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Abstract. By the method of synthetic geometry, we define a seemingly new

transformation of a three-dimensional projective space where the corresponding

points lie on the rays of the first order, nth class congruence C1
n

and are conjugate

with respect to a proper quadric Ψ. We prove that this transformation maps a

straight line onto an n + 2 order space curve and a plane onto an n + 2 order

surface which contains an n-ple (i.e. n-multiple) straight line. It is shown that

in Euclidean space the pedal surfaces of the congruences C1
n

can be obtained by

this transformation. The analytical approach enables new visualizations of the

resulting curves and surfaces with the program Mathematica. They are shown in

four examples.

Introduction

An inversion with respect to a quadric Ψ in a three-dimensional space
(projective, affine or Euclidean) is a transformation which maps each point A
onto a point A′ which is conjugate to A with respect to Ψ, and the pair of points
AA′ satisfies additional requirements as follows:
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If the lines AA′ form a bundle of lines {P}, the inversion is quadratic inversion
with a pole P [8]. In the general case, this transformation maps a straight line
onto a conic, and a plane onto a quadratic surface.

If the lines AA′ form a linear congruence C1
1 , the inversion is called cubic

inversion [9]. It transforms a straight line and a plane, which are in general
positions to C1

1 and Ψ, onto a twisted cubic and a cubic surface, respectively.

If the lines AA′ form the first order and second class congruence C1
2 , the

inversion is called quartic inversion [4]. It transforms a straight line and a
plane, which are in general positions to C1

2 and Ψ, onto a quartic space curve
and a quartic surface, respectively.

In this paper, we shall define a new, more general inversion concept which
includes the above-mentioned transformations as special cases.

1. (1, n) congruences

A congruence C is a doubly infinite line system, i.e. it is a set of lines in three-
dimensional space (projective, affine or Euclidean) depending on two parameters.
The line z ∈ C is said to be the ray of the congruence. The order of a congruence
is the number of its rays which pass through an arbitrary point; the class of
a congruence is the number of its rays which lie in an arbitrary plane. Cm

n

denotes an mth order nth class congruence. A point is called a singular point of
a congruence if ∞1 rays pass through it. A plane is called a singular plane of a
congruence if it contains ∞1 rays (1-parametrically infinite lines).

It has been proved that the rays of first order congruences are always the
transversals of two curves, or they intersect the same space curve twice. More-
over, it has been proved that only the first order congruence, consisting of a
system of lines meeting a proper curve twice, exists when the curve is a twisted
cubic, ([10, p. 64], [16, pp. 1184-1185], [14, p. 32]).

There are only two types of first order congruences:

Type I: The 1st order nth class congruence C1
n is the system of lines which

intersect a space curve cn of the order n and a straight line d, where cn and d
have n − 1 common points.

Type II: The 1st order 3rd class congruence B1
3 is the system of lines which

meet a twisted cubic twice.

They are elaborated in detail in [1]. We shall consider below only the con-
gruences of Type I.

1.1. Directing lines. The directing lines of the congruence C1
n are a space

curve cn of the order n and a straight line d which intersects cn at n− 1 points.
Any proper nth order space curve can possess singular points with the highest
multiplicity n − 2. If the directing curve cn has a multiple point, it must lie on
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the line d, otherwise it is a contradiction. Any k-multiple point of cn which lies
on d is denoted by Dk

i , where 1 5 i 5 n − k (see Fig. 1).

Some of these points can coincide. There are the cases when d is the tangent
line of cn, the tangent at inflection, etc.

Fig. 1

1.2. Singular points and planes. All singular points of C1
n (the points

which contain ∞1 rays of C1
n) lie on its directing lines cn and d. If a point C lies

on the curve cn and C 6= Dk
i , then the rays of C1

n which pass through C form
a pencil of lines (C) in the plane δ which contains C and d, (see Fig. 2a). If a
point D lies on d and D 6= Dk

i , then all the lines which join D with the points of
the curve cn are the rays of C1

n. They form an nth degree cone ζn
D with the apex

D. Since cn and d have n − 1 common points, this cone intersects itself n − 1
times through the line d, thus d is the (n−1)-ple generatrix of ζn

D, (see Fig. 2b).
If a point Dk

i is the intersection point of cn and d, and if it is the k-ple point of
cn, then the rays through Dk

i which cut cn form an (n − k)th degree cone ζn−k

Dk
i

with apex Dk
i . The line d is the (n− k − 1)-ple generatrix of ζn−k

Dk
i

. Besides, the

rays through the point Dk
i form k pencils of lines (Dk

i ) in the planes determined
by the line d and the tangent lines of cn at Dk

i (see Fig. 2c).

The other lines of the bundle {Dk
i } are not regarded as the rays of the con-

gruence C1
n.

All singular planes of C1
n (the planes which contain ∞1 rays of C1

n) are planes
of the pencil [d] through d. It is clear that in every plane δ ∈ [d] lies the pencil
of rays (C) or (Dk

i ) (see Fig. 3).

If d is the tangent line of cn at Di, then the rays of C1
n form the pencil of

lines (Di) in the rectifying plane of cn at Di.
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a b c

Fig. 2

It is possible that some tangent lines at the intersection points Dk
j lie in the

same plane of the pencil [d]. In such a case, there is more than one pencil of
lines in this plane.

a b

Fig. 3

1.3. Rays through an arbitrary point A and plane α Every point A
which is not a singular point of C1

n, i.e. A /∈ cn, A /∈ d, determines the unique
plane δA ∈ [d] which cuts cn at only one point C that does not lie on the line d,
in general. The line AC, which cuts d at one point D, is the unique ray of C1

n

through A, denoted by zA. If the plane δA contains one of the tangent lines of
cn at the intersection point Dk

i , then the points C and D coincide with Dk
i , and

the line ADk
i is the unique ray of C1

n through A (see Fig. 4).

Every plane α /∈ [d] contains n rays of the congruence C1
n. The plane α cuts

the line d at one point D and intersects the nth order space curve cn at n points
Cj , j = 1, ..., n. The lines DCj are n rays of the congruence C1

n in the plane α.
They are also the intersection of the plane α and the nth degree cone ζn

D, and
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a b

Fig. 4

can be real and different, coinciding or imaginary. If α cuts d at Dk
i , then the

n− k rays are the intersection of α and the cone ζn−k

Dk
i

, and the other k rays are

the intersection of α and the planes through d determined by the tangent lines
of cn at Dk

i (see Fig. 5).

a b

Fig. 5

2. Inversion of degree n + 2

Two points A, A′ ∈ P
3 are said to be conjugate points with respect to a proper

quadric Ψ if they are harmonic with respect to the points A1, A2 in which the
line AA′ meets Ψ. For every A ∈ P

3, all the points A′ which are conjugate to A
with respect to Ψ lie in the plane πA which is called the polar plane of A with
respect to Ψ. A ∈ πA if and only if A ∈ Ψ, and πA is the tangent plane of Ψ at
the point A ∈ Ψ [12, p. 266].

The rays of C1
n which are the tangent lines of a quadric Ψ form the ruled

surface Σ2n+2 of degree 2n + 2. It is the intersection of the congruence C1
n and

the 2nd degree complex of the tangent lines to Ψ [10, p. 38].
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The ruled surface Σ2n+2 touches Ψ along the (2n + 2)th order space curve
e2n+2. For every point E which lies on the curve e2n+2, the ray zE is the tangent
line to Ψ with the contact point E (see Fig. 6).

Fig. 6

Definition 1. Let Ψ and C1
n be a proper quadric and a congruence in the

projective space P
3. Let the directing lines of the congruence C1

n (the curve
cn and the straight line d) be in general position to Ψ, i.e. Ψ ∩ d = {P1, P2},
Ψ ∩ cn = {K1, ..., K2n}. For any point A ∈ P

3, let iΨ(A) be the intersection of
πA (the polar plane of A with respect to Ψ) and the rays of the congruence C1

n

which pass through A.

(i) If A /∈ d∪cn∪e2n+2, then iΨ(A) = πA∩zA is a unique point. Considering
the fundamental properties of the polarity with respect to Ψ, A and iΨ(A)
correspond involutively, i.e. it holds in general that iΨ(iΨ(A)) = A (see Fig. 7.),
especially for A ∈ Ψ, iΨ(A) = A.

(ii) If A = E ∈ e2n+2, then iΨ(E) = zE ∈ C1
n. iΨ(E) is a straight line.

(iii) If A = C ∈ cn and C 6= Dk
i , then iΨ(C) = πC ∩ δC . iΨ(C) is a straight

line.

(iv) If A = D ∈ d and D 6= Dk
i , then iΨ(D) = πD ∩ ζn

D. iΨ(D) is an nth
order plane curve.

(v) If A = Dk
i , then iΨ(Dk

i ) = πDk
i
∩ (ζn−k

Dk
i

∪ δi,k). iΨ(Dj
i ) is the degenerated

nth order plane curve. It breaks up into the (n − k)th order plane curve πDk
i
∩

ζn−k

Dk
i

and the straight lines πDk
i
∩ δi,k.

According to (i)−(v), iΨ : P
3 → P

3 is a (birational) Cremona transformation
[12, p. 230] with the singular points on d, cn and e2n+2.
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A

i   (A)

Fig. 7

Theorem 1. If l is a straight line and l 6= d, then iΨ(l) is an (n + 2) order
space curve.

Proof. (i) Assume that a line l does not contain any singular point of
the transformation iΨ, i.e. l ∩ (d ∪ cn ∪ e2n+2) = {φ}. For any A ∈ l,
iΨ(A) = zA ∩ πA, where zA is the ruling on an (n + 1) degree ruled surface
Θn+1 = {zA ∈ C1

n : A ∈ l} and πA ∈ [l′], where l and l′ are the conjugate lines
with respect to Ψ.

According to the Chasles formula [7, p. 48], the result of the (1,1) correspon-
dence between the (n + 1) order set of Θn+1 and the pencil of planes [l′] is the
space curve of the order (n + 1) · 1 + 1 · 1 = n + 2.

(ii) If a line l contains the singular points of the transformation iΨ, i.e. if l is
in a special position with respect to d, cn or e2n+2, then the result of the (1, 1)
correspondence Θn+1 ↔ [l′] degenerates to the space curve of the order n + 2.
The following cases occur:

(ii1) If a line l contains the point D ∈ d, then the ruled surface Θn+1 splits
into the cone ζn

D and the plane δl ∈ [d] determined by l and d. The image iΨ(l)
splits into the nth order plane curve ζD∩πD and the conic cδl

which is the image
of l with respect to the plane quadratic inversion determined by the conic δl ∩Ψ
and the pole C = cn ∩ δl in δl.

If D = Dk
i , then the cone of rays through Dk

i splits into the ζn−k

Dk
i

and k

planes through d. Therefore, iΨ(l) splits into the plane curve of the order n− k,
k lines in the plane πDk

i
and the inverse conic of l in the plane δl ∈ [d].

If D is the intersection point of d and Ψ (P1 or P2), then the intersection
curve ζn

D ∩ πD splits into n lines through D.
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(ii2) If l contains C ∈ cn, C 6= Dk
i , the surface Θn+1 splits into the ruled

surface Θn (with directing lines cn, d and l) and the plane δC ∈ [d]. Therefore,
iΨ(l) splits into the nth order space curve, the result of the (1,1) correspondence
between Θn and [l′], and the line δC ∩ πC .

If l contains s points Cj ∈ cn, s < n − 1, Cj 6= Dk
i , then the surface Θn+1

splits into the ruled surface Θn−s+1 (with directing lines cn, d and l) and s planes
δCj

∈ [d]. Therefore iΨ(l) splits into the (n − s + 1)th order space curve, the
result of the (1,1) correspondence between Θn−s+1 and [l′], the s lines δCj

∩πCj

and the line δC ∩ πC .

(ii3) If l contains E ∈ e2n+2, then the (1,1) correspondence Θn+1 ↔ [l′]
has one pair of incident elements (zE ⊂ πE ∈ [l′]). Thus the result of this
correspondence is an (n + 1)th order space curve and the line zE .

If l contains two points of e2n+2, then iΨ(l) splits into an nth order space
curve and the lines zE1

, zE2
.

(ii4) If l contains D ∈ d and C ∈ cn, it is the ray of C1
n and then iΨ(l)

splits into ζn
D ∩ πD, δC ∩ πC and l.

It is easy to see, by combining (ii1), (ii2) and (ii3), that in all other cases when
a line l contains the singular points of iΨ, the image iΨ(l) is the degenerated
space curve of the order n + 2. �

Tehorem 2. iΨ(e2n+2) = Σ2n+2

Proof. For every E ∈ e2n+2, iΨ(E) = zE which is the ruling on Σ2n+2.
�

Theorem 3. iΨ(cn) is an (n + 1) degree ruled surface with the n-ple line d.

Proof. For the points C ∈ cn, the polar planes πC , with respect to Ψ, form
the nth class torse Πn. Since for any C ∈ cn, iΨ(C) = πC ∩ δC , then the image
iΨ(cn) is the result of the (1,1) correspondence between the planes of Πn and [d].
The result of this (1,1) correspondence is the ruled surface of the order n + 1 [7,
p. 48] which contains the line d (the directing line). Since every plane δC ∈ [d]
cuts the ruled surface iΨ(cn) into the line iΨ(C) and the line d, we can conclude
that d is the n-ple line of iΨ(cn). �

Theorem 4. iΨ(d) is an (n + 1) order surface which contains d′, cn, e2n+2

and the (n − 1)-ple line d.

Proof.For every point D ∈ d, the image iΨ(D) is ζn
D ∩ πD. The cones

ζn
D, D ∈ d, form the pencil of nth order developables (Zn) by the directing lines d

and cn. According to the Chasles formula, the result of the (1,1) correspondence
Z

n ↔ [d′] (ζn
D ↔ πD) is a surface of the order n · 1 + 1 · 1 = n + 1.

It is clear that the resulting surface iΨ(d) contains the directing lines of [d′]
and Z

n (d′, cn and the (n− 1)-ple line d). It also contains e2n+2 because for any
E ∈ e2n+2, E ∈ πE and E is conjugate with respect to Ψ to each point on zE .
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Since zE cuts the line d at the point D, then for any E ∈ e2n+2, there exists
D ∈ d, E ∈ iΨ(D). �

Theorem 5. If α is a plane, iΨ(α) is an (n+2) order surface which contains
the n-ple line d, the curves cn, e2n+2 and the conic f = α ∩ Ψ.

Proof. (i) α 6= δ ∈ [d]. From Definition 1 and the fact that C1
n is a doubly

infinite line system, it follows that the locus of the points iΨ(P ), P ∈ α, is a
surface.

Let t be a given line. According to the property iΨ(iΨ(A)) = A, it could
be considered that iΨ(iΨ(t)) = t (excluding the residual images which are the
images of the singular points of the transformation iΨ). According to Theorem
1, iΨ(t) cuts the plane α at n + 2 points. Thus, iΨ(α) and the given line t have
also n + 2 common points.

Every nth order plane curve iΨ(D), D ∈ d, cuts α at n points. These points,
transformed by iΨ, give the point D ∈ d, D ∈ iΨ(α). Therefore, every point of
d is the image of the n points of α, i.e., d is the n-ple line of iΨ(α).

Every line iΨ(C), C ∈ cn, cuts α at one point. This point, transformed by
iΨ, gives the point C ∈ cn, C ∈ iΨ(α). Therefore, every point of cn is the image
of one point of α, i.e., cn is the curve on iΨ(α).

Every line iΨ(E) = zE , E ∈ e2n+2, cuts α in one point. This point, trans-
formed by iΨ, gives the point E ∈ e2n+2, E ∈ iΨ(α). Therefore, every point of
e2n+2 is the image of one point of α, i.e., e2n+2 is the curve on iΨ(α).

Since it follows from A ∈ Ψ and A /∈ e2n+2 that iΨ(A) = A, it is clear that
iΨ(α) contains f = α ∩ Ψ.

(ii) If α = δ ∈ [d], iΨ(α) degenerates to an (n+1) order surface iΨ(d) with
the (n − 1)-ple line d and the plane δ. According to Theorem 4, it contains cn

and e2n+2. �

iΨ : P
3 → P

3, given above by Definition 1, is called the (n+2) degree inversion
with respect to the congruence C1

n and the quadric Ψ. It will be denoted below
by in+2

Ψ .

For n = 0 we could consider that the congruence C1
0 is a bundle of lines and

then the inversion i2Ψ is the quadratic inversion [8]. If n = 1, it is the cubic
inversion [9]. If n = 2, it is the quartic inversion [4].

3. Some properties of surfaces given by inversion in+2
Ψ

The class of the mth order surfaces with the (m − 2)-ple straight line d was
elaborated in detail by Sturm [13, pp. 315-328]. Some properties of such surfaces,
denoted by F

m
m−2, are the following:
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(1) Every plane in the pencil of planes [d] cuts F
m
m−2 in the (m − 2)-ple line

d and one conic.

(2) There are 3m − 4 planes of the pencil [d] where the intersection conics
split up in two lines.

(3) 2(3m− 4) straight lines exist on the surface F
m
m−2. They lie in the planes

of the pencil [d].

According to Theorem 5, for every α /∈ [d] the surface in+2
Ψ (α) belongs to the

above-mentioned class of surfaces (for m = n + 2).

Ad (1) Every plane δC ∈ [d] which contains the point C ∈ cn cuts in+2
Ψ (α)

into the n-ple line d and the conic which is the inverse image of the intersection
line α ∩ δC given by the plane quadratic inversion with respect to the point C
and the intersection conic δC ∩ Ψ.

Ad (2,3) The plane α /∈ [d] cuts the quadric Ψ in the conic fα, the line d at
the point Dα, the curve cn at the points Cα

1 , ..., Cα
n and the curve e2n+2 at the

points Eα
1 , ..., Eα

2n+2 which lie on the conic fα. According to Theorem 1, the
images of the lines DαCα

i (i = 1, ..., n) and DαEα
j (j = 1, ..., 2n + 2) degenerate

to the nth order plane curve ζn
Dα ∩ πDα and two lines in the planes determined

by d and DαCα
i or DαEα

j . Thus, there are 2(3n + 2) lines on the surface iΨ(α)
which lie in the 3n + 2 planes of the pencil [d].

In the Euclidean space E
3, the pedal surface of a congruence Cm

n with respect
to a pole P is the locus of the foot points of the perpendiculars from the point
P to the rays of the congruence Cm

n [6].

Theorem 6. The pedal surface of a congruence C1
n (given by the directing

lines d and cn) with respect to a pole P is an (n+2) order surface with the n-ple
line d which contains the curve cn and the absolute conic of E

3.

Proof. For every sphere Ψ with the center P and the point at infinity A∞,
the polar plane πA∞ is perpendicular to any line through A∞ and passes through
P . Thus, according to Theorem 5, the pedal surface of C1

n for the pole P is the
image of the plane at infinity given by the inversion of degree n+2 with respect
to any sphere with the center P and the congruence C1

n. According to the same
theorem, this in+2

Ψ (α∞) is an n + 2 order surface with the n-ple line d which
contains cn and the absolute conic (the intersection of the sphere Ψ and the
plane at infinity). �

4. Analytical approach and Mathematica visualizations

We use the homogeneous Cartesian point coordinates (x1 :x2 :x3 :x4) in the
usual notation where (0, 0, 0, 0) 6= (x1, x2, x3, x4) ∈ R

4, for any k ∈ R \ {0},
(x1 :x2 :x3 :x4) = k (x1 :x2 :x3 :x4). The relations between the homogeneous and
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affine Cartesian coordinates (x, y, z) are: x = x1

x4

, y = x2

x4

, z = x3

x4

.

Without loss of generality we can assume that the line d, the directing straight
line of C1

n, is the axis z, i.e. it is given by the following parametric equations:

(1) x1 = 0, x2 = 0, x3 = u, x4 = 1, u ∈ R.

The nth order space curve cn, the second directing line of C1
n, is given by the

following parametric equations:

(2) x1 = xcn

1 (v), x2 = xcn

2 (v), x3 = xcn

3 (v), x4 = xcn

4 (v), v ∈ I ⊆ R,

where ∃ vi ∈ I, i ∈ {1, ..., n− 1} such that xcn

1 (vi) = xcn

2 (vi) = 0. It is clear that
the n − 1 intersection points of d and cn are

(3) Di(0 :0 :xcn

3 (vi) :x
cn

4 (vi)).

If A = (a1 :a2 :a3 :a4) is an arbitrary point in general position to the directing
lines of C1

n, then the plane δA ∈ [d] which contains A and d, given by the equation

(4) a2x1 − a1x2 = 0, a1, a2 ∈ R, a1 6= 0 ∨ a2 6= 0,

intersects the curve cn at the n − 1 points Di, which are given by the formula
(3), and the point

(5) CA = (xcn

1 (vC) :xcn

2 (vC) :xcn

3 (vC) :xcn

4 (vC))

where CA /∈ d, i.e. xcn

1 (vC) 6= 0 ∨ xcn

2 (vC) 6= 0.

Now, the line ACA = zA, the unique ray of C1
n through A, is given by the

following parametric equations:

(6)






xz
1(s) =

(

xcn

1 (vC) − a1

)

s + a1, xz
2(s) =

(

xcn

2 (vC) − a2

)

s + a2

s ∈ R.
xz

3(s) =
(

xcn

3 (vC) − a3

)

s + a3, xz
4(s) =

(

xcn

4 (vC) − a4

)

s + a4,

Let a quadric Ψ be given by the following equation

(7)

4
∑

i,j=1

αijxixj = 0, αij = αji.
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248 V. BENIĆ and S. GORJANC

The symmetric bilinear form

(8) Φ(X, X̃) =
4

∑

i,j=1

αijxix̃j = 0, αij = αji,

is called the polar form to Ψ. Two points X ′, X ′′ with Φ(X ′, X ′′) = 0 are
conjugate points with respect to Ψ [2]. Hence, for an arbitrary point A = (a1 :
a2 : a3 : a4) the polar plane πA with respect to the quadric Ψ is given by the
equation

(9) Φ(A, X) =

4
∑

i,j=1

αijaixj = 0, αij = αji.

The point in+2
Ψ (A) (see Definition 1) is the intersection point of zA and πA.

Thus, if the substitution xj = xz
j (s), j = 1, ..., 4 is made in the formula (9), the

following value for the parameter s is obtained

(10) s =
Φ(A, A)

Φ(A, A) − Φ(A, CA)
= sA,

and the coordinates of the point in+2
Ψ (A) are (xz

1(sA) :xz
2(sA) :xz

3(sA) :xz
4(sA)),

where
(11)







xz
1(sA) =

(

xcn

1 (vC) − a1

)

sA + a1, xz
2(sA) =

(

xcn

2 (vC) − a2

)

sA + a2,

xz
3(sA) =

(

xcn

3 (vC) − a3

)

sA + a3, xz
4(sA) =

(

xcn

4 (vC) − a4

)

sA + a4.

The formulas (6) and (11) enable Mathematica visualizations of the rays of C1
n

and the points, curves and surfaces which are the images given by the inversion
in+2
Ψ . Some examples are shown below.

4.1. Example 1. In the Euclidean space E
3, the directing lines of C1

2 are
a straight line d and a circle c2 which lies in the plane perpendicular to d and
cuts d at the point D (see Fig. 8).

Let the directing lines of C1
2 (d and c2) and the quadric Ψ (see Fig. 9a) be

given by the following equations






















d . . . x = 0, y = 0,

c2 . . . (x − 1)2 + y2 − 1 = 0, z = 0,

Ψ . . . (x − 2)2 + (y − 2)2 + (z − 2)2 − 1 = 0.
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2

Fig. 8

The 4th order inversion i4Ψ : E
3 → E

3, with respect to the congruence C1
2

and the sphere Ψ, transforms the straight line l (x=2.6, z =2.75) into the 4th
order space curve i4Ψ(l) (see Fig. 9b), and the plane α (z=2.5) into the 4th order
surface i4Ψ(α) (see Fig. 9c). The surface i4Ψ(α) contains the double line d, the
circle c2 and the intersection circle α ∩ Ψ. Besides the circle α ∩ Ψ, the plane
α cuts the quartic i4Ψ(α) into the pair of isotropic lines through the point d ∩ α
which are the rays of C1

2 in α.

a b c

d

c
2

-

Fig. 9

Three surfaces in Fig. 10 are the images of the plane z = 2 obtained by the
inversions i4Ψ with respect to C1

2 and three spheres with the same center (2, 2, 2)
but different radii (1, 2 and 4).

4.2. Example 2. As it is shown in the proof of Theorem 6, the pedal
surface of a congruence C1

n for a pole P is in+2
Ψ (α∞) where Ψ is any sphere with

the center P and α∞ is the plane at infinity. Since the formulas (6) and (11) are
valid for the points at infinity, they enable the construction of the pedal surfaces
of C1

n.
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Fig. 10

When the spherical coordinates (r, φ, θ) are used, the points at infinity can
be presented in the following way

A∞ = (cos φ sin θ : sin φ sin θ : cos θ : 0), (φ, θ) ∈ [0, π)2.

If the directing line d is given by the formulas x1 =0 and x2 =0, the point CA∞ =
cn∩δA∞ is the intersection of the curve cn and the plane x1 ·sin φ−x2 ·cosφ = 0.
The points A∞, CA∞ , formulas (10) and (11) give the parametric equations of
the pedal surface of the congruence C1

n.

a b c

Fig. 11

Fig. 11a shows the pedal surface of the same C1
2 as in Example 1 with the pole

(−1, 2,−4). It is a quartic surface with the double line d. (The pedal surfaces of
C1
2 are classified in [3]). In figures 11b and 11c the pedal surfaces of one special

C1
4 are shown. The directing lines of C1

4 are the Viviani’s curve c4 and the line
d which cuts it at two points, where one of them is the double point of c4. The
pedals are sextic surfaces with the quadruple line d. The coordinates of the pole
P are (−2

√
2, 0, 0) in the case (b) and (1, 1, 1) in the case (c).
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4.3. Example 3. The following polynomial parametric equations for the
directing lines of C1

n were used for illustrations in the sections 2 and 3.
(12)






xd
1(u) = 0, xd

2(u) = 0, xd
3(u) = u, xd

4 = 1, u ∈ R,
xcn

1 (v) = (v − v1) · · · (v − vn−1), v, v1, . . . , vn−1 ∈ R.
xcn

2 (v) = v xcn

1 (v), xcn

3 (v) = v, xcn

4 (v) = 1,

It is clear that the line d is the axis z and cn is the nth order space curve which
cuts the axis z at the points Di(0 ::0 :vi :1), i ∈ {1, ..., n− 1}.

If the polynomial xcn

1 (v) from (12) contains the factor (v−vi)
s, then i 5 n−s

and d and cn have an s−ple contact at the point Di(0 ::0 :vi :1).

If the polynomial xcn

3 (v) from (12) takes the form

(13)

{

xcn

3 (v) = v(v − vi1) · · · (v − vik
), vij

6= 0,
i1, . . . , ik ∈ {1, . . . , n − 1}, k 5 n − 2,

then (0 : 0 : 0 : 1) is the k−ple singular point of cn, and the coordinates of the
intersection points of cn and d are (0 :0 :xcn

3 (vi) :1).

Fig. 12 shows some rays of the two congruences with the directing lines given
by equations (12). There occurs C1

3 in the case (a) and C1
7 in the case (b). Since

the congruences C1
n of this kind have real rays at infinity, the surfaces given by

the inversion with respect to them have the sheets with the real intersections at
infinity and are not easily displayed. Fig. 12c shows one of these examples.

Fig. 12

4.4. Example 4. A special class of C1
n arises if the directing lines are an nth

order plane curve cn with the (n − 1)-ple point M and a straight line d which
cuts cn in M .
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Without loss of generality, we assume that the plane of the curve cn is per-
pendicular to the line d and that the point M is the center of the Cartesian
coordinate system O(x, y, z). According to [11, p. 27], the directing lines of
these congruences can be given as follows:

d . . . x = 0, y = 0, cn . . . pn + pn−1 = 0, z = 0,

where pn, pn−1 are homogeneous polynomial in x, y (of degree n and n − 1,
respectively) and the n − 1 tangent lines of cn at (0, 0, 0) are represented by
equation pn−1 = 0. Fig. 13 shows three examples of such congruences.

Fig. 13

Fig. 14 shows the three examples of the surfaces in+2
Ψ (α), where α are the

planes perpendicular to d, Ψ is a sphere, and congruences are C1
n from Fig. 13.

If n is an odd number, surface in+2
Ψ (α) has real intersection at infinity (the first

case in Fig. 14), and it cannot be displayed completely.

Fig. 14

Conclusion. Examples given in this paper show only a small number of the
above-mentioned surfaces F

n+2
n which could be obtained by the inversion in+2

Ψ .
Furthermore, for future research it would be worth exploring if the whole class
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of surfaces F
n+2
n could be obtained by that inversion and visualized with the

program Mathematica.
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[1] V. Benić, S. Gorjanc, (1,n) Congruences, KoG, 10 (2006), 5-12.

[2] Encyclopaedia of Mathematics – SpringerLink, edited by M. Hazewinkel, available on-line:
http://eom.springer.de/C/c024910.htm

[3] S. Gorjanc, The classification of the pedal surfaces of (1,2) congruences, Dissertation,
Department of Mathematics, University of Zagreb, 2000 (in Croatian).

[4] S. Gorjanc, Quartic Inversion in Space and some of its Products, Rad HAZU, [470]12
(1995), 187-197.

[5] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica,
CRC Press (Boca Raton, 1998).
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