</td>
</tr>
</tbody>
</table>
Na lokaciji Medsave najveću učestalost pojavljivanja i postotak brojnosti imali su Insecta n. det, te lčinke insekata kao što su Chironomidae i Ephemeroptera. U ožujku 2005. g. zabilježen je Gammarus sp. vrlo visokog postotka brojnosti (N=55,56) i postotka mase (W=46,07). Srpanj i listopad 2004. okarakteriziran je visokim udjelom makrofita u prehrani nosare (Tablica 4.4.7.5.).
Jedinke nosare punih probavila na lokaciji Jarun ulovljene su samo u listopadu 2004. g. Postotak učestalosti pojavljivanja Insecta u tom razdoblju bio je najveći (F=17,39), a Gammarus sp. prevladavao je postotkom brojnosti (N=40,00) i postotkom mase (W=19,28). Pronađen je i visok udio Trichoptera. U 2005. g. prevladavali su Insecta n. det. i lčinke insekata (Chironomidae i Ephemeroptera) te Coleoptera. Vrlo slabo su zastupljene biljne svojte (Tablica 4.4.7.6.).
Prvi dužinski razred na lokaciji Medsave je predstavljen niskim brojem jedinki, pa je pronađena samo jedna svojta plijena. Dužinski razred od 8,1 do 10,0 cm prema učestalošću pojavljivanja i postotku mase ima preferenciju prema makrofita i ostalim algama, manji udio predstavljaju životinjske svojte. Dužinski razred >10,1 podjednako uzima i biljni i životinjski plijen (Tablica 4.4.7.7.). Na lokaciji Jarun osim prvog dužinskog razreda, niti jedna veća jedinka nije uzimala plijen biljnog porijekla. Većinom su zastupljeni Gammarus sp. i Insecta n. det. (Tablica 4.4.7.8.).
4.4.8. Sastav ishrane klenića

Na lokaciji Medsave analizirano je ukupno 7 jedinki klenića između 7,3 i 11,9 cm standardne dužine. Pregledan je sadržaj probavila 7 jedinki ukupne dužine probavila između 8,0 i 18,0 cm. Na lokaciji Jarun analizirano je ukupno 8 jedinki klenića između 7,2 i 9,3 cm standardne dužine (Sl. 4.4.8.1.). Pregledan je sadržaj probavila 8 jedinki ukupne dužine probavila između 7,8 i 13,5 cm.

Sl. 4.4.8.1. Distribucija standardnih dužina analiziranih jedinki klenića na obje lokacije (σ = standardna devijacija, \(\bar{x} \) = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 28,6 % bilo je prazno na lokaciji Medsave, a 25,0 % na lokaciji Jarun. U 14,29 % probavila pronađeni su paraziti iz skupine Acantoccephala na lokaciji Medsave, a 25,0 % na lokaciji Jarun. Paraziti nisu uključeni u naredne analize hranidbenih svojti.
Tablica 4.4.8.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rujan</td>
<td>Ožujak</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>16,9</td>
<td>6,6</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,36</td>
<td>1,27</td>
</tr>
<tr>
<td>V (%)</td>
<td>66,67</td>
<td>33,33</td>
</tr>
<tr>
<td>CF±σ</td>
<td>1,01±0,05</td>
<td>0,77±0,08</td>
</tr>
</tbody>
</table>

Tablica 4.4.8.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kolovoz</td>
<td>Listopad</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>17,3</td>
<td>13,1</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,17</td>
<td>1,24</td>
</tr>
<tr>
<td>V (%)</td>
<td>33,33</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>1,00±0,06</td>
<td>0,80±0,05</td>
</tr>
</tbody>
</table>

Klenić je lovjen u rujnu 2004. g., ožujku i travnju 2005. g. na lokaciji Medsave, a u kolovozu i listopadu 2004. g. na lokaciji Jarun. Najniži koeficijent praznosti i punoće bio je u rujnu 2004. na lokaciji Medsave. Faktor kondicije bio je niži u hladnijem dijelu godine na obje lokacije (Tablice 4.4.8.1. i 4.4.8.2.).
Tablica 4.4.8.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima klenića na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>8,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,20</td>
<td>0,55</td>
<td>1,27</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,00</td>
<td>50,00</td>
<td>33,33</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,02±0,10</td>
<td>1,04±0,03</td>
<td>0,77±0,08</td>
</tr>
</tbody>
</table>

Tablica 4.4.8.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima klenića na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>>8,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,58</td>
<td>1,39</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,00</td>
<td>16,67</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,00±0,07</td>
<td>0,93±0,11</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave dužine riba manje od 8,0 cm imale su 50,00 % praznih probavila, ali visoki koeficijent praznosti (V=1,20). Ribe dužine od 8,1 do 10,0 cm imale su isti koeficijent praznosti, ali znatno niži koeficijent punoće (Jr=0,55). Veće ribe imale su manje praznih probavila i visok koeficijent punoće (Jr=1,27). Faktor kondicije bio je manji kod većih primjeraka (Tablica 4.4.8.3.). Na lokaciji Jarun manje praznih probavila imali su veći primjerci, ali i niži koeficijent kondicije (Tablica 4.4.8.4.).
Tablica 4.4.8.5. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojsti plijena u probavilu klenića na lokaciji Medsave tijekom 2004. i 2005. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F%</td>
<td>N%</td>
<td>W%</td>
<td>F%</td>
<td>N%</td>
<td>W%</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>50,00</td>
<td>+</td>
<td>0,01</td>
<td>50,00</td>
<td>+</td>
<td>0,01</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>50,00</td>
<td>100,00</td>
<td>100,00</td>
<td>50,00</td>
<td>10,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>50,00</td>
<td>50,00</td>
<td>90,00</td>
<td>99,99</td>
<td>90,00</td>
</tr>
</tbody>
</table>

Tablica 4.4.8.6. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojsti plijena u probavilu klenića na lokaciji Jarun u 2004. g.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F%</td>
<td>N%</td>
<td>W%</td>
</tr>
<tr>
<td></td>
<td>Kolovoz</td>
<td>Listopad</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>Makrofita</td>
<td>10,00</td>
<td>+</td>
<td>17,19</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>10,00</td>
<td>+</td>
<td>0,72</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>40,00</td>
<td>10,00</td>
<td>80,00</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>10,00</td>
<td>20,00</td>
<td>17,54</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>10,00</td>
<td>20,00</td>
<td>5,46</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>10,00</td>
<td>50,00</td>
<td>7,56</td>
</tr>
<tr>
<td>Pisces</td>
<td>20,00</td>
<td>20,00</td>
<td>6,39</td>
</tr>
<tr>
<td>Detritus</td>
<td>40,00</td>
<td>40,00</td>
<td>12,45</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave klenić se hranio u rujnu 2004 i travnju 2005. g. s Ephemeroptera, a u ožujku 2005. g. s Bacillariophyceae. Na lokaciji Jarun, osim makrofita, nije pronađena niti jedna manja biljna svojta. U kolovozu 2004. g. prevladavali su Insecta n. det., a u znatnom omjeru bio je prisutan plijen iz skupine Pisces. U listopadu 2004. g. pronađeno je znatno više svojsti plijena s time da su prema brojnosti dominirali Coleoptera, a prema masi Ephemeroptera i makrofita (Tablice 4.4.8.5. i 4.4.8.6.).
Tablica 4.4.8.7. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima kleniča na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8,0</td>
<td>8,1-10,0</td>
<td>>10,1</td>
</tr>
<tr>
<td></td>
<td><8,0</td>
<td>8,1-10,0</td>
<td>>10,1</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>50,00</td>
<td>+</td>
<td>0,01</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>50,00</td>
<td>100,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>90,00</td>
<td>99,99</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave dužine kleniča manje od 10,0 cm hranile su se uglavnom s Ephemeroptera, a kod većih primjeraka osim Bacillariophyceae nije pronađena niti jedna svojta plijena. Vrlo su visoke vrijednosti detritusa za sve primjerke. Na lokaciji Jarun se može očitati da primjeri manji od 8,1 cm uzimaju Insecta n. det., a veći primjeri uglavnom Coleoptera, Ephemeroptera, Insecta n. det. i makrofita (Tablice 4.4.8.7. i 4.4.8.8.).

Tablica 4.4.8.8. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima kleniča na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8,0</td>
<td>>8,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td><8,0</td>
<td>>8,1</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>7,69</td>
<td>+</td>
<td>14,36</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>7,69</td>
<td>+</td>
<td>0,60</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>50,00</td>
<td>15,38</td>
<td>28,57</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>7,69</td>
<td>14,29</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>7,69</td>
<td>14,29</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>7,69</td>
<td>35,71</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>7,69</td>
<td>7,14</td>
<td>1,74</td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>38,46</td>
<td>95,00</td>
</tr>
</tbody>
</table>
4.4.9. Sastav ishrane potočne mrene

Na lokaciji Medsave analizirano je ukupno 6 jedinki potočne mrene između 4,5 i 15,0 cm standardne dužine. Pregledan je sadržaj probavila 5 jedinki ukupne dužine probavila između 7,8 i 22,5 cm. Na lokaciji Jarun analizirano je ukupno 4 jedinke potočne mrene između 3,85 i 20,2 cm standardne dužine (Sl. 4.4.9.1.). Pregledan je sadržaj probavila 3 jedinke ukupne dužine probavila između 12,2 i 51,0 cm.

Sl. 4.4.9.1. Distribucija standardnih dužina analiziranih jedinki potočne mrene na obje lokacije (σ = standardna devijacija, \(\bar{x} \) = prosječna vrijednost, n= broj primjeraka)

Tablica 4.4.9.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipan</td>
<td>List</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,03</td>
<td>1,78</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>25,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,17</td>
<td>0,93±0,11</td>
</tr>
</tbody>
</table>

Tablica 4.4.9.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipan</td>
<td>Svi</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jr (%)</td>
<td>4,60</td>
<td>0,00</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>100,0</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,74±0,03</td>
<td>0,86</td>
</tr>
</tbody>
</table>

Mali broj primjeraka potočne mrene ulovljen je na obje lokacije. Probavila su uglavnom bila puna, osim listopada 2005. g. na lokaciji Medsave, kada je 25 % probavila bilo prazno. Najniži koeficijent kondicije bio je u lipnju 2004. g. kada je iznosio 0,74 (Tablice 4.4.9.1. i 4.4.9.2.).
Tablica 4.4.9.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima potočne mrene na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,42</td>
<td>1,81</td>
<td>1,34</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,98±0,05</td>
<td>0,87±0,13</td>
<td>1,17</td>
</tr>
</tbody>
</table>

Tablica 4.4.9.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima potočne mrene na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,00</td>
<td>2,67</td>
<td>5,55</td>
</tr>
<tr>
<td>V (%)</td>
<td>100,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,86</td>
<td>0,73</td>
<td>0,75±0,04</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave vrijednosti koeficijenta punoće i praznosti su prilično ujednačeni, a faktor kondicije je veći kod većih primjeraka. Na lokaciji Jarun primjerci manji od 7,0 cm imali su potpuno prazna probavila, a visoku vrijednost punoće pokazali su veliki primjerci potočne mrene (Jr=5,55). Koeficijent kondicije bio je najveći kod malih primjeraka (Tablice 4.4.9.3. i 4.4.9.4.).
Tablica 4.4.9.5. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojstih plijena u probavilu potočne mreze na lokaciji Medsave tijekom 2004. i 2005. g

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipanj</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listopad</td>
<td>25,00</td>
<td>30,00</td>
<td>+</td>
<td>+</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Studeni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>18,18</td>
<td>+</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>18,18</td>
<td>+</td>
<td>5,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>25,00</td>
<td>30,00</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>25,00</td>
<td>10,00</td>
<td>100,00</td>
<td>100,00</td>
<td>40,00</td>
<td>0,03</td>
</tr>
<tr>
<td>Detritus</td>
<td>25,00</td>
<td>30,00</td>
<td>50,00</td>
<td></td>
<td>59,00</td>
<td>95,01</td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gobio gobio</td>
<td>9,09</td>
<td>5,26</td>
<td>44,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>27,27</td>
<td>42,89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.4.9.6. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojstih plijena u probavilu potočne mreze na lokaciji Jarun tijekom 2004. g

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipanj</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listopad</td>
<td>18,18</td>
<td>+</td>
<td>0,01</td>
</tr>
<tr>
<td>Studeni</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>18,18</td>
<td>+</td>
<td>5,10</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>18,18</td>
<td>+</td>
<td>2,50</td>
</tr>
<tr>
<td>Makrofita</td>
<td>9,09</td>
<td>+</td>
<td>5,40</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>18,18</td>
<td>94,74</td>
<td>44,10</td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gobio gobio</td>
<td>9,09</td>
<td>5,26</td>
<td>42,89</td>
</tr>
<tr>
<td>Detritus</td>
<td>27,27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potočna mrena imala je prilično ujednačen omjer biljnih i životinjskih svojstih plijena na lokaciji Medsave, a jedino kod postotka mase vidljivo je da ipak prevladava životinjski pljen. Na lokaciji Jarun vidljiva je slična situacija, osim što ovdje kod postotka mase prevladava pljen Gobio gobio (Tablice 4.4.9.5. i 4.4.9.6.).
Tablica 4.4.9.7. Postotak učestalosti pojavljanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima potočne mrene na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7,0</td>
<td>7,1-10,0</td>
<td>>10,1</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>16,67</td>
<td>33,33</td>
<td>25,00</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>16,67</td>
<td>33,33</td>
<td>25,00</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>16,67</td>
<td></td>
<td>50,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>16,67</td>
<td></td>
<td>25,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>33,33</td>
<td>33,33</td>
<td>25,00</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave manji i veći primjeri podjednako se hrane biljnim i životinjskim svojstvima. Kod većih primjeraka masom prevladavaju Chironomidae (W=40,00). I na lokaciji Jarun podjednako je omjer biljnog i životinjskog plijena, a kod primjeraka većih od 10,1 cm prevladava Gobio gobio (W=46,42) (Tablice 4.4.9.7. i 4.4.9.8.).

Tablica 4.4.9.8. Postotak učestalosti pojavljanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima potočne mrene na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><10,0</td>
<td>>10,1</td>
<td><10,0</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>25,00</td>
<td>14,29</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>25,00</td>
<td>14,29</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>14,29</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>25,00</td>
<td>14,29</td>
<td>100,00</td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gobio gobio</td>
<td></td>
<td>14,29</td>
<td>50,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>25,00</td>
<td>28,57</td>
<td></td>
</tr>
</tbody>
</table>

Na lokaciji Medsave manji i veći primjeri podjednako se hrane biljnim i životinjskim svojstvima. Kod većih primjeraka masom prevladavaju Chironomidae (W=40,00). I na lokaciji Jarun podjednako je omjer biljnog i životinjskog plijena, a kod primjeraka većih od 10,1 cm prevladava Gobio gobio (W=46,42) (Tablice 4.4.9.7. i 4.4.9.8.).
4.4.10. Sastav ishrane bodorke

Na lokaciji Medsave analizirano je ukupno 15 jedinki bodorke između 5,5 i 15,3 cm standardne dužine. Pregledan je sadržaj probavila 13 jedinki ukupne dužine probavila između 4,9 i 17,2 cm. Na lokaciji Jarun analizirano je ukupno 26 jedinki bodorke između 4,6 i 12,3 cm standardne dužine (Sl. 4.4.10.1.). Pregledan je sadržaj probavila 26 jedinki ukupne dužine probavila između 4,3 i 18,0 cm.

Sl. 4.4.10.1. Distribucija standardnih dužina analiziranih jedinki bodorke na obje lokacije (σ = standardna devijacija, \bar{x} = prosječna vrijednost, n= broj primjeraka)

![Histogram Predstavljanje frekventan SD (cm) na lokaciji Medsave i Jarun](image)

Od ukupnog broja pregledanih probavila 53,85 % bilo je prazno na lokaciji Medsave, a 34,6 % na lokaciji Jarun. Samo na lokaciji Jarun pronađeni su paraziti iz skupine Acanthocephala u jednom primjerku ribe. Paraziti nisu uključeni u naredne analize hranidbenih svojti.
Tablica 4.4.10.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
<td>Listopad</td>
<td></td>
<td>Ožujak</td>
<td>Travanj</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>15,2</td>
<td>16,8</td>
<td>12,1</td>
<td>6,6</td>
<td>9,8</td>
<td>11,8</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,00</td>
<td>2,11</td>
<td>0,20</td>
<td>3,22</td>
<td>1,53</td>
<td>0,80</td>
</tr>
<tr>
<td>V (%)</td>
<td>100,0</td>
<td>50,0</td>
<td>80,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>CF±σ</td>
<td>1,03±0,06</td>
<td>0,93±0,06</td>
<td>1,06±0,09</td>
<td>0,74</td>
<td>1,11±0,27</td>
<td>1,09</td>
</tr>
</tbody>
</table>

Tablica 4.4.10.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Rujan</td>
<td>Listopad</td>
<td></td>
<td>Ožujak</td>
<td>Sibanj</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>19,9</td>
<td>18,8</td>
<td>15,0</td>
<td>13,1</td>
<td>6,4</td>
<td>12,9</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,66</td>
<td>2,3</td>
<td>0,93</td>
<td>0,00</td>
<td>1,71</td>
<td>1,13</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,00</td>
<td>0,00</td>
<td>0,00</td>
<td>100,00</td>
<td>50,00</td>
<td>44,44</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,86±0,19</td>
<td>0,96</td>
<td>1,15±0,08</td>
<td>1,04±0,02</td>
<td>0,86±0,16</td>
<td>1,00±0,18</td>
</tr>
</tbody>
</table>

Najpunija probavila na lokaciji Medsave bodorka je imala u srpnju 2004. i ožujku 2005. g. Potpuno prazna probavila pronađena su u lipnju 2004. g. Faktor kondicije bio je najmanji u ožujku 2005. g. Na lokaciji Jarun potpuno prazna probavila zabilježena su u listopadu 2004. g., a u lipnju 2004. i ožujku 2005. g. 50 % probavila bilo je prazno. Koeficijent punoće bio je najveći u studenom 2005. g. (Jr=3,56). Faktor kondicije kretao se od 0,86 u ožujku 2005. g. do 1,15 u rujnu 2004. g. (Tablice 4.4.10.1. i 4.4.10.2.).
Tablica 4.4.10.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima bodorke na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>>9,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,51</td>
<td>1,68</td>
<td>0,39</td>
</tr>
<tr>
<td>V (%)</td>
<td>66,67</td>
<td>40,00</td>
<td>50,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,98±0,08</td>
<td>0,98±0,15</td>
<td>1,23±0,10</td>
</tr>
</tbody>
</table>

Tablica 4.4.10.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima bodorke na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><7,0</th>
<th>7,1-9,0</th>
<th>>9,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>9</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,37</td>
<td>1,52</td>
<td>1,63</td>
</tr>
<tr>
<td>V (%)</td>
<td>33,33</td>
<td>38,46</td>
<td>25,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>1,06±0,14</td>
<td>0,96±0,18</td>
<td>1,08±0,12</td>
</tr>
</tbody>
</table>

Koeficijent praznosti probavila smanjivao se s dužinom ribe na obje lokacije, a faktor kondicije povećavao. Najviše praznih probavila na lokaciji Medsave imali su primjerci manji od 7 cm, a na lokaciji Jarun primjerci od 7,1-9,0 cm dužine (Tablice 4.4.10.3. i 4.4.10.4.).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td>33,33</td>
<td>20,00</td>
<td>+</td>
<td>+</td>
<td><0,01</td>
<td><0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>25,00</td>
<td>33,33</td>
<td>+</td>
<td>+</td>
<td>20,00</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>25,00</td>
<td></td>
<td>+</td>
<td></td>
<td>10,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>25,00</td>
<td>50,00</td>
<td>40,00</td>
<td>100,00</td>
<td>100,00</td>
<td>100,00</td>
<td>1,00</td>
<td>60,00</td>
<td>2,49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>100,00</td>
<td></td>
<td>100,00</td>
<td></td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>25,00</td>
<td>50,00</td>
<td>33,33</td>
<td>40,00</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.4.10.5. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojti plijena u probavilu bodorke na lokaciji Medsave tijekom 2004. i 2005. g.
U srpnju 2004. na lokaciji Medsave prevladavao je plijen biljnog porijekla, dok su u listopadu najviše zastupljeni bili Insecta n. det. U ožujku 2005. g. pronađene su samo biljne svojte plijena, u travnju Insecta n. det, a u svibnju samo Trichoptera.

Tablica 4.4.10.6. Postotak učestalosti pojavljanja (F) pojedinih svojti plijena u probavilu bodorke na lokaciji Jarun tijekom 2004. i 2005. g

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>40,00</td>
<td>14,29</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>7,14</td>
<td>14,29</td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>50,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>50,00</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>50,00</td>
<td>50,00</td>
</tr>
</tbody>
</table>

Tijekom 2004. g. na lokaciji Jarun bili su prisutni Coleoptera u lipnju, Insecta n. det. u srpnju, a Chironomidae u rujnu. Tijekom 2005. g. u većem postotku učestalosti i postotku mase bili su prisutne zelene alge, a u srpnju visoka biomasa vrste Cladophora sp. U svibnju u većoj brojnosti zabilježeni su Chironomidae, a u rujnu u većoj biomasi Pisces (Tablice 4.4.10.6., 4.4.10.7. i 4.4.10.8.).
Tablica 4.4.10.7. Postotak brojnosti (N) pojedinih svojti plijena u probavilu bodorke na lokaciji Jarun tijekom 2004. i 2005. g

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>100,00</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.4.10.8. Postotak mase (W) pojedinih svojti plijena u probavilu bodorke na lokaciji Jarun tijekom 2004. i 2005. g

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>7,92</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,01</td>
<td>70,88</td>
</tr>
<tr>
<td>Makrofita</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>30,00</td>
<td>0,87</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>7,86</td>
<td>2,69</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td>2,74</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>3,10</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritus</td>
<td>96,90</td>
<td>70,00</td>
</tr>
</tbody>
</table>

161
Tablica 4.4.10.9. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima bodorke na lokaciji Medsave

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7,0</td>
<td>7,1-9,0</td>
<td>>9,1</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>25,00</td>
<td>11,11</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>22,22</td>
<td>+</td>
<td>11,55</td>
</tr>
<tr>
<td>Makrofita</td>
<td>11,11</td>
<td>+</td>
<td>5,78</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>25,00</td>
<td>22,22</td>
<td>50,00</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>25,00</td>
<td>16,67</td>
<td>22,89</td>
</tr>
<tr>
<td>Detritus</td>
<td>25,00</td>
<td>33,33</td>
<td>50,00</td>
</tr>
</tbody>
</table>

Tablica 4.4.10.10. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima bodorke na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7,0</td>
<td>7,1-9,0</td>
<td>>9,1</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td>6,25</td>
<td>+</td>
<td>0,01</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>12,50</td>
<td>20,83</td>
<td>20,00</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>6,25</td>
<td>8,33</td>
<td>20,00</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>6,25</td>
<td>4,17</td>
<td>10,00</td>
</tr>
<tr>
<td>Makrofita</td>
<td>4,17</td>
<td>+</td>
<td>0,25</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>6,25</td>
<td>12,50</td>
<td>14,29</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>12,50</td>
<td>57,14</td>
<td>12,50</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>6,25</td>
<td>28,57</td>
<td>0,80</td>
</tr>
<tr>
<td>Trichoertera</td>
<td>10,00</td>
<td>50,00</td>
<td>2,45</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>10,00</td>
<td>50,00</td>
<td>2,45</td>
</tr>
<tr>
<td>Pisces</td>
<td>4,17</td>
<td>6,25</td>
<td>4,17</td>
</tr>
<tr>
<td>Detritus</td>
<td>43,75</td>
<td>33,33</td>
<td>30,00</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave primjerici bodorke ispod 7,0 cm hranili su se najviše s Trichoertera, primjerici između 7,1 i 9,0 cm s Insecta n. det. i zelenim algama, a veći primjerici samo s Insecta n. det. Na lokaciji Jarun primjerici svih veličina uzimali su veliku biomasu zelenih algi, a manje hranu životinjskog porijekla (Tablice 4.4.10.8., 4.4.10.9. i 4.4.10.10.).
4.4.11. Sastav ishrane deverike

Na lokaciji Medsave analizirana je 1 jedinka deverike 9,2 cm standardne dužine i 9,0 cm dužine crijeva.

Na lokaciji Jarun analizirano je ukupno 13 jedinki deverike između 6,3 i 11,8 cm standardne dužine. Pregledan je sadržaj probavila 13 jedinke ukupne dužine probavila između 6,4 i 13,2 cm.

Sl. 4.4.11.1. Distribucija standardnih dužina analiziranih jedinki deverike na lokaciji Jarun (σ = standardna devijacija, \(\bar{x}\) = prosječna vrijednost, n= broj primjeraka)

Od ukupnog broja pregledanih probavila 15,38 % bilo je prazno na lokaciji Jarun. Paraziti nisu pronađeni u probavilu deverike.
Tablica 4.4.11.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Godina</th>
<th>2004</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Listopad</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>12,1</td>
<td></td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,01</td>
<td></td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,68</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.4.11.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Godina</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srpanj</td>
<td>Kolovoz</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>18,8</td>
<td>17,3</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,54</td>
<td>0,97</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>1,07</td>
<td>0,94</td>
</tr>
</tbody>
</table>

Koeficijent punoće probavila bio je najveći na lokaciji Jarun u listopadu 2004. g. kada je ulovljeno najviše primjeraka deverike. Faktor kondicije u ljetnim mjesecima pokazuje veće vrijednosti nego u zimskim mjesecima (Tablice 4.4.11.1. i 4.4.11.2.).
Tablica 4.4.11.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima deverike na lokaciji Medsave (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th>8,1-10,0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Jr (%)</td>
<td>1,01</td>
<td></td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,68</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.4.11.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima deverike na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><8,0</th>
<th>8,1-10,0</th>
<th>>10,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>2,84</td>
<td>0,62</td>
<td>0,61</td>
</tr>
<tr>
<td>V (%)</td>
<td>0,00</td>
<td>33,33</td>
<td>0,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,81±0,05</td>
<td>0,97±0,06</td>
<td>0,96±0,14</td>
</tr>
</tbody>
</table>

Na lokaciji Medsave ulovljen je samo jedan primjerak deverike punog probavila. Koeficijent punoće iznosio je 1,01, a faktor kondicije je bio vrlo nizak i iznosio je 0,68. Na lokaciji Jarun ulovljeno je tri primjerka ispod 8,0 cm punih probavila sa visokim koeficijentom punoće (Jr=2,84). Primjeri između 8,1 i 10,0 cm imali su 33,33 % probavila prazno s vrlo niskim koeficijentom punoće (Jr=0,62). Primjeri deverike veći od 10,1 cm imali su sva probavila puna, ali vrlo nizak koeficijent punoće (Jr=0,61). Faktor kondicije se povećavao s veličinom ribe (Tablice 4.4.11.3. i 4.4.11.4.).
Tablica 4.4.11.5. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojstva plijena u probavilu deverike na lokaciji Medsave (Listopad M) i Jarun tijekom 2004. i 2005. g

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srpanj</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Kolovoz</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td><0,01</td>
<td>1,00</td>
<td><0,01</td>
<td>1,00</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Listopad M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>100,00</td>
<td>100,00</td>
<td>2,00</td>
<td>0,10</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Sviibanj</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5,00</td>
<td>5,00</td>
<td>0,01</td>
<td>0,01</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Makrofita</td>
<td>8,33</td>
<td>18,18</td>
<td>0,01</td>
<td>0,01</td>
<td>5,00</td>
<td>5,00</td>
<td>0,01</td>
<td>0,01</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Nematoda</td>
<td>20,00</td>
<td>33,33</td>
<td>0,10</td>
<td>0,10</td>
<td>20,00</td>
<td>20,00</td>
<td>0,10</td>
<td>0,10</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Arachnida</td>
<td>33,33</td>
<td>100,00</td>
<td>5,00</td>
<td>5,00</td>
<td>33,33</td>
<td>33,33</td>
<td>33,33</td>
<td>33,33</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>8,33</td>
<td>18,18</td>
<td>5,00</td>
<td>5,00</td>
<td>33,33</td>
<td>33,33</td>
<td>5,00</td>
<td>5,00</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>33,33</td>
<td>18,18</td>
<td>5,00</td>
<td>5,00</td>
<td>33,33</td>
<td>33,33</td>
<td>5,00</td>
<td>5,00</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>33,33</td>
<td>33,33</td>
<td>20,00</td>
<td>20,00</td>
<td>33,33</td>
<td>33,33</td>
<td>20,00</td>
<td>20,00</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>8,33</td>
<td>18,18</td>
<td>5,00</td>
<td>5,00</td>
<td>33,33</td>
<td>33,33</td>
<td>5,00</td>
<td>5,00</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>8,33</td>
<td>18,18</td>
<td>5,00</td>
<td>5,00</td>
<td>33,33</td>
<td>33,33</td>
<td>5,00</td>
<td>5,00</td>
<td>2004.</td>
<td>2005.</td>
<td>2004.</td>
<td>2005.</td>
</tr>
</tbody>
</table>
Tablica 4.4.11.6. Postotak učestalosti pojavljanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima deverike na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td>14,29</td>
<td>27,27</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>14,29</td>
<td>9,09</td>
<td>+</td>
</tr>
<tr>
<td>Makrofita</td>
<td>9,09</td>
<td>+</td>
<td><0,01</td>
</tr>
<tr>
<td>Nematoda</td>
<td>9,09</td>
<td>28,57</td>
<td>1,36</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>16,67</td>
<td>12,50</td>
<td>0,04</td>
</tr>
<tr>
<td>Arachnida</td>
<td>14,29</td>
<td>50,00</td>
<td>0,03</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>9,09</td>
<td>42,86</td>
<td>1,90</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>16,67</td>
<td>87,50</td>
<td>1,50</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>9,09</td>
<td>28,57</td>
<td>4,08</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>14,29</td>
<td>50,00</td>
<td>0,15</td>
</tr>
<tr>
<td>Detritus</td>
<td>42,86</td>
<td>27,27</td>
<td>99,82</td>
</tr>
</tbody>
</table>

U tablici 4.4.11.5. prikazan je postotak učestalosti pojavljuvanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojti plijena u probavilu deverike na lokaciji Medsave i Jarun tijekom 2004. i 2005. g. Primjerak deverike ulovljen na lokaciji Medsave u listopadu 2004. hranio se sa Copepoda i Chironomidae. Na lokaciji Jarun u srpnju 2004. g. glavna hrana bila je Oligochaeta, u kolovozu Insecta, a u listopadu Arachnida, Chironomidae i Ephemeroptera s vrlo malom biomassom. U svibnju 2005. g. glavnu hranu predstavljala je makrofita i Ceratopogonidae, a u srpnju Nematoda. Većina ulovljenih primjeraka imala je visok postotak detritusa, odnosno neprepoznatljivu razgrađenu smjesu. Deverike manjih dužina hranile su se algama, Arachnida i Ephemeroptera. Primjeri između 8,1 i 10,0 cm imale su visok postotak mase za makrofite, a visok postotak učestalosti pojavljanja za Bacillariophyceae. Već primjeri hranili su se s Oligochaeta i Chironomidae (Tablica 4.4.1.6.).
4.4.12. Sastav ishrane plotice

Na lokaciji Medsave nije ulovljen niti jedan primjerak plotice. Na lokaciji Jarun analizirano je ukupno 4 jedinke plotice između 7,2 i 18,4 cm standardne dužine. Pregledan je sadržaj probavila sve 4 jedinke ukupne dužine probavila između 8,7 i 31,7 cm. Prazno probavilo imao je jedan primjerak ulovljen u listopadu 2004. g. Paraziti nisu pronađeni u probavilima.

Tablica 4.4.12.1. Prikaz standardnih dužina i dužina crijeva plotice ulovljene na lokaciji Jarun

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Listopad</td>
<td>Ožujak</td>
<td>Lipanj</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>7,2</td>
<td>7,3</td>
</tr>
<tr>
<td>Dužina crijeva</td>
<td>8,7</td>
<td>9,2</td>
</tr>
</tbody>
</table>

Tablica 4.4.12.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) tijekom 2004. i 2005. godine na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Listopad</td>
<td>Ožujak</td>
<td>Lipanj</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Temp. Vode °C</td>
<td>13,1</td>
<td>6,4</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,00</td>
<td>1,43</td>
</tr>
<tr>
<td>V (%)</td>
<td>100,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CF± σ</td>
<td>0,88</td>
<td>0,96</td>
</tr>
</tbody>
</table>

Najpunija probavila u plotice bila su u lipnju 2005. g. (Jr=5,33), a visok koeficijent punoće zabilježen je i u srpnju iste godine (Jr=2,24). U listopadu 2004. g. sva probavila bila su prazna. Koeficijent kondicije povećavao se s povećanjem temperature.
Tablica 4.4.12.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i kondicijskog koeficijenta (CF) prema dužinskim razredima plotice na lokaciji Jarun (n=broj primjeraka)

<table>
<thead>
<tr>
<th>Dužine (cm)</th>
<th><9,0</th>
<th>>9,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Jr (%)</td>
<td>0,71</td>
<td>3,79</td>
</tr>
<tr>
<td>V (%)</td>
<td>50,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CF±σ</td>
<td>0,92±0,06</td>
<td>1,14±0,02</td>
</tr>
</tbody>
</table>

Primjeri manji od 9,0 cm imali su nizak koeficijent punoće i 50% praznih probavila, a i nizak koeficijent kondicije. Svi veći primjeri imali su puna probavila (Tablica 4.4.12.3.).

Tablica 4.4.12.4. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) pojedinih svojstva plijena u probavnom traktu plotice na lokaciji Jarun tijekom 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ožujak</td>
<td>Lipanj</td>
<td>Srpanj</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>25,00</td>
<td>20,00</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>20,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>25,00</td>
<td>20,00</td>
<td>+</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>25,00</td>
<td>20,00</td>
<td>100,00</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>50,00</td>
<td></td>
<td>100,00</td>
</tr>
<tr>
<td>Detritus</td>
<td>25,00</td>
<td>20,00</td>
<td>50,00</td>
</tr>
</tbody>
</table>

Plotice ulovljene u ožujku i lipnju imale su visok postotak učestalosti biljnog materijala, a od beskralježnjaka prisutni su bili Chironomidae. Primjeri ulovljeni u srpnju imali su samo Gastropoda u probavnom traktu (Tablica 4.4.12.4.).
Tablica 4.4.12.5. Postotak učestalosti pojavljivanja (F), postotak brojnosti (N) i postotak mase (W) plijena prema dužinskim razredima plotice na lokaciji Jarun

<table>
<thead>
<tr>
<th>Takson</th>
<th>F%</th>
<th>N%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><10,0</td>
<td>>10,1</td>
<td><10,0</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>25,00</td>
<td>14,29</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>14,29</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Makrofita</td>
<td>25,00</td>
<td>14,29</td>
<td>+</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>25,00</td>
<td>14,29</td>
<td>100,00</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>14,29</td>
<td>9,09</td>
<td>24,19</td>
</tr>
<tr>
<td>Detritus</td>
<td>25,00</td>
<td>28,57</td>
<td>70,00</td>
</tr>
</tbody>
</table>

Primjeri manji od 10,0 cm hranili su se s Chironomidae, makrofita i algama, a veći primjeri su u sadržaju probavila imali i veći plijen u znatnoj biomasi (Tablica 4.4.12.5.).
4.5. Dnevni režim ishrane analiziranih populacija

4.5.1. Sastav populacija u litoralnoj zoni

Za potrebe praćenja dnevnog hranjenja, ribe su lovljene u četiri navrata na lokaciji Jarun. Dva puta u 2004. godini i to početkom srpnja i krajem rujna, te dva puta u 2005. godini, sredinom svibnja i krajem srpnja. Ribe su u 2004. g. lovljene elektroagregatom “Sever” 1,5 kW, a 2005. elektroagregatom Hans Grassl 6 kW na dužini od 100 m obale u litoralnoj zoni. Sastav populacija rijeke Save bio je promjenljiv (Tablice 4.5.1.1., 4.5.1.2., 4.5.1.3., i 4.5.1.4.).

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>14:00</th>
<th>18:00</th>
<th>22:00</th>
<th>02:00</th>
<th>06:00</th>
<th>10:00</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Uklija</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Dvoprugasta uklija</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Mrena</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Krkuša</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Podust</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Nosara</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Klenić</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bodorka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Deverika</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Plotica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

U srpnju 2004. g. ulovljeno je ukupno 106 primjeraka riba. Najbrojnije su bile klen sa 37 jedinki i krkuša sa 23 jedinke. Najveći broj vrsta u litoralnoj zoni je bio prisutan u 18:00 sati i u 14:00 sati. Mali broj vrsta i mali broj primjeraka ulovljen je tijekom noći i rano ujutro (Tablica 4.5.1.1.).

171

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>14:00</th>
<th>18:00</th>
<th>22:00</th>
<th>02:00</th>
<th>06:00</th>
<th>10:00</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>10</td>
<td>35</td>
<td>27</td>
<td>22</td>
<td>9</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Uklja</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Dvoprugasta uklja</td>
<td>2</td>
<td></td>
<td>18</td>
<td>1</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Mrena</td>
<td></td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Krkuša</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Podust</td>
<td>17</td>
<td>43</td>
<td>11</td>
<td>15</td>
<td>1</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Nosara</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Klenić</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bodorka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Deverika</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Plotica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

U rujnu 2004. g. ulovljen je ukupno 261 primjerak ribe. Najbrojniji bio je klen sa 103 jedinke, slijedi podust sa 87 jedinki te krkuša sa 24 jedinke. Klen nije ulovljen u 02:00 ujutro, a podust ujutro u 10:00 sati. Krkuša je lovljena samo tijekom noći i ujutro. Dvoprugasta uklja se u većem broju lovila samo u kasnim večernjim satima. Potočna mrena je ulovljena samo u 18:00 sati, a bodorka u 22:00 sata (Tablica 4.5.1.2.).

U svibnju 2005. g. ulovljen je ukupno 331 primjerak ribe. U ulovu nisu zabilježeni samo klenić i plotica. Dvoprugasta uklja, krkuša i bodorka bile su prisutne tijekom jutra i noći. Klen nije zabilježen u posljednjem ulovu u 10:00 sati. Uklja nije zabilježena u ulovu u 6:00 ujutro, a mrena u 18:00 i u 6:00 sati. Potočna mrena je ulovljena samo u 02:00, a deverika u 10:00 ujutro (Tablica 4.5.1.3.).
(vrijednosti se odnose na broj primjeraka)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>10:00</th>
<th>14:00</th>
<th>18:00</th>
<th>22:00</th>
<th>02:00</th>
<th>06:00</th>
<th>10:00</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>21</td>
<td>12</td>
<td>4</td>
<td>28</td>
<td>14</td>
<td>3</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Uklija</td>
<td>16</td>
<td>9</td>
<td>2</td>
<td>46</td>
<td>42</td>
<td>3</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>Dvoprugasta uklija</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>34</td>
<td>58</td>
</tr>
<tr>
<td>Mrena</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Krkuša</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>Podust</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Nosara</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Klenić</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bodorka</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Deverika</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Plotica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

(vrijednosti se odnose na broj primjeraka)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>10:00</th>
<th>14:00</th>
<th>18:00</th>
<th>22:00</th>
<th>02:00</th>
<th>06:00</th>
<th>10:00</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>30</td>
<td>28</td>
<td>35</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>114</td>
</tr>
<tr>
<td>Uklija</td>
<td>9</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>54</td>
</tr>
<tr>
<td>Dvoprugasta uklija</td>
<td>25</td>
<td>13</td>
<td>14</td>
<td>24</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>Mrena</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>27</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>Krkuša</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Podust</td>
<td>14</td>
<td>6</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td>Nosara</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Klenić</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bodorka</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Deverika</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Plotica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
U srpnju 2005. g. ulovljen je ukupno 428 primjerak ribe. Klen je bio najbrojniji sa 114 jedinke, slijedi dvoprugasta uklja sa 90 jedinki, mrena i podust sa 61 jedinkom te uklja sa 54 jedinki. Nosara je najviše lovljena u noćnim satima, a bodorka pred jutro. Deverika i plotica su zastupljene samo sa jednim primjerkom, a ulovljene su rano ujutro (Tablica 4.5.1.2.).

4.5.2. Dnevna aktivnost hranjenja klena

Dnevnu aktivnost hranjenja bilo je moguće prikazati samo na populacijama koje su češće zabilježene u ulovu. Na svim slikama praćen je koefficijent punoće, koefficijent praznosti i procijenjena punoća probavila u trenutku otvaranja probavnog trakta. Procijenjena punoća je izražena je u postocima, a korištena je skala od 0-100 %. Vrijednosti 0 označavaju potpuno prazna probavila, a 100 potpuno puna probavila.

Slike 4.5.2.1., 4.5.2.2., 4.5.2.3. i 4.5.2.4. prikazuju dnevne promjene režima hranjenja klena u srpnju i rujnu 2004. g. i svibnju i srpnju 2005. g.

Sl. 4.5.2.1. Dnevne promjene režima hranjenja klena u srpnju 2004. g.
U srpnju 2004. g. nije pronađeno niti jedno prazno probavilo, a moguć uzrok je mali broj ulovljenih primjeraka. Sva probavila nisu bila potpuno puna, što se vidi putem koeficijenta punoće i procijenjene punoće. Najveći intenzitet hranjenja bio je u 22:00 sata kada je koeficijent punoće dosezao 6, a procijenjena punoća 100 % (Sl. 4.5.2.1.).

Sl. 4.5.2.2. Dnevne promjene režima hranjenja klena u rujnu 2004. g.

Uspoređujući srpanjski uzorak, veći broj primjeraka klena ulovljen je u rujnu 2004. U litoralnoj zoni bio je stalno prisutan tijekom dana dok je noću izostao u 22:00 sata. Hranjenje klena bilo je intenzivnije noću, kada se linije koeficijenta punoće i praznosti preklapaju, a opadaju prema jutru. Temperatura vode (Tablica 4.1.2.1. i 4.1.2.2.) bila je u rujnu nešto niža nego u srpnju pa je i koeficijent punoće niži s sličnim intenzitetom hranjenja (Sl. 4.5.2.2.).
U svibnju 2005. g. temperatura vode iznosila je 12,9 °C, pa se moglo pretpostaviti da će biti veliki postotak praznih probavila. Koeficijent punoće bio je stabilan tijekom dana i noći, a porastao je rano ujutro kada su sva probavila bila puna. Ova krivulja ukazuje na nešto slabiji intenzitet hranjenja tijekom dana i noći, odnosno na rjeđe uzimanje hrane. Najintenzivnije hranjenje zabilježeno je rano ujutro (Sl. 4.5.2.3.).

U srpnju 2005. g. bile su vrlo visoke temperature vode (22,2 °C) što se odrazilo na intenzitet hranjenja. Danju i noću je hranjenje vrlo intenzivno sa povremenim manjim oscilacijama. U 18:00 sati dolazi do blagog preklapanja punoće i praznosti probavila te drugoga dana ujutro kada je ulovljen vrlo mali broj primjeraka. Koeficijent punoće cijelo istraživano razdoblje prelazio 1, a koeficijent praznosti se nije dizao iznad 30 % (Sl 4.5.2.4.).
4.5.3. Dnevna aktivnost hranjenja uklije

Uklija nije zabilježena u ulovu u dovoljnom broju i kontinuitetu tijekom 2004. g. pa se prikaz odnosi samo na 2005. g.

U svibnju 2005. nema podataka o ukliji u 6:00 ujutro pa se ne vidi trend opadanja ili povećanja hranidbe u tom periodu. Najintenzivnije hranjenje bilo je u 10:00 ujutro u oba uzorka, a najmanje u 18:00 (Sl. 4.5.3.1.). U srpnju je intenzitet hranjenja najveći u 6:00 ujutro, da bi u 10:00 sati opet pao. Tijekom noći trend hranidbe je pozitivan (Slika 4.5.3.2.).
Sl. 4.5.3.1. Dnevne promjene režima hranjenja uklije u svibnju 2005. g.

Sl. 4.5.3.2. Dnevne promjene režima hranjenja uklije u srpnju 2005. g.
4.5.4. Dnevna aktivnost hranjenja dvoprugaste uklije

Kao i uklja, ni dvoprugasta uklja nije ulovljena u dovoljnom broju i kontinuitetu u 2004. g. da bi se mogao prikazati dnevni režim hranidbe. U svibnju 2005. dvoprugasta uklja je pokazala intenzivno hranjenje tijekom dana sve do 18:00 sati kada su sva probavila bila prazna. Tijekom noći trend raste da bi u 6:00 opet probavila bila prazna. Povećanje slijedi opet od 10:00 ujutro (Sl. 4.5.4.1.). U srpnju 2006. najmanje su se hranile u 10:00 ujutro, tijekom dana se koeficijent punoće povećavao da bi opao u 18:00 sati, a bio nešto veći tijekom noći. Najintenzivnije su se hranile u 6:00 ujutro kada nije bilo niti jedno probavilo prazno (Sl. 4.5.4.2.).

Sl. 4.5.4.1. Dnevne promjene režima hranjenja dvoprugaste uklije u svibnju 2005. g.
Sl. 4.5.4.2. Dnevne promjene režima hranjenja dvoprugaste uklije u srpnju 2005. g.

4.5.5. Dnevna aktivnost hranjenja mrene

U srpnju 2004. mrena nije bila ulovljena u 22:00 sati. Najveći koeficijent punoće zabilježen je u 14:00 sati, dok je najviše praznih probavila bilo u 18:00 sati. Tijekom noći i jutra sva probavila bila su puna, koeficijent punoće se kretao oko 1, a u 10:00 krivulja pokazuje blagi pad (Sl. 4.5.5.1.).

U svibnju 2005. mrena nije zabilježena u ulovu u 18:00 sati i u 06:00 sati. Moguće da se mrena kretala izvan litoralne zone i ondje hrana. Intenzitet hranjenja je bio najveći u 22:00 sata, a najmanji u 02:00 ujutro. U 10:00 sati na početku i kraju istraživanja koeficijent punoće se kretao oko 2 iako je na početku istraživanja pronađeno oko 30 % praznih probavila (Sl. 4.5.5.2.).
Sl. 4.5.5.1. Dnevne promjene režima hranjenja mrene u srpnju 2004. g.

Sl. 4.5.5.2. Dnevne promjene režima hranjenja mrene u svibnju 2005. g.
Intenzitet hranjenja mrene u srpnju 2005. bio je visok tijekom noći, te je pred jutro u 6:00 dosegao maksimalnu vrijednost. U 10:00 na početku i kraju istraživanja aktivnost hranjenja je najmanja (Sl. 4.5.5.3.).
4.5.6. Dnevna aktivnost hranjenja krkuše

U srpnju 2004. nakon 02:00 ujutro krkuša nije zabilježena u ulovu. Intenzitet hranjenja bio je najintenzivniji u 14:00 sati, a opadao je poslijepodne i tijekom noći. Noću je bio prisutan veliki broj praznih probavila (Sl. 4.5.6.1.).

Sl. 4.5.6.1. Dnevne promjene režima hranjenja krkuše u srpnju 2004. g.

U rujnu 2004. krkuša pokazuje smanjenje intenziteta hranjenja nakon 14:00 sati kao i u srpnju, da bi maksimalno niske vrijednosti dosegla u 6:00 ujutro s najvećim postotkom praznosti probavila (Sl. 4.5.6.2.).
Sl. 4.5.6.2. Dnevne promjene režima hranjenja krkuše u rujnu 2004. g.

Sl. 4.5.6.3. Dnevne promjene režima hranjenja krkuše u svibnju 2005. g.
Najniže vrijednosti temperature vode zabilježene su u svibnju 2005. g. I u ovom slučaju vidljivo je da se krkuša intenzivnije hrani tijekom dana nego tijekom noći i jutra (Sl. 4.5.6.3.).

U srpnju 2005. hranjenje krkuše slijedi pravilo intenzivnijeg hranjenja tijekom dana s time da je hranidbena aktivnost malo pomaknuta, počinje poslijepodne i traje do večeri. Tijekom noći opada tendencija uzimanja hrane te se rano ujutro intenzitet opet povećava (Sl. 4.5.6.4.).

Sl. 4.5.6.4. Dnevne promjene režima hranjenja krkuše u srpnju 2005. g.
4.5.7. Dnevna aktivnost hranjenja podusta

U rujnu 2004. g. hranidbena aktivnost podusta opada tijekom noći i jutra, a proporcionalno se povećava broj praznih probavila (Sl. 4.5.7.1.).

Sl. 4.5.7.1. Dnevne promjene režima hranjenja podusta u rujnu 2004. g.

U svibnju 2005. intenzitet hranjenja je suprotan. Hranjenje tijekom dana je ujednačenog intenziteta, opada pred večer i intenzivan je početkom noći. Kasnije se podust nije javio u ulovu (Sl. 4.5.7.2.). Povećanjem temperature vode i duljine dana u srpnju 2005. podust pokazuje intenzivnije hranjenje tijekom dana, opadanje tijekom noći i intenzivno uzimanje hrane ujutro, kao i ostale istraživane vrste u isto vrijeme (Sl. 4.5.7.3.).
Sl. 4.5.7.2. Dnevne promjene režima hranjenja podusta u svibnju 2005. g.

Sl. 4.5.7.3. Dnevne promjene režima hranjenja podusta u srpnju 2005. g.
4.5.8. Dnevna aktivnost hranjenja bodorke

Kontinuirano, ali u dosta maloj brojnosti zabilježena je bodorka samo u svibnju 2005. g. Trend hranjenja bodorke najintenzivniji je tijekom dana nakon 14:00 sati, opada tijekom noći i u 6:00 opet počinju uzimati hranu. Nakon toga slijedi faza probave sve do poslijepodneva (Sl. 4.5.7.2.).

Sl. 4.5.7.2. Dnevne promjene režima hranjenja bodorke u svibnju 2005. g.
4.5.9. Dnevna aktivnost hranjenja ostalih lovijenih vrsta

Uklija i dvoprugasta uklija su u srpnju 2004. g. imale sličan ritam hranjenja, u 14:00 sati je intenzitet bio veći, a u 18:00 nešto niži. Dvoprugasta uklija se u 02:00 ujutro nastavila intenzivno hraniti, dok je uklija izostala iz ulova. Podust je u 18:00 imao visok koeficijent punoće i 100 % ispunjena sva probavila, dok se u 6:00 ujutro taj postotak prepolovio. Bodorka je u 14:00 sva probavila imala ispunjena, a deverika se još nije počela hraniti u 6:00 ujutro (Tablica 4.5.9.1.).

Tablica 4.5.9.1. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i procijenjenog postotka ispunjenosti (I) tijekom 24 h u srpnju 2004. na lokaciji Jarun

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>14:00</th>
<th>18:00</th>
<th>02:00</th>
<th>06:00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jr</td>
<td>V</td>
<td>I</td>
<td>Jr</td>
</tr>
<tr>
<td>Uklija</td>
<td>1,94</td>
<td>33,33</td>
<td>66,67</td>
<td>0,68</td>
</tr>
<tr>
<td>Dvoprugasta uklija</td>
<td>1,38</td>
<td>0,00</td>
<td>42,50</td>
<td>1,02</td>
</tr>
<tr>
<td>Podust</td>
<td>4,29</td>
<td>0,00</td>
<td>100</td>
<td>0,51</td>
</tr>
<tr>
<td>Bodorka</td>
<td>2,31</td>
<td>0,00</td>
<td>10,00</td>
<td></td>
</tr>
<tr>
<td>Deverika</td>
<td>0,54</td>
<td>0,00</td>
<td>20,00</td>
<td></td>
</tr>
</tbody>
</table>

U rujnu 2004. uklija je u 18:00 sati sva probavila imala prazna, a kao i dvoprugasta uklija najveći intenzitet hranjenja imala u 14:00 sati. Mrena je u 2:00 i u 6:00 ujutro imala visok postotak ispunjenosti probavila. Potočna mrena je u 18:00 sati imala sva probavila prazna, a deverika vrlo nisko ispunjena probavila u 2:00 ujutro (Tablica 4.5.9.2.).
Tablica 4.5.9.2. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i procijenjenog postotka ispunjenosti (I) tijekom 24 h u rujnu 2004. na lokaciji Jarun

| Vrsta | 14:00 Jr | 18:00 V | 18:00 I | 22:00 Jr | 22:00 V | 22:00 I | 02:00 Jr | 02:00 V | 02:00 I | 06:00 Jr | 06:00 V | 06:00 I | 10:00 Jr | 10:00 V | 10:00 I |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Učila | 1,23 | 0,00 | 25,00 | 0,00 | 100 | 0,00 | 0,43 | 50,0 | 3,10 | | | | | |
| Dvoprugačka učila | 1,75 | 0,00 | 35,00 | 0,75 | 41,18 | 13,59 | 0,45 | 0,00 | 1,00 | | | | | |
| Mrena | | | | 0,22 | 33,33 | 23,33 | 4,15 | 0,00 | 65,0 | | | 2,44 | 0,00 | 100 |
| Potočna mrena | 0,00 | 100 | 0,00 | | | | | | | | | | | |
| Bodorka | | | | | | | | | | | | | | |

U svibnju 2005. g. nosara se intenzivno hranila u 22:00 sata, a deverika u 10:00 ujutro. Potočna mrena je u 02:00 imala potpuno prazna probavila (Tablica 4.5.9.3.).

Tablica 4.5.9.3. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i procijenjenog postotka ispunjenosti (I) tijekom 24 h u svibnju 2005. na lokaciji Jarun

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>10:00 Jr</th>
<th>10:00 V</th>
<th>10:00 I</th>
<th>22:00 Jr</th>
<th>22:00 V</th>
<th>22:00 I</th>
<th>02:00 Jr</th>
<th>02:00 V</th>
<th>02:00 I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nosara</td>
<td>1,06</td>
<td>80,00</td>
<td>2,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potočna mrena</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deverika</td>
<td>1,19</td>
<td>0,00</td>
<td>70,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Jedino u srpnju 2005. može se vidjeti kratki kontinuitet hranjenja nosare. Intenzivno hranjenje bilo je prisutno u 10:00 ujutro, da bi potpuno prestalo u 18:00 sati, a u 22:00 se opet počela hraniti. Bodorka, kao i deverika, najpunija probavila imala je u 10:00 sati, dok se plotica intenzivno hranila u 6:00 ujutro (Tablica 4.5.9.4.).

Tablica 4.5.9.4. Prosječne vrijednosti koeficijenta punoće (Jr), koeficijenta praznosti (V) probavila i procijenjenog postotka ispunjenosti (I) tijekom 24 h u srpnju 2005. na lokaciji Jarun

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>10:00</th>
<th>18:00</th>
<th>22:00</th>
<th>06:00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jr</td>
<td>V</td>
<td>I</td>
<td>Jr</td>
</tr>
<tr>
<td>Nosara</td>
<td>2,31</td>
<td>0,00</td>
<td>92,50</td>
<td>0,00</td>
</tr>
<tr>
<td>Bodorka</td>
<td>2,31</td>
<td>0,00</td>
<td>63,33</td>
<td></td>
</tr>
<tr>
<td>Deverika</td>
<td>0,96</td>
<td>0,00</td>
<td>80,00</td>
<td></td>
</tr>
<tr>
<td>Plotica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.6. Odnos ishrane prema raspoloživom plijenu u okolini

Odnos ishrane istraživanih populacija prema raspoloživom plijenu u okolini testirano je pomoću Ivlev-ovog koeficijenta selektivnosti. Vrijednosti koje su pozitivne označavaju preferentnu hranu, a negativne vrijednosti prikazuju hranu koje su ribe slabije uzimale ili uopće nisu uzimale.

Tablica 4.6.1. prikazuje odnos raspoloživog plijena istraženog staništa i plijena pronađenog u probavilima riba na lokaciji Medsave u 2004. g. Većina preferentne hrane pronađena je u okolini u većoj ili manjoj frekvenciji. Nisu pronađene jedinke iz skupina Ceratopogonidae i Coleoptera čime su se hranili klen, uklija, dvoprugasta uklija i krkuša.

U 2005. g. na istoj lokaciji u nešto nižoj frekvenciji pronađene su alge u okolini, nego što su bile prisutne u probavilima riba, što se naročito odnosi na mrenu i ukliju. Ceratopogonidae nisu pronađene u okolini tijekom cijelog istraživanog razdoblja, a klen, uklija i dvoprugasta uklija preferirale su ovu vrstu plijena. Nisu pronađene ni pojedine svojte iz skupine Coleoptera, a bile su prisutne u probavilima krkuše i dvoprugaste uklije (Tablica 4.6.2.).

Na lokaciji Jarun u 2004. g. nisu pronađene svojte iz skupine Arachnida, Ceratopogonidae, Simuliidae, Coleoptera i vrsta Eiseniella tetraedra. Coleoptera su bili prisutni u klenu, ukliji, dvoprugastoj ukliji, kleniću i bodorki, Ceratopogonidae u klenu, ukliji i dvoprugastoj ukliji, a Simuliidae u mreni. Arachnida je rado uzimala deverika, a Eiseniella tetraedra je često prisutna u klenu (Tablica 4.6.3.). U 2005. g. na istoj lokaciji također nisu pronađeni Ceratopogonidae, a ni Plecoptera, Simuliidae, Tipulidae i Bivalvia. Ove skupine često su uzimale mrena, dvoprugasta uklija, uklija i klen (Tablica 4.6.4.).
Takson	Ken	Lulja	Dvoprugasta Lulja	Mrena	Kruša	Podust	Nosara	Krenić	Popućna mrena	Bodorka	Dereka
Cyanophyta/ Cyanobacteria | -1,00 | 0,29 | 0,16 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Bacillariophyceae | 0,29 | -1,00 | 0,05 | -1,00 | -1,00 | 0,81 | 0,46 | 0,72 | 0,69 | -1,00 | 0,58
Chlorophyceae | 0,29 | 0,18 | 0,38 | 0,61 | -1,00 | -1,00 | 0,46 | -1,00 | 0,69 | 0,65 | 0,31
Cladophora sp. | 0,16 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Xanthophyceae | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Vaucheria sp. | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Makrofita | 0,48 | -1,00 | -1,00 | 0,32 | 0,84 | 0,74 | -1,00 | -1,00 | 0,71 | -1,00
Sjemenke | 0,39 | -1,00 | -1,00 | 0,68 | -1,00 | -1,00 | 0,54 | -1,00 | -1,00 | -1,00 | -1,00
Arachnida | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Copepoda | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Oligochaeta | 0,21 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Eiseniella tetraedra | 0,84 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Hirudinea | 0,07 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Gastropoda | -0,04 | -1,00 | -1,00 | -1,00 | 0,22 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Planorbis sp. | -1,00 | -1,00 | -1,00 | -1,00 | 0,45 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Crustacea | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Gammarus sp. | -1,00 | -1,00 | -1,00 | -1,00 | 0,68 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Insecta n. det. | 0,39 | 0,49 | 0,54 | -1,00 | 0,22 | -1,00 | 0,46 | -1,00 | 0,46 | 0,81 | 0,31
Diptera | -1,00 | 0,87 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Chironomidae | -1,00 | 0,29 | 0,47 | 0,77 | 0,71 | -1,00 | 0,54 | -1,00 | 0,74 | -1,00 | 0,65
Ceratopogonidae | 1,00 | 1,00 | 1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Ephemeroptera | 0,84 | -1,00 | 0,83 | -1,00 | 0,77 | -1,00 | -1,00 | 0,97 | -1,00 | -1,00 | -1,00
Coleoptera | 1,00 | 1,00 | 1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Haliplidae | -1,00 | -1,00 | -1,00 | -1,00 | 1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Odonata | 0,21 | 0,41 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Trichoptera | 0,21 | -1,00 | 0,57 | 0,75 | 0,45 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Pisces | 0,16 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Leuciscus cephalus | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Ikra | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00
Tablica 4.6.2. Ivlev-ov koeficijent selektivnosti na lokaciji Medsave u 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Kljen</th>
<th>Učila</th>
<th>Dvoglasa Učila</th>
<th>Mrena</th>
<th>Krkuša</th>
<th>Podust</th>
<th>Nosara</th>
<th>Klenić</th>
<th>Potkrać</th>
<th>morea</th>
<th>Bodorci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanophyta/ Cyanobacteria</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,50</td>
<td>-0,37</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>0,30</td>
<td>0,22</td>
<td>0,09</td>
<td>0,10</td>
<td>0,22</td>
<td>0,89</td>
<td>0,36</td>
<td>0,79</td>
<td>0,62</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,23</td>
<td>-1,00</td>
<td>0,09</td>
<td>-0,10</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,23</td>
<td>-1,00</td>
<td>-0,05</td>
<td>-0,10</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,31</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Vaucheria sp.</td>
<td>-0,19</td>
<td>-1,00</td>
</tr>
<tr>
<td>Makrofita</td>
<td>0,14</td>
<td>-1,00</td>
<td>-0,05</td>
<td>0,10</td>
<td>0,02</td>
<td>0,36</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>-0,30</td>
<td>0,22</td>
<td>-0,54</td>
<td>-1,00</td>
<td>0,22</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,24</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,22</td>
<td>0,36</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Cladocera</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Copepoda</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,46</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>-0,35</td>
<td>0,70</td>
<td>-1,00</td>
<td>0,19</td>
<td>1,00</td>
<td>0,59</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>0,09</td>
<td>-1,00</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,04</td>
<td>-0,26</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>-0,11</td>
<td>-1,00</td>
<td>-0,38</td>
<td>0,29</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Planorbis sp.</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,65</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Lithoglyphus naticoides</td>
<td>1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Bythina tentaculata</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,04</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>0,30</td>
<td>0,65</td>
<td>0,46</td>
<td>0,10</td>
<td>0,22</td>
<td>0,62</td>
<td>-1,00</td>
<td>0,62</td>
<td>0,62</td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>-0,49</td>
<td>-1,00</td>
<td>-0,13</td>
<td>0,45</td>
<td>0,33</td>
<td>-1,00</td>
<td>0,47</td>
<td>-1,00</td>
<td>0,69</td>
<td>-1,00</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Simulidae</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>0,09</td>
<td>0,40</td>
<td>0,38</td>
<td>0,42</td>
<td>0,59</td>
<td>-1,00</td>
<td>0,52</td>
<td>0,86</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>0,81</td>
<td>-1,00</td>
<td>0,86</td>
<td>0,57</td>
<td>0,65</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Haliplidae</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Gyrrinidae</td>
<td>-1,00</td>
</tr>
<tr>
<td>Odonata</td>
<td>0,18</td>
<td>0,47</td>
<td>0,24</td>
<td>-0,15</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>0,33</td>
<td>0,40</td>
<td>0,52</td>
<td>0,51</td>
<td>0,51</td>
<td>-1,00</td>
<td>0,52</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,67</td>
<td></td>
</tr>
<tr>
<td>Pisces</td>
<td>0,03</td>
<td>-1,00</td>
<td>-0,05</td>
<td>-1,00</td>
<td>-0,32</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ikra</td>
<td>1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Takson</td>
<td>Klen</td>
<td>Ukija</td>
<td>Dugoprugašta Ukija</td>
<td>Mrena</td>
<td>Krkuša</td>
<td>Podest</td>
<td>Nosara</td>
<td>Kletić</td>
<td>Potloba mreza</td>
<td>Bodorka</td>
<td>Deverica</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-------</td>
<td>-------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Cyanophyta/ Cyanobacteria</td>
<td>-1,00</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>0,34</td>
<td>0,18</td>
<td>-1,00</td>
<td>0,52</td>
<td>0,52</td>
<td>0,81</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,58</td>
<td>-1,00</td>
<td>0,65</td>
</tr>
<tr>
<td>Xanthophyceae</td>
<td>-1,00</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>-0,33</td>
<td>0,18</td>
<td>0,15</td>
<td>0,65</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,58</td>
<td>-1,00</td>
<td>0,40</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>-0,33</td>
<td>-1,00</td>
</tr>
<tr>
<td>Makrofita</td>
<td>0,21</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,22</td>
<td>-1,00</td>
<td>0,81</td>
<td>-1,00</td>
<td>0,40</td>
<td>0,58</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>-0,33</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,40</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Arachnida</td>
<td>-1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>0,34</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,52</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,65</td>
<td>-1,00</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>-0,19</td>
<td>-1,00</td>
</tr>
<tr>
<td>Bivalvia</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,72</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0,34</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,52</td>
<td>-1,00</td>
<td>0,81</td>
<td>-1,00</td>
<td>0,40</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>-0,19</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,79</td>
<td>-1,00</td>
<td>0,78</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Copepoda</td>
<td>-1,00</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>-0,33</td>
<td>0,49</td>
<td>0,60</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,65</td>
<td>0,65</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,40</td>
</tr>
<tr>
<td>Diptera</td>
<td>-0,19</td>
<td>0,59</td>
<td>0,28</td>
<td>-1,00</td>
<td>0,61</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,52</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>0,34</td>
<td>0,49</td>
<td>0,69</td>
<td>0,72</td>
<td>0,72</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,85</td>
<td>-1,00</td>
</tr>
<tr>
<td>Simuliidae</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>0,34</td>
<td>-1,00</td>
<td>0,46</td>
<td>0,52</td>
<td>0,72</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,65</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,65</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Odonata</td>
<td>0,51</td>
<td>0,49</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>-0,33</td>
<td>-1,00</td>
<td>0,15</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,65</td>
<td>0,40</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Pisces</td>
<td>0,21</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,40</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td>-0,33</td>
<td>-1,00</td>
</tr>
<tr>
<td>Leuciscus leuciscus</td>
<td>-1,00</td>
</tr>
<tr>
<td>Gobio gobio</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,58</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ikra</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
</tbody>
</table>
Tablica 4.6.4. Ivlev-ov koeficijent selektivnosti na lokaciji Jarun u 2005. g.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Kretnica</th>
<th>Uklija</th>
<th>Dvojeugastica Uklija</th>
<th>Mreža</th>
<th>Kruxa</th>
<th>Podust</th>
<th>Nosara</th>
<th>Polubrašna mreža</th>
<th>Budrika</th>
<th>Devetka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanophyta/ Cyanobacteria</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,12</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,10</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>0,24</td>
<td>0,36</td>
<td>0,10</td>
<td>0,05</td>
<td>0,36</td>
<td>0,79</td>
<td>-1,00</td>
<td>0,65</td>
<td>0,70</td>
<td>0,62</td>
</tr>
<tr>
<td>Xantophyceae</td>
<td>-0,34</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td>0,24</td>
<td>-1,00</td>
<td>0,10</td>
<td>0,05</td>
<td>0,52</td>
<td>0,55</td>
<td>-1,00</td>
<td>0,31</td>
<td>0,48</td>
<td>0,36</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,24</td>
<td>-1,00</td>
<td>-0,29</td>
<td>-1,00</td>
<td>0,26</td>
<td>-1,00</td>
<td>0,31</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Nematoda</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Arachnida</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Makrofita</td>
<td>0,13</td>
<td>-1,00</td>
<td>-0,24</td>
<td>0,24</td>
<td>0,03</td>
<td>0,55</td>
<td>-1,00</td>
<td>-0,03</td>
<td>0,48</td>
<td>0,62</td>
</tr>
<tr>
<td>Sjemenke</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,24</td>
<td>0,05</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,26</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Turbellaria</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>-0,01</td>
<td>-1,00</td>
<td>0,29</td>
<td>0,24</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,44</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Eiseniella tetraedra</td>
<td>-1,00</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>0,25</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,17</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Bivalvia</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>-0,15</td>
<td>-1,00</td>
<td>0,57</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,65</td>
<td>-1,00</td>
</tr>
<tr>
<td>Planorbus sp.</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,88</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Crustacea</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,15</td>
<td>-1,00</td>
<td>0,56</td>
<td>-1,00</td>
<td>0,31</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,15</td>
<td>-1,00</td>
<td>0,56</td>
<td>-1,00</td>
<td>0,31</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Insecta n. det.</td>
<td>0,45</td>
<td>0,52</td>
<td>0,42</td>
<td>-0,29</td>
<td>0,36</td>
<td>-1,00</td>
<td>0,67</td>
<td>0,48</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Diptera</td>
<td>-0,34</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>-0,34</td>
<td>-1,00</td>
<td>-0,05</td>
<td>0,24</td>
<td>0,65</td>
<td>-1,00</td>
<td>0,44</td>
<td>0,17</td>
<td>-1,00</td>
<td>0,73</td>
</tr>
<tr>
<td>Simuliida</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Tipulidae</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>-0,26</td>
<td>0,59</td>
<td>0,37</td>
<td>0,33</td>
<td>0,31</td>
<td>-1,00</td>
<td>0,51</td>
<td>0,26</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>0,71</td>
<td>0,90</td>
<td>-1,00</td>
<td>0,66</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,88</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Odonata</td>
<td>-0,01</td>
<td>0,52</td>
<td>0,29</td>
<td>0,24</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>0,19</td>
<td>0,23</td>
<td>0,69</td>
<td>0,53</td>
<td>0,23</td>
<td>-1,00</td>
<td>-1,00</td>
<td>0,17</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Hydropsyche sp.</td>
<td>-1,00</td>
<td>0,41</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Pisces</td>
<td>-0,01</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,03</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Leuciscus cephalus</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-0,29</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Leuciscus leuciscus</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Ikra</td>
<td>-1,00</td>
<td>-1,00</td>
<td>1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
</tbody>
</table>
4.7. Preklapanje prehrambenih navika istraživanih vrsta riba

Sve vrste riba koje su bile predmet istraživanja pripadaju porodici Cyprinidae. One žive u istom staništu pa je važno uspostaviti njihov međusobni odnos u izboru raspoložive hrane i ustanoviti razlike prehrambenih navika. U kalkulacije su isključene vrijednosti detritusa stoga što detritus predstavlja sav neprepoznatljiv poluprobačen materijal bilo životinjskog ili biljnog porijekla. Više ili manje detritus je prisutan kod svih proučavanih vrsta, te bi se moglo dogoditi da herbivori i bentivori imaju potpuno preklapanje ishrane. Vrijednosti su dobivene izračunom Schoenerova indeksa i pojednostavljenog Morisita indeksa (Krebs, 1999), a baziraju se na frekvenciji učestalosti pojavljivanja.

Na lokaciji Medsave u 2004. g. preklapanje prehrambenih navika imao je klen sa ukljom, dvoprugastom ukljom i bodorkom usporedbom vrijednosti oba indeksa. Ukljula je imala sličan raspon ishrane sa klenom, dvoprugastom ukljom i bodorkom. Prema Morisita indeksu mrena je imala sličnu ishranu samo sa krkušom, a prema Schroener-ovu indeksu još sa podustom i mrenom. Prehrambene navike nosare najviše se preklapaju sa podustom, a bodorke sa klenom, ukljom i dvoprugastom ukljom. Prema Morisita indeksu klenić, potočna mrena i deverika nemaju preklapanje prehrambenih navika sa drugim vrstama, dok Schroener-ov indeks ukazuje na niske vrijednosti preklapanja potočne mrene sa mrenom i podustom te deverike sa krkušom (Tablica 4.7.1.). U 2005. g. na lokaciji Medsave neke vrste riba pokazuju nešto širi raspon ishrane. Tako se hranidbene navike potočne mrene sa vrlo visokim vrijednostima preklapaju sa klenom, ukljom, dvoprugastom ukljom i nosarom. Vrijednosti Schroener indeksa pokazuju malo veće vrijednosti nego Morisita indeks. Tako Schroener indeks pokazuje lagano preklapanje klenića sa podustom, dok Morisita indeks ukazuje na potpuno različitu ishranu (Tablica 4.7.2.).
Tablica 4.7.1. Preklapanje prehrambenih navika na lokaciji Medsave u 2004. g. (vrijednosti označene podebljano i kurziv označavaju Morisita indeks, a donje nepodebljane vrijednosti Schoener indeks)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>Klen</th>
<th>Ukljica</th>
<th>Dvoprugasta ukljica</th>
<th>Mrena</th>
<th>Krkuša</th>
<th>Podust</th>
<th>Nosara</th>
<th>Klenić</th>
<th>Potočna mrena</th>
<th>Bodorka</th>
<th>Deverika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>-</td>
<td>0,67*</td>
<td>0,70*</td>
<td>0,22</td>
<td>0,12</td>
<td>0,37</td>
<td>0,43</td>
<td>0,01</td>
<td>0,27</td>
<td>0,81*</td>
<td>0,00</td>
</tr>
<tr>
<td>Ukljica</td>
<td>0,71*</td>
<td>-</td>
<td>0,69*</td>
<td>0,00</td>
<td>0,12</td>
<td>0,00</td>
<td>0,07</td>
<td>0,13</td>
<td>0,00</td>
<td>0,86*</td>
<td>0,00</td>
</tr>
<tr>
<td>Dvoprugasta ukljica</td>
<td>0,73*</td>
<td>0,73*</td>
<td>-</td>
<td>0,23</td>
<td>0,26</td>
<td>0,08</td>
<td>0,10</td>
<td>0,37</td>
<td>0,25</td>
<td>0,65*</td>
<td>0,03</td>
</tr>
<tr>
<td>Mrena</td>
<td>0,58</td>
<td>0,45</td>
<td>0,53</td>
<td>-</td>
<td>0,77*</td>
<td>0,28</td>
<td>0,46</td>
<td>0,00</td>
<td>0,56</td>
<td>0,16</td>
<td>0,52</td>
</tr>
<tr>
<td>Krkuša</td>
<td>0,51</td>
<td>0,55</td>
<td>0,55</td>
<td>0,69*</td>
<td>-</td>
<td>0,07</td>
<td>0,21</td>
<td>0,18</td>
<td>0,51</td>
<td>0,11</td>
<td>0,59</td>
</tr>
<tr>
<td>Podust</td>
<td>0,71*</td>
<td>0,62*</td>
<td>0,60*</td>
<td>0,64*</td>
<td>0,58</td>
<td>-</td>
<td>0,86*</td>
<td>0,00</td>
<td>0,37</td>
<td>0,26</td>
<td>0,00</td>
</tr>
<tr>
<td>Nosara</td>
<td>0,64*</td>
<td>0,52</td>
<td>0,54</td>
<td>0,59</td>
<td>0,51</td>
<td>0,77*</td>
<td>-</td>
<td>0,00</td>
<td>0,24</td>
<td>0,40</td>
<td>0,10</td>
</tr>
<tr>
<td>Klenić</td>
<td>0,47</td>
<td>0,57</td>
<td>0,59</td>
<td>0,42</td>
<td>0,52</td>
<td>0,59</td>
<td>0,45</td>
<td>-</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td>0,46</td>
<td>0,40</td>
<td>0,45</td>
<td>0,61*</td>
<td>0,58</td>
<td>0,60*</td>
<td>0,49</td>
<td>0,38</td>
<td>-</td>
<td>0,17</td>
<td>0,40</td>
</tr>
<tr>
<td>Bodorka</td>
<td>0,74*</td>
<td>0,76*</td>
<td>0,64*</td>
<td>0,54</td>
<td>0,45</td>
<td>0,67*</td>
<td>0,59</td>
<td>0,44</td>
<td>0,44</td>
<td>-</td>
<td>0,00</td>
</tr>
<tr>
<td>Deverika</td>
<td>0,39</td>
<td>0,44</td>
<td>0,39</td>
<td>0,59</td>
<td>0,63*</td>
<td>0,51</td>
<td>0,42</td>
<td>0,42</td>
<td>0,54</td>
<td>0,35</td>
<td>-</td>
</tr>
</tbody>
</table>

*p<0,05
Tablica 4.7.2. Preklapanje prehrambenih navika na lokaciji Medsave u 2005. g. (vrijednosti označene podebljano i kurziv označavaju Morisita indeks, a donje nepodebljane vrijednosti Schoener indeks)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>Klen</th>
<th>Uklija</th>
<th>Dvoprugasta uklj.</th>
<th>Mrena</th>
<th>Krkuša</th>
<th>Podust</th>
<th>Nosara</th>
<th>Klenić</th>
<th>Potočna mrena</th>
<th>Bodorka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>-</td>
<td>*0,56</td>
<td>*0,85</td>
<td>*0,44</td>
<td>*0,34</td>
<td>*0,26</td>
<td>*0,67</td>
<td>*0,23</td>
<td>*0,81</td>
<td>*0,56</td>
</tr>
<tr>
<td>Uklija</td>
<td>*0,62</td>
<td>-</td>
<td>*0,77</td>
<td>*0,13</td>
<td>*0,20</td>
<td>*0,28</td>
<td>*0,86</td>
<td>*0,03</td>
<td>*0,65</td>
<td>*0,29</td>
</tr>
<tr>
<td>Dvoprugasta uklj.</td>
<td>*0,81</td>
<td>*0,71</td>
<td>-</td>
<td>*0,41</td>
<td>*0,41</td>
<td>*0,17</td>
<td>*0,91</td>
<td>*0,32</td>
<td>*0,84</td>
<td>*0,54</td>
</tr>
<tr>
<td>Mrena</td>
<td>*0,63</td>
<td>*0,45</td>
<td>*0,67</td>
<td>-</td>
<td>*0,83</td>
<td>*0,14</td>
<td>*0,28</td>
<td>*0,32</td>
<td>*0,33</td>
<td>*0,50</td>
</tr>
<tr>
<td>Krkuša</td>
<td>*0,59</td>
<td>*0,52</td>
<td>*0,65</td>
<td>*0,76</td>
<td>*0,20</td>
<td>*0,31</td>
<td>*0,34</td>
<td>*0,21</td>
<td>*0,60</td>
<td>*0,29</td>
</tr>
<tr>
<td>Podust</td>
<td>*0,57</td>
<td>*0,61</td>
<td>*0,54</td>
<td>*0,45</td>
<td>*0,52</td>
<td>-</td>
<td>*0,08</td>
<td>*0,32</td>
<td>*0,31</td>
<td>*0,29</td>
</tr>
<tr>
<td>Nosara</td>
<td>*0,67</td>
<td>*0,76</td>
<td>*0,80</td>
<td>*0,56</td>
<td>*0,62</td>
<td>*0,50</td>
<td>-</td>
<td>*0,16</td>
<td>*0,79</td>
<td>*0,45</td>
</tr>
<tr>
<td>Klenić</td>
<td>*0,46</td>
<td>*0,37</td>
<td>*0,48</td>
<td>*0,41</td>
<td>*0,44</td>
<td>*0,63</td>
<td>*0,42</td>
<td>-</td>
<td>*0,19</td>
<td>*0,18</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td>*0,72</td>
<td>*0,68</td>
<td>*0,77</td>
<td>*0,52</td>
<td>*0,50</td>
<td>*0,60</td>
<td>*0,74</td>
<td>*0,48</td>
<td>-</td>
<td>*0,56</td>
</tr>
<tr>
<td>Bodorka</td>
<td>*0,66</td>
<td>*0,49</td>
<td>*0,62</td>
<td>*0,51</td>
<td>*0,53</td>
<td>*0,55</td>
<td>*0,55</td>
<td>*0,43</td>
<td>*0,72</td>
<td>-</td>
</tr>
</tbody>
</table>

* p<0,05
Na lokaciji Jarun u 2004. g. prema Morisita indeksu klen pokazuje preklapanje prehrambenih navika samo sa klenićem i deverikom, dok Schroener-ov indeks daje visoke vrijednosti za nešto više vrste. Ipak postoji kompetitivan odnos klen – ukljica i klen - dvoprugasta ukljica jer i Morisita indeks pokazuje dosta visoke vrijednosti iako nisu statistički značajno opravdane. Na istoj lokaciji u 2005. g. oba indeksa pokazuju preklapanje ishrane kod klena, ukljica i dvoprugaste ukljice. Mrena se hrani slično kao i potočna mrena, a deverika sa klenom u 2004. g. U 2005. g. deverika ima kompetitivan odnos sa bodorkom i podustom, a bodorka sa krkušom, podustom i klenom. Mrena je u 2005. g. najčešće u kompeticiji sa dvoprugastom ukljicom. Plotica prema Morisita indeksu nema kompeticije u ishrani sa drugim vrstama, dok prema Schoener-ovu indeksu manje preklapanje ima sa mrenom, krkušom, podustom, bodorkom i deverikom (Tablice 4.7.3. i 4.7.4.).
Tablica 4.7.3. Preklapanje prehrambenih navika na lokaciji Jarun u 2004. g. (vrijednosti označene podebljano i kurziv označavaju Morisita indeks, a donje nepodebljane vrijednosti Schoener indeks)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>Klen</th>
<th>Uklija</th>
<th>Dvoprugasta uklja</th>
<th>Mrena</th>
<th>Krkuša</th>
<th>Podust</th>
<th>Nosara</th>
<th>Klenić</th>
<th>Potočna mrena</th>
<th>Bodorka</th>
<th>Deverika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>-</td>
<td>0,58</td>
<td>0,50</td>
<td>0,41</td>
<td>0,30</td>
<td>0,49</td>
<td>0,49</td>
<td>0,66*</td>
<td>0,42</td>
<td>0,47</td>
<td>0,64*</td>
</tr>
<tr>
<td>Uklija</td>
<td>0,66*</td>
<td>-</td>
<td>0,62*</td>
<td>0,21</td>
<td>0,15</td>
<td>0,13</td>
<td>0,40</td>
<td>0,55</td>
<td>0,23</td>
<td>0,69*</td>
<td>0,33</td>
</tr>
<tr>
<td>Dvoprugasta uklja</td>
<td>0,63*</td>
<td>0,69*</td>
<td>-</td>
<td>0,09</td>
<td>0,06</td>
<td>0,00</td>
<td>0,71*</td>
<td>0,73*</td>
<td>0,08</td>
<td>0,55</td>
<td>0,34</td>
</tr>
<tr>
<td>Mrena</td>
<td>0,58</td>
<td>0,42</td>
<td>0,41</td>
<td>-</td>
<td>0,33</td>
<td>0,35</td>
<td>0,03</td>
<td>0,06</td>
<td>0,87*</td>
<td>0,27</td>
<td>0,57</td>
</tr>
<tr>
<td>Krkuša</td>
<td>0,58</td>
<td>0,56</td>
<td>0,53</td>
<td>0,56</td>
<td>-</td>
<td>0,32</td>
<td>0,27</td>
<td>0,08</td>
<td>0,36</td>
<td>0,11</td>
<td>0,35</td>
</tr>
<tr>
<td>Podust</td>
<td>0,71*</td>
<td>0,59</td>
<td>0,56</td>
<td>0,63*</td>
<td>0,70*</td>
<td>-</td>
<td>0,00</td>
<td>0,11</td>
<td>0,52</td>
<td>0,00</td>
<td>0,28</td>
</tr>
<tr>
<td>Nosara</td>
<td>0,66*</td>
<td>0,64*</td>
<td>0,76*</td>
<td>0,46</td>
<td>0,63*</td>
<td>0,64*</td>
<td>-</td>
<td>0,75*</td>
<td>0,00</td>
<td>0,46</td>
<td>0,28</td>
</tr>
<tr>
<td>Klenić</td>
<td>0,66*</td>
<td>0,58</td>
<td>0,74*</td>
<td>0,41</td>
<td>0,49</td>
<td>0,58</td>
<td>0,73*</td>
<td>-</td>
<td>0,05</td>
<td>0,59</td>
<td>0,32</td>
</tr>
<tr>
<td>Potočna mrena</td>
<td>0,54</td>
<td>0,45</td>
<td>0,41</td>
<td>0,77*</td>
<td>0,55</td>
<td>0,73*</td>
<td>0,44</td>
<td>0,39</td>
<td>-</td>
<td>0,30</td>
<td>0,53</td>
</tr>
<tr>
<td>Bodorka</td>
<td>0,63*</td>
<td>0,76*</td>
<td>0,69*</td>
<td>0,52</td>
<td>0,54</td>
<td>0,58</td>
<td>0,72*</td>
<td>0,67*</td>
<td>0,55</td>
<td>-</td>
<td>0,45</td>
</tr>
<tr>
<td>Deverika</td>
<td>0,69*</td>
<td>0,59</td>
<td>0,59</td>
<td>0,65</td>
<td>0,63*</td>
<td>0,66*</td>
<td>0,61*</td>
<td>0,52</td>
<td>0,58</td>
<td>0,66*</td>
<td>-</td>
</tr>
</tbody>
</table>

* p<0,05
Tablica 4.7.4. Preklapanje prehrambenih navika na lokaciji Jarun u 2005. g. (vrijednosti označene podebljano i kurziv označavaju Morisita indeks, a donje nepodebljane vrijednosti Schoener indeks)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>Klen</th>
<th>Uklija</th>
<th>Dvoprugasta uklija</th>
<th>Mrena</th>
<th>Krkuša</th>
<th>Podust</th>
<th>Nosara</th>
<th>Bodorka</th>
<th>Deverika</th>
<th>Plotica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klen</td>
<td>-</td>
<td>0,79*</td>
<td>0,65*</td>
<td>0,32</td>
<td>0,51</td>
<td>0,35</td>
<td>0,64*</td>
<td>0,65*</td>
<td>0,39</td>
<td>0,32</td>
</tr>
<tr>
<td>Uklija</td>
<td>0,73*</td>
<td>-</td>
<td>0,70*</td>
<td>0,15</td>
<td>0,42</td>
<td>0,27</td>
<td>0,74*</td>
<td>0,53</td>
<td>0,32</td>
<td>0,15</td>
</tr>
<tr>
<td>Dvoprugasta uklija</td>
<td>0,73*</td>
<td>0,75*</td>
<td>-</td>
<td>0,58*</td>
<td>0,71*</td>
<td>0,31</td>
<td>0,54</td>
<td>0,54</td>
<td>0,33</td>
<td>0,23</td>
</tr>
<tr>
<td>Mrena</td>
<td>0,60*</td>
<td>0,51</td>
<td>0,68*</td>
<td>-</td>
<td>0,59</td>
<td>0,15</td>
<td>0,26</td>
<td>0,28</td>
<td>0,23</td>
<td>0,57</td>
</tr>
<tr>
<td>Krkuša</td>
<td>0,65*</td>
<td>0,63*</td>
<td>0,76*</td>
<td>0,67*</td>
<td>-</td>
<td>0,45</td>
<td>0,41</td>
<td>0,69*</td>
<td>0,49</td>
<td>0,55</td>
</tr>
<tr>
<td>Podust</td>
<td>0,59</td>
<td>0,51</td>
<td>0,55</td>
<td>0,52</td>
<td>0,63*</td>
<td>-</td>
<td>0,00</td>
<td>0,76*</td>
<td>0,73*</td>
<td>0,48</td>
</tr>
<tr>
<td>Nosara</td>
<td>0,56</td>
<td>0,69*</td>
<td>0,61</td>
<td>0,51</td>
<td>0,57</td>
<td>0,35</td>
<td>-</td>
<td>0,27</td>
<td>0,00</td>
<td>0,10</td>
</tr>
<tr>
<td>Bodorka</td>
<td>0,69*</td>
<td>0,62*</td>
<td>0,65*</td>
<td>0,54</td>
<td>0,74*</td>
<td>0,75*</td>
<td>0,49</td>
<td>-</td>
<td>0,76*</td>
<td>0,53</td>
</tr>
<tr>
<td>Deverika</td>
<td>0,50</td>
<td>0,52</td>
<td>0,50</td>
<td>0,46</td>
<td>0,57</td>
<td>0,73*</td>
<td>0,28</td>
<td>0,70*</td>
<td>-</td>
<td>0,54</td>
</tr>
<tr>
<td>Plotica</td>
<td>0,53</td>
<td>0,46</td>
<td>0,51</td>
<td>0,62*</td>
<td>0,66*</td>
<td>0,63*</td>
<td>0,37</td>
<td>0,61*</td>
<td>0,61*</td>
<td>-</td>
</tr>
</tbody>
</table>

* p<0,05
5. Rasprava

5.1. Biološke osobine rijeke Save

Utvrđene količine ugljik-(IV)-oksida su u skladu sa intenzitetom metaboličkih procesa. Otopljeni kisik ulazi u vodu preko fotosinteze i preko atmosfere, a koristi se za disanje. Koncentracija otopljenog kisika u površinskoj vodi uvelike je pod utjecajem temperature, a nivo zasićenosti vode kisikom se smanjuje sa porastom temperature. Kisik ima veliku važnost u vodenoj sredini budući da o njemu ovise mnogi životno važni procesi. Ako ga nema dovoljno dolazi do smanjenja životnih uvjeta svih hidrobionata, a što za posljedicu ima i promjenu hidrokemijskog stanja. Optimalna koncentracija kisika u vodi u mg/l za toplovodne vrste riba je iznad 5, a za hladnovodne iznad 7 (Debeljak, 1982). Temeljem analize otopljenog kisika u vodi, utvrdili smo da rijeka Sava ima polioksič Gričkog obilježja. Vrijednosti otopljenog kisika nisu bile veće od 7 mg/l, što je donja granica koncentracije kisika u vodama I vrste. Količina organske tvari izražene kao potrošak KMNf4 u mg/l ukazuje na nizak stupanj eutrofikacije vode. Utvrđene vrijednosti nalaze se unutar intervala od poželjnih do dopuštenih vrijednosti opterećenja vode sa organskom tvari. Dušik je uz fosfor najvažnije hranjivo koje je potrebno biljkama i algama za rast. Količina nitrita se povećava zagađenjima iz poljoprivrednih površina (ispiranje gnojiva kišama u vodu), razgradnjom proteina u vodi, gdje je nitrat (NO3) krajnji produkt oksidacije proteina. Ostali parametri koji utječu na povećanje nitrata su: anorganski ioni, nitriti i amonijak, koji su prijelazni oblici. Također ispušni plinovi automobila i industrijske emisije djeluju na bitno povećanje dušika u atmosferi. Visoka količina nitrita u površinskoj vodi dovodi do promjena u biokemijskim odnosima u vodi. Javljuju se problemi sa eutrofikacijom. Direktni utjecaj na ribljje populacije nije vidljiv dok količina dušika ne dosegne visoki stupanj (>90 mg/l N), što je rijetko vidljivo čak i u jako zagađenim vodama. Dušik vezan u obliku amonijaka utvrdjen je u koncentracijama do 0,4 mg/l, a to su dominantno dopuštene vrijednosti. Vrijednosti nitrata, najviše su varirale na lokaciji Medsave čak do 8,42 mg/l a do 7,08 mg/l na lokaciji Jarun, dok su nitriti bili prisutni u manjim koncentracijama bez većih odstupanja. Veća količina nitrita u vodi obilježje je jako zagađenih voda. U slatkim vodama fosfat nalazimo u obliku fosfornog iona. U prirodnim sistemima nije raširen jer ga uvelike koriste živa bića, međutim djelovanjem
ljudskih aktivnosti dolazi do njegova povećanja u vodenoj sredini što dovodi do povećanja rasta vodenog bilja, te posljedično tome eutrofikacije. Isprana gnojiva iz poljoprivrednih površina su najveći izvor fosfata u potocima i rijekama. Stoga je fosfor glavni eutrofikant u vodenim sustavima, a njegove poželjne vrijednosti za ciprinidne vode kreču se unutar vrijednosti 0,3 – 0,5 mg/l. Na lokaciji Medsave i Jarun u 2005. g. u srpnju, kolovozu, rujnu i listopadu zabilježene su vrlo visoke vrijednosti koje su prelazile 2,5 mg/l. Bez obzira na određena kolebanja pojedinih fizikalno kemijskih parametara kvaliteta vode rijeke Save nije se bitnije mijenjala tijekom posljednjih desetak godina (Treer i sur., 1994; Piria, 2003; Treer i sur., 2004; Treer i sur., 2006), a hidrobojonti koji ondje obitavaju prilagodili su se na takve uvjete sredine.

Plankton nije značajan za tekućice, naročito u zonama s brzim tokom vode. Planktonske organizme mogu se razviti samo na područjima s ustažalom vodom (oko limnokrenih vrela), u lenitičkim zonama i donjim tokovima rijeka koje teku kroz ravnica rasko područje sa sporim tokom vode do brzine strujanja 1 m sec⁻¹ (Debeljak, 1982). Kako se istraživanja fitoplanktona vrše samo u vodama stajaćima poput jezera, akumulacija, bara i sl., u tekućicama je značajniji biljni obraštaj kamenja mikrofitama. Razvoj perifitona u rijekama je važan jer su oni najvažniji primarni producenti, a o njima direktno ovise drugi članovi hranidbenih lanaca (Žutić-Maloseja, 1990). Zooplanktonski organizmi su vrlo osjetljivi na promjene okolišnih uvjeta, kao što su unos hranjiva, zakiseljavanje vode ili povećanje riblje populacije, pa se to odražava na njihovo obilje, raznolikost vrsta i kompoziciju zajednica. Brzo reagiraju na takve uvjete jer većina vrsta ima kratak životni vijek (Paterson, 2000). Razvoj Rotifera bio je najčešć zabilježen u rijeci Savi, a to je skupina koja čini veliki dio zooplanktona u svim tipovima voda i kvalitativno su najbrojniji (Debeljak, 1982). Osim toga, poznato je da su Rotifera vrijedna riblja hrana, a koriste se masovno i u akvakulturi (Treer i sur., 1995).

Fauna dna koja naseljava korito rijeke čini prirodnu hranu pa je poznavanje kvalitativnog i kvantitativnog sastava makrozoobentoske zajednice vrlo važno za određivanje bioprodukcije istraživanog vodotoka. Svaki raspomboživi supstrat može biti adekvatno stanište za makrozoobentos uključujući vodeno bilje, korijenje

5.2. Korelacija između morfoloških osobina i konzumiranog plijena

Bazirano na ekomorfološkoj hipotezi, morfologija ribljeg tijela čvrsto je povezana s ishranom, a varijacije morfoloških osobina između vrsta utječu na izbor plijena (Wainwright i Richard, 1995). Studije povezanosti morfoloških osobina s uzimanjem ribljeg plijena imaju raznolike rezultate. Neke od njih ukazuju na tjesnu povezanost (Winemiller i sur, 1995; Hugueny i Pouilly, 1999; Xie i sur, 2001; Pouilly i sur, 2003) dok druge ukazuju na slabu i nedovoljnu korelaciju (Douglas i Matthews, 1992; Motta i sur, 1995; Winemiller i Adite, 1997). Ovakvi rezultati mogu biti povezani sa upotrebom različitih metoda prilikom obrade i interpretacije rezultata. Od 10 istraživanih morfoloških varijabli, na lokaciji Jarun i lokaciji Medsave, pokazalo se da je relativna dužina probavila jedna od važnijih varijabli povezanih sa herbivornim ribama, u ovom slučaju sa podustom. Isti rezultati zabilježeni su istraživanjima različitih drugih vrsta riba kao i između vrsta koje su pripadale istim porodicama (Pouilly i sur, 2003). Druga važnija varijabla bila je broj branhiospina i to na lijevoj strani škržnog luka koja se obično nalazila između riba koje se hrane biljnim materijalom i riba koje se hrane sitnijim insektima i zooplanktonom. Prema tome, broj branhiospina jedan je od

5.3. Ishrana Ciprinida

Multivarijatne analize se sve više koriste u ekološkim studijama (Ter Braak, 1983), ali su rijetko upotrebljavane u analizama ishrane riba (de Crespin de Billy i sur, 2000). Češće su takve metode korištene na odnos morfoloških osobina na selekciju plijena (Hromada i sur, 2003), a moguće ih je upotrijebiti za mnogobrojne druge ekološke analize. U ovom istraživanju, osim istraživanja morfoloških varijabli, multivarijatnim analizama prikazan je i odnos istraživanih vrsta riba u odnosu na preferenciju prema pojedinom plijenu. Gledajući ishranu generalno na lokaciji Jarun i lokaciji Medsave, nema većih odstupanja. Podust je usko povezan sa biljnim svojstima, uključujući dvoproduktaste ukinju sa manjim dvokrilicima i zooplanktonskim organizmima, a mrena i krkuša sa većim bentosnim bekralježnjacima. Nosara se nalazi između biljnog plijena i
hrane koju su uzimale krkuša, mrena i uklije, a klen i bodorka su imale ishranu na prijelazu između podusta i uklija. Bodorka je imala vrlo slabu korelaciju u odnosu na ostale vrste i plijen (Sl. 4.4.1. i 4.4.2.). Klen je omivorna riba i nije bio posebno povezan s niti jednom svojtom plijena, a moguć razlog je što RDA analiza ne daje dobre rezultate za vrste koje nisu izbirljive prema pojedinoj hrani (Chambers i Terry, 2005).

Stoga su u prikazu rezultata korištene sve ove tri različite metode kako bi se dobile što realnije vrijednosti važnosti pojedinog plijena u probavilima riba. Potrebno je još spomenuti da su u svim ribama, a naročito u podustu dobivene visoke vrijednosti detritusa. Ovakvi su rezultati poznati jer Cyprinidae nemaju
diferenciran želudac i unosom hrane u organizam oni je drobe (Hellavel i Abel, 1971), pa ponekad nije bilo moguće jasno vidjeti o kojem tipu plijena se radi.

Krkuša je imala oko 26 % praznih probavila na lokaciji Medsave, a 43% na lokaciji Jarun. Losos i sur, 1980 pronašli su znatno manje praznih probavila (oko 12%) iako su uzorke uzimali u prosincu. Iz podataka o ishrani dobivenih na obje lokacije može se reći da se krkuša u ljetnom i jesenskom razdoblju pretežno hrani sa Gammarus sp., Chironomidae, Trichoptera i Ephemeroptera, a manje sa ostalim skupinama insekata bilo ličinkama ili imagom. U proljetnom i ljetnom
razdoblju javlja se i veći udio biljnog materijala kao što su Bacillariophyceae, Chlorophyceae i makrofita. U rujnu 2004. i srpnju 2005. na lokaciji Medsave pronađen je Gastropoda i to Planorbis sp., a zastupljeni su bili u većim primjercima krkuše kao što navode i Kennedy i Fitzmaurice (1972). Na lokaciji Jarun manji primjerci krkuše češće su uzimale plijen manjih dimenzija kao što su alge, Chironomidae i Ephemeroptera, dok su se veći primjerci češće hranili vrstom *Gammarus* sp. koji je dominirao učestalosti, brojnošću i masom (Tablica 4.4.5.1.). Na lokaciji Medsave kod manjih i kod većih primjeraka dominirali su Chironomidae i Trichoptera, a podjednako je zastupljen i ostali plijen. Interesantno je da su u ovom slučaju manji primjerci češće uzimali *Gammarus* sp. (4.4.5.12.). Ovim istraživanjima nije pronađen plijen kao što su planktonski račići, a vjerojatno je razlog što ove skupine nemaju važnost u riječnim tokovima kao što navode Kennedy i Fitzmaurice (1972). Međutim, povremeno i sporadično se u probavilima krkuše pronašao plijen iz skupine Hirudinea i Pisces što ne navodi niti jedna pregledana literatura. Ostale pronađene svojstva plijena potpuno se preklapaju s prethodnim istraživanjima (Losos i sur., 1980; Frankiewicz i sur, 1991; Baruš i sur, 1995; Declerck i sur, 2002).

Podust iz rijeke Save imao je vrlo veliki postotak praznih probavila tijekom cijelog istraživanja na obje lokacije. Tako je u srpnju 2004. g. na lokaciji Medsave pregledano 59 probavila, a 32 % bilo je prazno, u listopadu od 7 pregledanih oko 86% bilo je prazno (Tablice 4.4.6.1. i 4.4.6.2.). Slično su zabilježili Šenk i Aganović (1968) kada je od 95 pregledanih probavila oko 30% bilo prazno. Oni navode da je većina probavila podusta bila ispunjena mlječnokašastom masom tamnozelene boje koja potječe od biljne hrane, pa je analiza probavnog trakta bila otežana. U primjercima ulovljenim u rijeci Savi zabilježena je ista pojava, ali i sa pojavom žučkastosmeđe mase sadržaja sa mnogo sitnog kamenja, što je navedeno i u češkom ključu za determinaciju riba (Baruš i sur, 1995). Iz tablica 4.4.6.5., 4.4.6.6., 4.4.6.7. i 4.4.6.8. može se uočiti vrlo visok postotak detritusa, odnosno neprepoznatljivog biljnog materijala i ostataka kamenčica što je naročito izraženo u tablicama koje bilježe postotke mase. Uglavnom su se alge
kremenjašice javljale tijekom cijelog istraživanog razdoblja na obje lokacije, a manje zelene alge kao što su pokazala i istraživanja u rijeci Oslavi (Adámek i Obrdlik, 1977). Na lokaciji Medsave u proljeće 2005. g. javila se veća masa zelenih algi gdje je dominirala *Cladophora* sp., a na lokaciji Jarun ista vrsta javila se tijekom ljeta. Osim vrste *Cladophora* sp. tada je zabilježena i veća masa makrofita. Ishrana podusta prema dužinskim razredima ukazuje da se manji primjerci podusta hrane sa algama kremenjašicama i zelenim algama, a veći primjerci s algama kremenjašicama i makrofita. Primjerci riba nisu bili manji od 5 cm, a Reckendorfer (1993) navodi da takvi primjerci prelaze isključivo na ishranu bentosnim algama.

Na lokaciji Medsave klenić se javio u ulovu u jesen 2004. i proljeće 2005, a na lokaciji Jarun samo u ljeti i jesen 2004. godine. Literaturni podaci navode da se
klenić većinom hrani ličinkama dvokrilaca i to Chironomidae i Simuliidae (Mann, 1974; Losos i sur., 1980). Klenić iz rijeke Save nije se hranio navedenim plijenom već su dominirali Ephemeroptera, Trichoptera, Coleoptera i imago Insecta n. det. Vjerojatno frekvencija uzimanja plijena ovisi o dostupnosti pojedine hrane u okolini. U rijeci Savi uzorkovanjem bentosnih beskralježnjaka nije pronađena niti jedna jedinka iz skupine Simuliidae na obje lokacije. Također istraživanja koja su proveli Adámek i Obrdlík (1977) ukazuju na rijetku pojavu Simuliidae u rijeci Oslavi i na sporadično pojavljivanje toga plijena u probavilima klenića. Mann (1974) spominje da se klenić ljeti hrani s Ephemeroptera, Simulium sp. i Chironomidae, a zimi s Trichoptera i Mollusca. Klenić iz rijeke Save se ljeti hranio s Ephemeroptera, Insecta n. det, a veći primjerči i s Pisces. U proljeće uzimali su alge kremenjašice i Ephemeroptera, a najveća raznolikost prehrane zabilježena je u jesen. Tada su uzimali makrofita, Ephemeroptera, Trichoptera, Coleoptera i Insecta n. det. U literaturi je zabilježeno da se klenić povremeno hrani i biljnim materijalom naročito u proljeće (Losos i sur, 1980), a takvi rezultati dobiveni su na kleniću iz rijeke Save. Manji primjerči klenića hranili su se s Ephemeroptera i Insecta, a veći primjerči sa biljnim materijalom i većim plijenom kao što su Trichoptera i Pisces. Weatherely (1987) navodi da se manji primjerči hrane s algama kremenjašicama, Chironomidae i kopnenim insektima, a veći imaju šir spектar ishrane i počinju se hraniti sa svojstama kao što su Tubificidae i Ceratopogonidae.

Vrlo je oskudna literatura o ishrani potočne mrene i vrlo malo radova postoji o njenoj ishrani što je evidentirano i u češkom ključu za determinaciju riba (Baruš i sur, 1995). Pretraživanje literature dodatno je otežala činjenica da svaki autora koristi drugačiju sistematizaciju potočne mrene. Tako se najčešće koristio naziv Barbus meridionalis petenyi kao što su u ključu slatkovodnih riba naveli Vuković i Ivanović (1971), a prema današnjim podacima radi se o vrsti Barbus peloponnesius (Economidis i sur., 2003). Potočna mrena imala je vrlo ujednačen odnos biljnog i životinjskog materijala prema postotku učestalosti pojavljivanja, a masom je prevladavao plijen animalnog porijekla. Najviše su zastupljene
Chironomidae, Pisces (*Gobio gobio*) i manje Insecta n. det. s visokom primjesom Chlorophyceae i Bacillariophyceae. Na obje lokacije manji i veći primjerci hrane se podjednako biljnim i životinjskim svojima, a primjeri veći od 10,1 cm uzimati će i plijen iz skupine Pisces. U ovim istraživanjima nije pronađena niti jedna svojta iz skupina Cladocera, Copepoda, Rotatoria, Ephemeroptera ili Oligochaeta, kao što je bio slučaj u prethodnim istraživanjima ishrane potočne mrene iz rijeke Save (Piria, 2003). Naime, tada je obrađen puno veći broj primjeraka čime je evidentno da se populacija ove vrste znatno smanjila u području Zagreba.

Mali broj bodorki imao je ispunjena probavila i nije bilo razlike u ishrani tijekom cijelog perioda istraživanja, kao što navodi i Hellavel (1972). Nekoliko studija ukazuje da je bodorka omnivorna riba sa prevladavanjem makrofita, algi i detritusa u probavnom traktu (Hellawel, 1972; Mann, 1973; Vøllestad 1985). Naša istraživanja pokazala su da često puta biljni materijal prevladava nad ostalom hranom. Tako je na lokaciji Medsave u srpnju 2004 prevladavala makrofita i Chlorophyceae, a na lokaciji Jarun u srpnju i rujnu 2005. g. Ostalu hranu predstavljali su Insecta n. det, Trichoptera, Chironomidae i Coleoptera. Zbog premalog broja jedinki u pojedinom razdoblju nije moguće jasno definirati sezonsku ishranu. Na lokaciji Medsave primjeri bodorke ispod 7,0 cm hranili su se najviše s Trihoptera, primjeri između 7,1 i 9,0 cm s Insecta n. det. i zelenim algama, a veći primjeri samo s Insecta n. det. Na lokaciji Jarun primjeri svih veličina uzimali su veliku biomassu zelenih algi, a manje hranu životinjskog porijekla.

Literaturni podaci ukazuju da se deverika iz jezera, akumulacija i ribnjaka hrani zooplanktonom i zoobentosom (Lammens, 1984; Lammens i sur, 1985; Baruš i sur 1995; Specziár i sur, 1997; 1998; Specziár, 2002a; 2002b; Vašek i Kubečka, 2004; Vašek i sur, 2006), a često je pronađeno i dosta detritusa (Baruš i sur 1995; Specziár i sur, 1997). Deverika se u rijeci Savi samo povremeno pojavljuje, pa su probavila pregledana samo na nekoliko primjeraka. U probavilima je
pronađen visok postotak detritusa, a sadržaj je bio raznolik. U 2004. g. tijekom ljeta su pronađeni Oligochaeta, Insecta n. det. i Bacillariophyceae, a tijekom jeseni Arachnida, Chironomidae, Ephemeroptera, Copepoda i alge. Tijekom ljeta 2005. g. najviše su bile zastupljene alge, Nematoda i Ceratopogonidae. Deverike manjih dužina hranile su se algama, Arachnida i Ephemeroptera. Primjeri između 8,1 i 10,0 cm imali su visok postotak mase za makrofite, a visok postotak učestalosti pojavljivanja za Bacillariophyceae. Veći primjeri hranili su se s Oligochaeta i Chironomidae.

5.4. Dnevni ciklus ishrane

je bodorka vrsta koja se danju hrani u litoralnoj zoni, a noću u pelagijalu. Očito se ovo više odnosi na populacije bodorki koje žive u jezerima ili akumulacijama, jer je u našem slučaju ova vrsta je češće bila lovljena tijekom noći, a rjeđe tijekom dana.

Visoke temperature vode utječu i na brzinu probave i visok stupanj hranjenja dok niske temperature zimi rezultiraju limitiranjo hranidbenoj aktivnosti (Politou i sur., 1997; Haertel i Eckmann 2002). I prema nižem faktoru kondicije također je moguće vidjeti niži stupanj hranjenja zimi nego ljeti (Poglavlje 4.4.).

Istraživanjem dnevnog režima hranjenja Ciprinida iz rijeke Save potvrđuju ove činjenice. Klen, uklija, dvoprugasta uklija, mrena, krkuša, osim podusta, u srpnju imaju maksimum hranjenja u 6:00 ujutro, a najpraznija probavila oko 10:00 ujutro. Vrlo često se tada nisu ni pojavile u ulovu, što dovodi u vezu i dinamiku hranjenja.

U rujnu je temperatura vode bila nešto nižih vrijednosti, oko 15°C, a moguće je vidjeti da su klen, krkuša i podust imali nešto drugačiji ciklus hranjenja nego tijekom ljeta. Najpaznija probavila bila su u 6:00 ujutro. Za krkušu i podusta pouzdano se može reći da su bili aktivniji tijekom dana, a proces probave odvijao se tijekom noći. Klen se hranio češće i jedan pik hranjenja vidljiv je između 10:00 i 14:00 sati, a drugi oko 02:00 ujutro.

U svibnju su temperature vode bile još niže 12-13°C, a dinamika hranjenja je bila slična kao i u rujnu. Najpaznija probavila bila su u 6:00 ujutro, a hranjenje započinje oko 10:00 sati i traje tijekom dana. I tu je bilo odstupanja, što je vidljivo u ciklusu hranjenja bodorke u svibnju iako to nisu precizni podaci jer se bodorka u ulovu javlja većinom sa 1-2 primjeraka.

Kako bi se dobili još precizniji podaci o dnevnom režimu ishrane, ciklus lovljenja uzoraka treba biti što kraći. Tako Finstad (2005) navodi da intervali od 4 h ili 3 h nisu dovoljno precizni već sugeriira da ciklus bude još manji kako bi se dobila što manja odstupanja sadržaja probavila.
5.5. Odnos ishrane s raspoloživim plijenom

Jedan od važnih koraka ekoloških istraživanja trofičke strukture i prostorne heterogenosti riba je odnos ishrane populacija prema raspoloživom plijenu u njihovu staništu. Sa informacijama ekoloških i bioloških parametara vode i života u njoj moguće je ustanoviti kako međusobno jedna vrsta utječe na drugu (Jones i Barmuta, 1998; Garcia-Berthou, 1999; Grenouillet i Pont, 2001).

Na obje istraživane lokacije nije pronađena skupina Ceratopogonidae i Arachnida, a samo povremeno su pronađene Coleoptera. Na lokaciji Medsave pronađeno je više svojstva vrsta nego na lokaciji Jarun. Na lokaciji Jarun nisu pronađene još Bivalvia, Simuliidae, Tipulidae ni Plecoptera. Kako su ribe migratorne, one su vjerojatno plijen pronašle na mjestima kojima nije bilo moguće uzeti uzorke makrozoobentosa odnosno na manje dostupnim mjestima. Klen, uklja i dvoprugasta uklja bile su pozitivno selektivne na svojstva iz skupine Ceratopogonidae koje nisu pronađene niti na jednom dostupnom supstratu. Krkuša i dvoprugasta uklja bile su pozitivno selektivne na Coleoptera kojih nije bilo ili ih je bilo vrlo malo prisutno u litoralnoj zoni. Eiseniella tetraedra nije pronađena na lokaciji Jarun i samo je klen bio pozitivno selektivan prema toj vrsti. Simuliidae i Tipulidae nisu pronađene niti na jednoj lokaciji, a samo se mrena hranila tim skupinama plijena. Osim toga, ni Plecoptera nisu pronađeni u okolini, a samo ih je klen rado uzima. Ostale svojstva, kao primjerice Chironomidae uzimalo je više vrsta riba i to klen, uklja, dvoprugasta uklja, krkuša, mrena, potočna mrena i nosara. Pojedine vrste su ih uzimale u većoj ili manjoj frekvenciji, brojnosti i masi. U okolini su bili vrlo brojni, pa su ove vrste riba bili međusobni konkurenti za taj tip plijena, što nije utjecalo na brojnost njihovih populacija. Slično je uočeno i za plijen iz skupine Trichoptera. Oni su bili vrlo brojni na kamenitom supstratu, a pozitivnu selekciju pokazivao je klen, mrena, uklja, dvoprugasta uklja, krkuša, potočna mrena, nosara i klenić. Iako je Gammarus sp. bio vrlo brojan plijen, naročito na lokaciji Medsave najviše je krkuša preferirala ove svojstva. Manje ih je uzimao klen, a vrlo rijetko nosara i
dvoprugasta uklija. Plijen biljnog porijekla u pojedinim sezonama bio je vrlo razvijen. Pojedine ribe su ih povremeno rado uzimale. U probavilima je većinom dominirala *Cladophora* sp. Također, ova vrsta je bila jako raširena i u okolini, pa se nalazila u istom omjeru kao i u probavilima.

Iz ovih rezultata može se reći da su se neke ciprinidne populacije iz rijeke Save vrlo dobro ishranom prilagodile na zajedničko stanište i dostupan plijen. Prisutan plijen se nalazi u dovoljnoj biomasi da može zadovoljiti potrebe ishrane klena, uklja, dvoprugaste uklje, mrene, krkuše i podusta. Očito da je manji broj nosara, kleniça, potočne mrene, bodorki i deverika povezan i sa dostupnom hranom jer ukoliko nema dovoljno glavne hrane ili ne vladaju optimalni uvjeti za neku vrstu moguć rezultat je redukcija u rastu i reprodukciji (Kahl i Radke, 2005).

5.6. Preklapanje ishrane Ciprinidnih populacija

Dva indeksa upotrijebljena su u procjeni preklapanja ishrane istraživanih vrsta riba, Schoener i Morisita indeks. Oba indeksa se vrlo često koriste u ovakvim procjenama, a za Schoener postoji podatak da je vrlo osjetljiv na broj kategorija plijena pa može dati različite rezultate (Bacheler i sur., 2004). U ovakvim slučajevima preporučen je Morisita indeks jer se njime izbjegavaju problemi s veličinom uzorka i raznolikošću plijena (Wolda, 1981). Da je Schoener indeks malo više osjetljiv, vidljivo je u tablici 4.7.3. na lokaciji Jarun iz 2004 g. gdje je Morisita indeks pokazao da se hranidbene navike podusta ne preklapaju niti sa jednom drugom vrstom, a Schoener indeks ukazuje de se njegova ishrana poklapa sa klenom, mrenom, krkušom, nosarom, potočnom mrenom i deverikom. Ukoliko Morisita indeks pokazuje vrlo niske vrijednosti, Schoener indeks može pokazati izuzetno visoke vrijednosti.

Uspoređujući oba istraživana razdoblja, na lokaciji Medsave klen je imao preklapanje prehrambenih navika sa ukljom i dvoprugastom ukljom, nosarom i bodorkom. Sa potočnom mrenom njegova ishrana preklapala se samo u 2005. g. Na lokaciji Jarun još se preklapao sa deverikom. Isti rezultati dobiveni su prethodnim istraživanjem u rijeci Savi na lokaciji Medsave (Piria, 2003). Prema
6. Zaključci

1. Bez obzira na određena kolebanja pojedinih fizikalno kemijskih parametara kvaliteta vode rijeke Save nije se bitnije mijenjala tijekom posljednjih desetak godina, a hidrobionti koji ondje obitavaju prilagodili su se na takve uvjete sredine;

2. Na obje lokacije u perifitonu rijeke Save najviše su razvijene Bacillariophyceae, a manje Chlorophyta, Euglenophyta i Cyanophyta/Cyanophyceae. Od Bacillariophyta masovno su razvijene na obje lokacije u obje sezone Diatoma vulgare, Gomphonema sp. i Navicula sp. Za Chlorophyta najznačajnija je Cladophora glomerata na obje lokacije;

3. Najveći broj vrsta u mrežnom fitoplanktonu zabilježen je iz skupine Chlorophyta na obje lokacije, a slijedi skupina Bacillariophyceae. Cladophora sp. pronađena je na obje lokacije u 2004. i 2005. g;

4. Razvoj Rotifera bio je najčešće zabilježen u rijeci Savi, a to je skupina koja čini veliki dio zooplanktona u svim tipovima voda i kvalitativno su najbrojniji;

5. U bentalu na obje lokacije tijekom obje sezone najviše su se razvili Gammarus sp., Chironomidae, Trichoptera i Hirudinea. Često se u većoj biomasi javljaju Gastropoda, Isopoda, Odonata, Oligochaeta i Ephemeroptera;

6. Relativna dužina probavila jedna je od važnijih varijabli povezanih sa herbivornim ribama, u ovom slučaju sa podustom;

7. Broj branhiospina upućuje na ishranu riba planktonskim organizmima;

8. Širina usta je povezana s herbivornim ribama, a visina usta s insektivorima i zooplaktivorima; pozitivnu korelaciju sa visinom i širinom usta ima i plijen iz skupine Pisces;

9. dužina glave ili dužine tijela imale su slabiju povezanost sa načinom ishrane, a ta veza je korelirana sa piscivornim i bentivornim ribama;
10. Klen iz rijeke Save je omnivoran, hrani se biljnim materijalom, Oligochaeta, Hirudinea, Gastropoda, Crustacea, raznim vrstama insekata, Chironomidae, Ephemeroptera, Trichoptera, Odonata, Plecoptera, manjim ribama i ribljom ikrom;
11. manji i veći primjerci klena imaju vrlo sličnu prehranu, jedino su veći primjerci više izbirljivi i češće biraju krupniji plijen;
12. uključuje se bez obzira na godišnje doba najviše hrani s Insecta n. det., Ceratopogonidae, Coleoptera i Ephemeroptera. Rjeđe se pojavljuju Chironomidae, Trichoptera i Odonata, a samo sporadično biljne svojte;
13. manji dužinski razredi uključuju preferiraju manji plijen. Najviše biljnih svojstva pronađeno je kod dužinskog razreda 7,1 – 9,0 cm u kombinaciji sa sitnijim plijenom iz skupine Insecta n. det., Ceratopogonidae, Ephemeroptera, Coleoptera i Diptera n.det. Veći primjerci uključe (>11,1 cm) uz Ephemeroptera, Ceratopogonidae, Insecta n. det uzimaju još Odonata i Trihoptera;
14. tijekom cijele sezone dvoprugaste uključe su se hranile s kopnenim i vodenim imagom insekata, a vrlo čest plijen bili su Ceratopogonidae, Ephemeroptera i Trichoptera;
15. svi dužinski razredi dvoprugaste uključuju hranili su se s Insecta n. det, u manjim primjerima su češće pronađene manje alge, dok su primjeri veći od 9,0 cm više uzimali Trichoptera i makrofita;
16. u probavilima mrene pronađeno je najviše i najčešće Chironomidae i Trichoptera. Povremeno se više pojavljuju i Gastropoda, Bivalvia, Oligochaeta, Ephemeroptera i Pisces. Biljna i animalna komponenta podjednako je važna u ishrani mrene;
17. veći dužinski razredi mrene uzimali su nešto više algi i makrofita od malih primjeraka i pokazivali tendenciju ishrane s manjim ribama. Chironomidae su više uzimali manje primjeri, a Trichoptera veći;
18. krkuše se u ljetnom i jesenskom razdoblju pretežno hrani sa Gammarus sp., Chironomidae, Trichoptera i Ephemeroptera, a manje sa ostalim skupinama insekata bilo ličinkama ili imagom. U proljetnom i ljetnom
razdoblju javlja se i veći udio biljnog materijala kao što su Bacillariophyceae, Chlorophyceae i makrofita;
19. na lokaciji Jarun manji primjerci krkuše češće su uzimali plijen manjih dimenzija kao što su alge, Chironomidae i Ephemeroptera, dok su se veći primjerci češće hranili vrstom *Gammarus* sp. koji je dominirao učestalošću, brojnošću i masom. Na lokaciji Medsave kod manjih i kod većih primjeraka dominirali su Chironomidae i Trichoptera, a podjednako je zastupljen i ostali plijen;
20. ishrana podusta sastojala se uglavnom od alg kremenjašica tijekom cijelog istraživanog razdoblja na obje lokacije, a manje makrofita i zelene alge s prisutnošću veće biomase *Cladophora* sp.;
21. manji primjerci podusta hrane sa algama kremenjašicama i zelenim algama, a veći primjerci s algama kremenjašicama i makrofita;
22. tijekom ljeta i jeseni u probavilima nosare na lokaciji Medsave više su zastupljene biljne svojstva, a u proljeće i rano ljeto prisutne su razne vrste kopnenih insekata, Amphipoda (*Gammarus* sp.), ličinke Chironomidae, Ephemeroptera i Trichoptera. Na lokaciji Jarun prisutne su bile samo sjemenke makrofita od biljnog materijala. Ondje se u jeseni hranila najviše s Amphipoda (*Gammarus* sp.) i Gastropoda, a tijekom ljeta s Insecta, Chironomidae i Ephemeroptera;
23. veći primjerci nosare u prisutnosti veće biomase alg kremenjašice i Ephemeroptera, Trichoptera, Coleoptera i imago Insecta n. det. Ljeti se hranio s Ephemeroptera, Insecta n. det, a veći primjerici i s Pisces. U proljeće uzimali su alge kremenjašice i Ephemeroptera, a u jesen su uzimali makrofita, Ephemeroptera, Trichoptera, Coleoptera i Insecta n. det;
25. manji primjerci kleniće hranili su se s Ephemeroptera i Insecta, a veći primjerci sa biljnim materijalom i većim plijenom kao što su Trichoptera i Pisces;

26. potočna mrena imala je vrlo ujednačen odnos biljnog i životinjskog materijala prema postotku učestalosti pojavljivanja, a masom je prevladavao plijen animalnog porijekla. Najviše su zastupljene Chironomidae, Pisces (*Gobio gobio*) i manje Insecta n. det. s visokom primjesom Chlorophyceae i Bacillariophyceae;

27. na obje lokacije manji i veći primjerci potočne mrene hrane se podjednako biljnim i životinjskim svojtama, a primjeri veći od 10,1 cm uzimati će i plijen iz skupine Pisces;

28. zbog premalog broja jedinki u pojedinom razdoblju nije moguće jasno definirati sezonsku ishranu bodorke. Često puta biljni materijal prevladavao je nad ostalom hranom. Na lokaciji Medsave u srpnju 2004 prevladavala makrofita i Chlorophyceae, a na lokaciji Jarun u srpnju i rujnu 2005. g. Ostalu hranu predstavljali su Insecta n. det, Trichoptera, Chironomidae i Coleoptera;

29. na lokaciji Medsave primjerci bodorke ispod 7,0 cm hranili su se najviše s Trihoptera, primjerići između 7,1 i 9,0 cm s Insecta n. det. i zelenim algama, a veći primjeri samo s Insecta n. det. Na lokaciji Jarun primjeri svih veličina uzimali su veliku biomasu zelenih algi, a manje hranu životinjskog porijekla;

30. u probavilima deverike 2004. g. tijekom ljeta pronađeni su Oligochaeta, Insecta n. det. i Bacillariophyceae, a tijekom jeseni Arachnida, Chironomidae, Ephemeroptera, Copepoda i alge. Tijekom ljeta 2005. g. najviše su bile zastupljene alge, Nematoda i Ceratopogonidae;

31. deverike manjih dužina hranile su se algama, Arachnidae i Ephemeroptera. Primjerici između 8,1 i 10,0 cm imali su visok postotak mase za makrofite, a visok postotak učestalosti pojavljivanja za Bacillariophyceae. Veći primjerici hranili su se s Oligochaeta i Chironomidae;
32. Plotica se u ožujku i lipnju hranila s Bacillariophyceae, Chlorophyceae, makrofita i Chironomidae, a u srpnju samo s Gastropoda;
33. Primjeri plotice manji od 10,0 cm hranili su se s Chironomidae, makrofita i algama, a veći primjeri su u sadržaju provavila imali i veći plijen (Gastropoda) u znatnoj biomasi;
34. U svibnju su najpaznija provavila bila u 6:00 ujutro, a hranjenje započinje oko 10:00 sati i traje tijekom dana;
35. Klen, uklija, dvoprugasta uklija, mrena, krkuša, osim podusta, u srpnju imaju maksimum hranjenja u 6:00 ujutro, a najpaznija provavila oko 10:00 ujutro. Vrlo često se tada nisu ni pojavile u ulovu, što dovodi u vezu i dinamiku hranjenja;
36. U rujnu su klen, krkuša i podust imali nešto drugačiji ciklus hranjenja nego tijekom ljeta. Najpaznija provavila bila su u 6:00 ujutro. Za krkušu i podustou pouzdano se može reći da su bili aktivniji tijekom dana, a proces provave odvijao se tijekom noći. Klen se hranio češće i jedan pik hranjenja vidljiv je između 10:00 i 14:00 sati, a drugi oko 02:00 ujutro;
37. Na lokaciji Medsave klen, uklija, dvoprugasta uklija i krkuša bile su pozitivno selektivne prema Ceratopogonidae i Coleoptera koje nisu pronađene u okolini. Mrena i uklija su bile pozitivno selektivne na alge kojih je bilo u nižoj frekvenciji nego u okolini;
38. Na lokaciji Jarun u 2004. g. nisu pronađene svojte iz skupine Arachnida na koje je bila pozitivno selektivna deverika. Pozitivnu selekciju na Ceratopogonidae pokazali su klen, uklija i dvoprugasta uklija , na Simuliidae mrena, na Coleoptera i *Eiseniella tetraedra* klen. Tih svojstva nije bilo u okolini. U 2005. g. na istoj lokaciji također nisu pronađeni Ceratopogonidae, a ni Plecoptera, Simuliidae, Tipulidae i Bivalvia koje su često zimale mrena, dvoprugasta uklija, uklija i klen;
39. Prisutan plijen u okolini se nalazi u dovoljnoj biomasi da može zadovoljiti potrebe ishrane klena, uklije, dvoprugaste uklije, mrene, krkuše i podusta.
40. Manji broj nosara, klenića, potočne mrene, bodorki i deverika povezan je sa dostupnom hranom jer ukoliko nema dovoljno glavne hranе ili ne
vladaju optimalni uvjeti za neku vrstu moguć rezultat je redukcija u rastu i reprodukciji
41. Klen uzima sličan plijen kao ukljila, dvoprugasta ukljila, nosara i bodorka, a povremeno i kao potočna mrena i deverika;
42. ukljila ima sličnosti u ishrani sa dvoprugastom ukljilom u obje sezone istraživanja i na obje lokacije, a povremeno dolazi do jače kompeticije s bodorkom, nosarom i potočnom mrenom.
43. jača kompeticija u ishrani javlja se još i između dvoprugaste ukljila i bodorke, a manje između dvoprugaste ukljila, nosare, potočne mrene i klenića;
44. mrena je još imala sličnu ishranu s krkušom, a samo na lokaciji Jarun u 2004. i sa potočnom mrenom;
45. podust jače preklapanje ima samo s nosarom, a povremeno s bodorkom i deverikom;
46. nosara povremeno ima sličnu ishranu s potočnom mrenom i klenićem, a potočna mrena s bodorkom;
47. bodorka se još povremeno natječe u ishrani sa deverikom i ploticom;

Rezultati ovih istraživanja samo su jedan korak novim saznanjima o distribuciji, ishrani i međusobnoj povezanosti u ekološkoj niši 12 ciprinidnih vrsta riba u gornjem toku rijeke Save. Buduća istraživanja ishrane trebala bi, osim ciprinidnih vrsta riba, obuhvatiti i ostale porodice kako bi se dobili što precizniji podaci. Svakako bi se trebala posvetiti pažnja staništu za svaku vrstu zasebno, utvrditi sastav ishrane prema dobi riba, detaljnije prikazati sastav ishrane herbivornih riba i detaljnije prikazati biljni plijen riba kojima je to povremena hrana. Osim toga, dnevni ciklus ishrane proširiti sa istraživanjima brzine probave pojedinog plijena i učestalijim izlovom da se dobije preciznija slika o frekvenciji hranjenja. Također, ovakva istraživanja trebala bi se proširiti i na druge otvorene vode u Hrvatskoj.
7. Literature

Okun, N., Mehner, T. (2005a): Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecology of Freshwater Fish, 14: 139-149.

Korišteni Software:

SPSS for windows 12.01

Ecological Methodology 6.1.1.

Canoco for windows 4.5.5.
8. Sažetak

Ishrana ciprinida iz rijeke Save po prvi puta je detaljno prikazana. Ukupno je analizirano 1862 ribe na lokaciji Jarun i 1417 riba na lokaciji Medsave ulovljenih tijekom 2004. i 2005. g. Osim prikaza povezanosti morfoloških osobina prema tipu plijena koje su konzumirale obuhvaćen je mjesečni i dnevni prikaz ishrane, odnos plijena pronađenog u probavilima sa dostupnim plijenom u okolini i međusobna kompeticija ishrane u odnosu na raspoloživi plijen. Dužina probavila i širina usta povezana je s herbivornim vrstama, broj branhiospina je povezan s planktivorima, a visina usta s insektivorima i zooplanktivorima. Dužina glave i dužina tijela povezana je s piscivorima i bentivorima. Klen iz rijeke Save je omnivoran s time da veći primjeri više konzumiraju plijen iz skupine Pisces. Ukljila i dvoprugasta ukljila hrane se manjim insektima, a sporadično se pojavljuju biljne svojine. Mrena i potočna mrena su bentivorne vrste, a u ishrani biljna hrana sudjeluje u velikom omjeru. Krkuša se, također, hrani makrozoobentosom, a u ishrani su najviše prisutni račići iz skupine Amphipoda. Podust je tipična herbivorna riba, dok je nosara povezana s Amphipoda, Gastropoda i manjim insektima s manjim udjelom biljnih svojti. Kleniće je povezan s ličinkama insekata, a manje sa biljnim materijalom. Bodorka se podjednako hrani biljnim materijalom i bentosnim beskralježnjacima, a deverika planktonskim organizmima, ličinkama insekata i maločetinašima. Plotica se hrani s Chironomidae, Gastropoda, a manje biljnim svojima. Pri nižim temperaturama vode hranjenje tijekom dana započinje kasnije, oko 10:00 ujutro, a pri višim temperaturama vode ranije, oko 06:00 ujutro. Prisutan plijen u okolini se nalazi u dovoljnoj biomasi da može zadovoljiti potrebe ishrane klena, ukljila, dvoprugaste ukljila, mren, kruške i podusta. Klen uzima sličan plijen kao ukljila, dvoprugaste ukljila, nosara i bodorka, a povremeno i kao potočna mrena i deverika. Ukljila ima sličnosti u ishrani sa dvoprugastom ukljilom u sezone istraživanja i na obje lokacije, a povremeno dolazi do jače kompeticije s bodorkom, nosarom i potočnom mrenom. Jača kompeticija u ishrani javljala se još i između dvoprugaste ukljile i bodorke, a manje između dvoprugaste ukljile, nosare, potočne mrene i klenića. Mrena je još imala sličnu ishranu s kruškom, a ponekad i sa potočnom mrenom. Podust jače preklapanje ima samo s nosarom, a povremeno s bodorkom i deverikom dok nosara povremeno ima sličnu ishranu s potočnom mrenom i klenićem, a potočna mrena s bodorkom. Bodorka se još povremeno natječe u ishrani sa deverikom i ploticom.
9. Summary

The natural diet of cyprinid fish from the Sava River is shown here for the first time in detail. A total of 1862 fish from the Jarun site and 1417 fish from the Medsave site, collected during 2004 and 2005, are analyzed. In addition to dietary morphological relationships, the monthly and daily diet, prey selectivity with prey availability in the environment and food competition are investigated. Gut length and mouth width are correlated with herbivore species, the number of gill rakers with planktivore species and mouth height with insectivore and zooplanktivore fish species. Head length and body length are correlated with piscivores and bentivores. Chub (Leuciscus cephalus) from the Sava River are omnivorous, and the bigger specimens consume more Pisces prey. Spirin (Alburnoides bipunctatus) and bleak (Alburnus alburnus) feed on small insects and occasionally plant food. Both barbel (Barbus barbus and Barbus peloponnesius) species are bentivores, feeding on large quantities of plant food. The preferred prey of gudgeon (Gobio gobio) are macroinvertebrates, particularly small crustaceans from the Amphipoda group. Sneep (Chondrostoma nasus) are a typical herbivore species, while the main prey of vimba (Vimba vimba) are Amphipoda, Gastropoda and small insects, with a small frequency of plant food. Dace (Leuciscus leuciscus) are connected with insect larvae, and supplementary food is plant material. The same amount of plant food and macroinvertebrates were found in the diet of roach (Rutilus rutilus), while carp bream (Abramis brama) consumed plankton, insect larvae and Oligochaeta. Danube roach (Rutilus pigus virgo) eat Chironomidae and Gastropoda, and less frequently plant material. Among lower water temperatures, feeding begins around 10.00 in the morning, while higher water temperature result in earlier feeding, around 6.00 in the morning. For chub, spirin, bleak, barbel (B. barbus), gudgeon and sneep, there is currently sufficient prey in the environment. Chub have a high diet overlap with spirin, bleak, vimba and roach, but also occasionally with barbel (B. peloponnesius) and carp bream. Bleak had a similar diet to spirin at both locations during the research period, and occasionally had a diet overlap with roach, vimba and barbel (B. peloponnesius). Furthermore, higher food competition was present between spirin and roach as well as between bleak, vimba, barbel (B. peloponnesius) and dace. Besides diet overlap with chub, barbel (B. barbus) have similar diets to gudgeon and sometimes with barbels (B. peloponnesius). A higher diet overlap of sneep occurs with vimba and occasionally with roach and carp bream. Besides other fish species, vimba have similar food as barbel (B. peloponnesius) and dace, while barbel (B. peloponnesius) overlap with roach. Sometimes roach have prey competition with carp bream and danube roach.
10. Životopis

Voditelj je jednog, a član komisije tri diplomska rada. Mentor je dva studentska rada nagrađena dekanovom nagradom, a istim studentima pomogla je objaviti radove u časopisu Ribarstvo. Autor je dvije skripte za predmet hidroekologija pod nazivom "Plankton i bentos u kopnenim vodama" i "Hidrotemija", a koautor jedne skripte za predmet agrarna zoologija pod nazivom "Tablice za prepoznavanje važnijih taksona životinja"

Posjetila je mnoge znanstvene institucije u Austriji, Češkoj, Mađarskoj, Poljskoj, Rumunjskoj, Španjolskoj i Maleziji, a sudjelovala je i na stručnim i znanstvenim skupovima kako u zemlji tako i u inozemstvu.

Član je uredništva znanstveno stručnog časopisa Ribarstvo i webmaster istog časopisa (http://hrcak.srce.hr/). Osim toga, član je i Hrvatskog ihtiološkog društva. Recenzent je časopisa Ribarstvo, ACS i Hrvatske vode.

Do sada je objavila 4 A1 rada i preko 60 ostalih ostalih radova kao autor ili u koautorstvu.
11. Popis objavljenih radova

