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Abstract

Many groundwater flow and transport problems, especially those with sharp fronts, narrow transition zones, layers and fingers,
require extensive computational resources. In this paper, we present a novel multi-resolution adaptive Fup approach to solve the above
mentioned problems. Our numerical procedure is the Adaptive Fup Collocation Method (AFCM), based on Fup basis functions and
designed through a method of lines (MOL). Fup basis functions are localized and infinitely differentiable functions with compact support
and are related to more standard choices such as splines or wavelets. This method enables the adaptive multi-resolution approach to
solve problems with different spatial and temporal scales with a desired level of accuracy using the entire family of Fup basis functions.
In addition, the utilized collocation algorithm enables the mesh free approach with consistent velocity approximation and flux continuity
due to properties of the Fup basis functions. The introduced numerical procedure was tested and verified by a few characteristic ground-
water flow and transport problems, the Buckley–Leverett multiphase flow problem, the 1-D vertical density driven problem and the stan-
dard 2-D seawater intrusion benchmark–Henry problem. The results demonstrate that the method is robust and efficient particularly
when describing sharp fronts and narrow transition zones changing in space and time.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many groundwater flow and transport problems exhibit
a wide range of space and/or temporal scales characterized
by sharp gradients resulting in fingering and layering with
the existence of sharp interface and narrow transition
zones. These characteristics are commonly present in prob-
lems of unsaturated and multiphase flow [5,13,23,34], den-
sity driven flow and transport [6,17,43] and reactive
transport [3,39].

The numerical modeling of such processes usually pre-
sents significant difficulties in resolving numerical oscilla-
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tions and dispersion. In order to overcome these
difficulties demanding computational resources with a very
fine grid and small time steps are needed. In recent numer-
ical approaches adaptive methods with low computational
costs are being developed. The first attempt to apply them
has been focused upon using classical finite difference and
finite element methods [2,17]. The main difficulty in apply-
ing these methods is finding a stable solution at the transi-
tion between zones having different discretization.
Significant improvements have been obtained by the adap-
tive discontinuous finite element method, e.g. [5,34].
Recently, there have been many attempts to develop new
adaptive procedures which, among others, are focused
upon using the adaptive wavelet Galerkin methods [9,12]
and collocation methods [7,8,15,25,26,46,47]. The adaptive
wavelet Galerkin methods have three potential difficulties:
treatment of general boundary conditions, treatment of
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Fig. 1a. Function up(x) and its derivatives.
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nonlinearities and solving problems with complex domains.
The first two difficulties can be successfully solved using the
collocation procedure, while the third is still an open
research topic.

The wavelet’s main feature is to facilitate the grid space
adaptation and multi-resolution data compression. It
enables solving problems with a sharp interface and nar-
row transition zone by changing their location and steep-
ness in time and space. Wavelets utilize non-uniform grids
dynamically adaptive according to the solution develop-
ment. Any function, signal or data can be represented
by a linear combination of basis functions (discrete wave-
let transform) in multi-resolution fashion with different
scales or frequencies and locations. This means that spe-
cific frequencies are associated with a particular spatial
location that is not possible in classical Fourier transform
(coefficients of linear combinations are wavelet coefficients
which are associated with a specific resolution level [scale
or frequency] and [collocation] point in space/time
domain). This procedure is also known as multi-resolu-
tion analysis (MRA). Besides the solution variables (pres-
sure, concentration, velocity) any other variables can be
represented in the same multi-resolution fashion such as
electrical or hydraulic conductivity, porosity, natural
recharge or pumping. Furthermore, it is possible to use
other basis functions with compact support (non-zero val-
ues only in one part of the domain) within the collocation
method [46]. The spline adaptive collocation methods are
described in [10,36,49].

Apart from wavelets and splines, there is a relatively les-
ser known class of atomic or Rbf basis functions (Rvachev’s
basis functions) [37,38]. Atomic functions are classified
between classic polynomials and spline functions. How-
ever, in practice, their application as basis functions is
closer to splines or wavelets. In this paper we use Fup basis
functions which are one type of atomic basis functions.
Gotovac and Kozulić [20] systemized the existing knowl-
edge on atomic functions and presented its usage and
calculation into a numerically applicable form. The appli-
cation of Fup basis functions has been demonstrated in
signal processing [32,51], in initial value problems [21],
and in the non-adaptive collocation method for boundary
value problems [22,31].

The main objective of this paper is to develop the Adap-
tive Fup Collocation Method (AFCM) and demonstrate its
application to groundwater flow and transport problems.
Presented is a novel adaptive Fup collocation method
which is well suited to dealing with strong nonlinear
groundwater problems with sharp fronts and narrow tran-
sition zones. A numerical procedure is implemented
through a method of lines. Spatial discretization and grid
adaptation are obtained by Fup collocation transform,
while time integration is obtained by solving the system
of Differential-Algebraic Equations (DAE). Furthermore,
this method enables the adaptive multi-resolution evolu-
tion of a solution with resolved spatial and temporal scales
and a desired level of accuracy. The numerical method has
been tested and verified with a few characteristic ground-
water flow and transport examples.

The following section presents a brief review of Fup

basis functions. Section 3 describes the proposed colloca-
tion method; numerical examples are in Section 4, followed
by conclusions in Section 5. Finally, two appendixes are
added in order to show construction of the finite difference
operator and convergence properties of the AFCM.

2. Fup basis functions preliminaries

Atomic or Rvachev’s basis functions – Rbf have a com-
pact support and they are infinitely differentiable functions
[20,37]. They are classified in between classical polynomials
and spline functions, but in practice their application as
basis functions is closer to splines and wavelets.

Atomic functions, y(Æ), are defined as solutions of differ-
ential-functional equations of the following type:

LyðxÞ ¼ k
XM

k¼1

Ckyðax� bkÞ ð1Þ

where L is a linear differential operator with constant coef-
ficients, k is a scalar different than zero, Ck are coefficients
of the linear combination, a > 1 is a parameter defining the
length of the compact support and bk are coefficients which
determine displacements of basis functions.

The simplest function, which is the most studied among
atomic basis functions, is the up(x) function (Fig. 1a).
Function up(x) is a smooth function with compact support
[�1,1], which is obtained as a solution of a differential-
functional equation

_up0ðxÞ ¼ 2upð2xþ 1Þ � 2upð2x� 1Þ ð2Þ
with the normalized condition
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Fig. 1b. Function Fup2(x) and its first two derivatives.
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Z 1

�1
upðxÞdx ¼

Z 1

�1

upðxÞdx ¼ 1 ð3Þ

Function up(x) can be expressed as an inverse Fourier
transform

upðxÞ ¼ 1

2p

Z 1

�1
eitx
Y1
j¼1

sinðt2�jÞ
t2�j

� �
dt ð4Þ

Since Eq. (4) represents the exact, but not mathematically
tractable expression, Rvačev [38] and Gotovac and Kozulić
[20] provided tractable means for calculating function up(x)

upðxÞ ¼ 1�
X1
k¼1

ð�1Þ1þp1þ���þpk pk

Xk

j¼0

Cjkðx� 0; p1 . . . pkÞ
j

ð5Þ
where coefficients Cjk are rational numbers determined
according to the following expression:

Cjk ¼
1

j!
2jðjþ1Þ=2upð�1þ 2�ðk�jÞÞ; j ¼ 0; 1; . . . ; k;

k ¼ 1; 2; . . . ;1
ð6Þ

Calculation of the few first up(x) values in Eq. (6), as well as
all details regarding the calculation of the function up(x) val-
ues, is provided in [20,21]. The argument (x � 0, p1 . . . pk) in
Eq. (5) is the difference between the real value of coordinate
x and its binary form with k bits, where p1 . . . pk are digits, 0
or 1, of the binary development of the coordinate x value.
Therefore, the accuracy of the coordinate x computation
and, thus, the accuracy of the up(x) function in an arbitrary
point, depend upon machine accuracy.

From Eq. (2) it can be seen that the derivatives of the
up(x) function can be calculated simply from the values
of the function itself. The general expression for the deriv-
ative of the mth degree is

upðmÞðxÞ ¼ 2C2
mþ1

X2m

k¼1

dkupð2mxþ 2m þ 1� 2kÞ; m 2 N ð7Þ

where C2
mþ1 ¼ mðmþ 1Þ=2 is the binomial coefficient and dk

are the coefficients with ±1 value which determine the sign
of each term. They change according to the following
recursive formulas:

d2k�1 ¼ dk; d2k ¼ �dk; k 2 N ; d1 ¼ 1 ð8Þ
Fig. 1a shows the up(x) function and its derivatives. It can
be observed that the derivatives consist of the up(x) func-
tion compressed to the interval of 2�m+1 length with ordi-
nates ‘‘extended’’ with the 2C2

mþ1 factor. The Fupn(x)
function can be defined as a linear combination of the
up(x) function. The general form of the Fourier transform
Fn(t) for the function Fupn(x) follows:

F nðtÞ ¼
sinðt2�n�1Þ

t2�n�1

� �nþ1 Y1
j¼nþ2

sinðt2�jÞ
t2�j ð9Þ

Function Fupn(x) can be written as an inverse Fourier
transform
FupnðxÞ ¼
1

2p

Z 1

�1
eitxF nðtÞdt ð10Þ

Eq. (10) is not numerically tractable for the calculation of
the Fupn(x) function. It is numerically more convenient to
construct the Fupn(x) function in the form of a linear com-
bination of displaced up(x) functions. Index n denotes the
highest degree of the polynomial which can be expressed
accurately in the form of a linear combination of Fupn(x)
basis functions displaced by a characteristic interval 2�n.
For n = 0, Fup0(x) = up(x), since the Fupn(x) function val-
ues are calculated using a linear combination of displaced
up(x) functions

FupnðxÞ ¼
X1
k¼0

C�kðnÞup x� 1� k
2n þ

nþ 2

2nþ1

� �
ð11Þ

where coefficient C�0ðnÞ is

C�0ðnÞ ¼ 2C2
nþ1 ¼ 2nðnþ1Þ=2 ð12Þ

and other coefficients of a linear combination in Eq. (11)
are determined as C�kðnÞ ¼ C�0ðnÞ � C0kðnÞ, where a recursive
formula is used for calculating auxiliary coefficients C0kðnÞ
C00ðnÞ ¼ 1; when k ¼ 0; i:e: when k > 0

C0kðnÞ ¼ ð�1ÞkCk
nþ1 �

Xminfk;2nþ1�1g

j¼1

C0k�jðnÞ � djþ1

ð13Þ

The Fupn(x) function support is determined according to

suppFupnðxÞ ¼ ½�ðnþ 2Þ2�n�1; ðnþ 2Þ2�n�1� ð14Þ
where ‘supp’ denotes the length of the compact support.
Derivatives of the Fupn(x) function are also obtained by
a linear combination of derivatives of displaced up(x) func-
tions according to Eq. (11). Fig. 1b shows the Fup2(x) func-
tion and its first two derivatives. Thus, a quadratic
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polynomial on a characteristic interval 2�n can be exactly
expressed in the following way:

x2 ¼ 2�6
X2

k¼�1

ðk2 � 5=18ÞFup2ðx� k=4Þ ð15Þ

Generally, n + 2 Fupn(x) or 2n+1 up(x) basis functions are
needed for the development of an n-order polynomial on
a characteristic interval 2�n. This clearly shows that
Fupn(x) basis functions are more suitable and efficient than
up(x) basis functions for numerical purposes.

Fup basis functions, wavelets and splines are similar
mainly due to the compact support and possible numerical
implementation. Generally, approximation properties of
all these basis functions are related to the developing of
algebraic polynomials. The basic difference between Fup

basis functions and wavelet and spline basis functions is
that, generally, atomic basis functions are exact solutions
of differential-functional equations or linear combination
of these exact solutions, but splines and wavelets are
obtained from some types of mathematical transforms.
This is the reason why Fup basis functions have infinite
number of derivatives and non-vanishing moments. There-
fore, Fup basis functions belong to the universal vector
space such that more basis functions give better solution
or at least maintain the obtained accuracy. This require-
ment is not always satisfied in numerical procedures utiliz-
ing splines and wavelets [46] or in conventional finite
element methods. A more detailed discussion about Fup
and atomic basis functions is given in [20,21].
3. Adaptive Fup collocation method

This section deals with a detailed description of the
Adaptive Fup Collocation Method (AFCM) including its
features in space and time. Presented are all necessary steps
for AFCM implementation to be reproducible.

3.1. Fup collocation transform

The Fup collocation transform (FCT) is an efficient
numerical tool for describing various types of signals and
functions using a linear combination of the Fup basis func-
tions. It is a discrete type of transform, similar to the classic
discrete Fourier transform (DFT), where linear combina-
tion coefficients are called Fup coefficients. However, the
main disadvantage of DFT lies in the fact that unresolved
locations of important frequencies has not been defined
due to non-localized properties of classic trigonometric
basis functions. Thus, the essential problem with DFT
becomes a natural advantage of a presented transform
based on the chosen basis function with a compact support
(Fig. 1). In other words, the specific frequencies are associ-
ated with a particular spatial location which is not possible
in the classic Fourier transform. Fup coefficients are associ-
ated with a specific resolution level and location in the
space/time domain. This resolution level defines the spatial
discretization level prescribed by a specific number of col-
location points used to describe the given function. For
example, a smooth function is presented only by a few fre-
quencies in the DFT or a few coarse resolution levels in the
FCT. On the other hand, for a function with sharp fronts
and large gradients, the DFT shows a wide range of fre-
quencies without any information on their spatial loca-
tions, while the FCT adds higher resolution levels and
frequencies only in the front regions and resolves all spatial
scales and their locations. This procedure is also known as
a multi-resolution analysis. The transform is obtained
through a collocation procedure and is therefore called
the Fup collocation transform. The high efficiency of the
FCT lies in the transform property which keeps only signif-
icant Fup coefficients which accurately describe the chosen
function. Other Fup coefficients present a residual between
a true function and their Fup presentation which must be
less than the prescribed spatial threshold - e. This threshold
has a fundamental meaning for the FCT because it presents
the Fup approximation accuracy or the FCT precision
level. In this way, any functions in a multi-resolution fash-
ion are decomposed using only a few significant Fup basis
functions with appropriate scales (frequencies) and loca-
tions, a desired level of accuracy and minimum computa-
tional cost.

As in usual transformations (e.g., Fourier), if the Fup

coefficients are known, the function can be calculated
and vice versa. For example, the multi-resolution expan-
sion of the u(x) function can be expressed in the following
way:

uðxÞ ¼
XJ!1
j¼0

Xð2jminþjþn=2Þ

k¼�n=2

dj
ku

j
kðxÞ ð16Þ

where j is the resolution level, from zero to a maximum le-
vel J, needed for the Fup presentation in Eq. (16), n is the
Fup order, jmin is the resolution at the zero level, dj

k are Fup

coefficients, uj
k are Fup basis functions and k denotes the

location index at the current level. We consider a set of
dyadic grids:

Gj ¼ xj
k 2 R : xj

k ¼ 2�jk; k 2 Z
� �

; j 2 Z ð17Þ

where xj
k are the grid collocation points. Note that even a

numbered collocation point of Gj+1 already exists in
Gjðxjþ1

2k ¼ xj
kÞ. It implies the relation Gj � Gj+1. The exam-

ple of a dyadic grid is displayed in Fig. 2. We use regular
grid terminology for a grid containing all possible points
at all levels. The grid is irregular if at least one collocation
point, at any resolution level, is omitted. If we define the
domain X = [X1,X2], then the characteristic interval at each
level is equal to the scale or distance between adjacent col-
location points

Dxj ¼
X 2 � X 1

2jminþj ð18Þ

For demonstrating FCT, consider the following test
function:
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f ðxÞ ¼ � tanh
x� 2=3

0:02

� �
ð19Þ

with a relatively high threshold of e = 0.07 which implies
that the residual between the Fup approximation and func-
tion in Eq. (19) must be less than the prescribed threshold.
Other parameters are jmin = 2, X1 = 0, X2 = 2 and n = 4.
Fig. 3 shows the location of internal and external basis
functions and the corresponding collocation points. Basis
functions are characterized by vertices or peaks having
maximum values. All basis functions whose vertices are lo-
cated inside the domain are called internal basis functions.
Other functions are external basis functions and only their
influence within the domain is considered (bold parts of the
external basis functions in Fig. 3).

The best choice for the location of the collocation points is
vertices of the internal basis functions as proven numerically
for splines in [35], wavelets in [46] and Fup basis functions in
[20]. Moreover, the main difficulty in transformations with
localized basis functions is the special treatment of the
boundary. For a complete Fup approximation in every char-
acteristic interval Dxj, we need n + 2 Fupn(x) basis functions
(i.e. Eq. (15)) which exactly develops a n-order polynomial.
This request is violated near the boundary if external basis
functions are not used because accuracy is less than inside
the domain (Fig. 3). If external basis functions are used then
a problem arises when defining locations of additional collo-
cation points and consistent conditions for their implemen-
tation in the collocation procedure. Bertoluzza and Naldi [8]
reported three possible solutions for solving this problem:
collocatitriple collocation point
BOUNDARY

b0
j=X1

b-2
j b-1

j

b1
j

Fig. 3. Vertices location of the internal and external Fup4(x)
(1) without external basis functions which leads to a stable,
but inaccurate solution, as mentioned above; (2) by con-
structing internal basis functions near the boundary of
higher order accuracy than other internal basis functions
and (3) by replacing additional collocation points at the loca-
tions which belong to higher levels near the boundary [46].

Another approach has been employed in this paper
which arises from the properties of the Fup basis function.
For all n/2 external basis functions at the left and right
boundaries, the collocation points are located at the (at
X1 and X2) boundary as shown in Fig. 3. The approxima-
tion for internal and external basis functions should satisfy
the function values at corresponding collocation points and
first n/2 derivatives at the boundary collocation points (at
X1 and X2), respectively.

The location of each basis function is actually deter-
mined by the location of the vertices and defined by
bj

k ¼ X 1 þ kDxj. The calculation of basis function values
and their derivatives at a general characteristic interval
Dxj should be done in the following form with respect to
a basic characteristic interval 2�n:

ujðmÞ
k ðxÞ ¼

1

ð2nDxjÞðmÞ
FupðmÞn

x� bj
k

2nDxj

� �
ð20Þ

where m is the order of the derivative. The compact sup-
port of the basis function at every level has (n + 2)Dxj

length.
Fig. 4 presents the adaptive multi-resolution Fup collo-

cation transform for a chosen function (Eq. (19)). Fig. 4a
shows an adaptive grid for all levels and internal basis
functions for the zero and first level. Every next level
includes two times more internal basis functions with two
times less support and scale (Eq. (18)). Note that smaller
scales at higher levels involve higher frequencies and
detailed approximation properties which are particularly
important for zones with large gradients. Zero level is the
starting (coarsest) level which is always present in the grid.
The FCT satisfies function values in all collocation points
and for the first two derivatives in boundary points
(Fig. 4b). The key step of the FCT is the transfer from
the current level to the next level. The residual between
the true function and the previous level approximation is
checked and the points with a residual below the prescribed
vertices of basis functionson points

DOMAIN b2
j b4

jb3
j

basis functions and the corresponding collocation points.
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threshold are dropped from the grid (Fig. 4c). This proce-
dure presents a-priori adaptive criterion for defining the
new collocation points at the next level (different from a
classical a-posteriori criterion in the adaptive finite element
method). Note that residuals are always zero for even col-
location points. Each retained point must be surrounded
by n + 2 basis functions which enable a consistent approx-
imation for the transfer to the next level. In addition, exter-
nal basis functions should be added if points near the
boundary are present in the grid.

For the first and for each subsequent level the colloca-
tion algorithm should only satisfy the residual between
the true function and the previous level approximation.
Boundary derivatives for the first and each subsequent level
are homogeneous (zero value) since they are satisfactory at
the zero level.

Higher levels include only higher frequencies and show
a more detailed description of the chosen function. The
collocation points are added only around the front where
the residual from the previous level is greater than the
prescribed threshold (Fig. 4a and c). Finally, the residual
between true function and the Fup approximation up to
five levels is less than the threshold within the entire
domain. In this way, we can decompose any function
in a multi-resolution fashion by employing only a few
significant Fup basis functions with appropriate scales
(frequencies) and locations with a desired level of accu-
racy and a near minimum computational cost. Finally,
the meaning of the threshold is twofold: (1) it presents
a-priori adaptive criterion in such a way that points
can be dropped from the grid where the residual between
the real function and the Fup approximation is less than
the threshold and (2) it defines the accuracy of the
approximation because the final absolute difference
between the Fup approximation and the real function
must be less than the threshold.

In general, the Fup collocation transform modifies Eq.
(16) in order to use the adaptive procedure and can be pre-
sented by

uJ ðxÞ ¼
XJ

j¼0

X
k2Zj

dj
ku

j
kðxÞ ð21Þ

where Zj is the irregular grid containing only the significant
collocation points and the Fup basis functions obtained
using the above presented adaptive procedure (Fig. 4).
The function values are satisfied at collocation pointsX
k2Zj

dj
ku

j
kðxj

pÞ ¼ Djðxj
pÞ; p 2 Zj : 0 6 p 6 2jminþj; j ¼ 0; . . . ; J

ð22Þ
The boundary derivatives are satisfied at points X1 and X2X
k2Zj

dj
ku

jðiÞ
k ðX bÞ¼DðiÞj ðX bÞ; i¼ 1; . . . ;n=2; b¼ 1;2; j¼ 0; . . . ;J

ð23Þ
The residual vector has the following form:
Djðxj
pÞ ¼

f ðxj
pÞ; p 2 Zj : 06 p6 2jminþj; j¼ 0

f ðxj
pÞ� uj�1ðxj

pÞ; p 2 Zj : 06 p6 2jminþj; j¼ 1; . . . ;J

(

DðiÞj ðX bÞ ¼
f ðiÞðX bÞ; j¼ 0; b¼ 1;2

0; j¼ 1; . . . ;J

(

ð24Þ
3.2. Adaptive numerical algorithm

This section presents the adaptive Fup collocation
method with its main numerical properties. The main idea
behind AFCM is to incorporate the FCT spatial description
into an adaptive algorithm for solving PDEs for groundwa-
ter flow and transport problems. The main feature of the
AFCM is the adaptive change of the grid in time. In this
way, the grid follows the system dynamics, i.e. changes in
space and time according to different spatial and temporal
scales determined during the adaptation procedure.

The AFCM is designed by a method of lines using the
separation between spatial and temporal evolution. After
each time step, the space discretization on a dyadic grid
is obtained by a Fup collocation transform and the corre-
sponding spatial adaptive strategy. Time integration is
obtained by solving the system of differential-algebraic
equations written in a general form suitable for groundwa-
ter flow and transport problems

Aðt; uÞ ou
ot
¼ F ðt; x; u; uðmÞÞ ð25Þ

0 ¼ Gðt; x; u; uðmÞÞ ð26Þ

where u is the solution, m is the order of derivatives and A,
F and G are linear or nonlinear operators depending upon
the considered problem. Eq. (25) represents time–depen-
dent partial differential equation which describes time evo-
lution of the solution while the algebraic equation (26)
presents the boundary conditions (Dirichlet, Neumann or
Chauchy mixed type). Fig. 5 presents a flow chart of the
adaptive Fup collocation method. This paper is mainly fo-
cused on the spatial approximation, while temporal inte-
gration is solved using classic multi-step routines.

The general numerical algorithm consists of three com-
monly used basic steps [15,16,47,49]:

1. Spatial grid adaptation procedure.
2. Calculation of spatial derivatives.
3. Time integration procedure.

Subsequently, the above steps are described in more details:

3.2.1. Spatial grid adaptation

The spatial grid adaptation procedure means changing
the grid in order to resolve different spatial scales. The spa-
tial adaptive procedure is performed after each time step
according to the prescribed FCT and the corresponding
adaptive strategy. This procedure dynamically changes
the grid and significantly reduces the computational cost.
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Fig. 5. Flow chart for the adaptive Fup collocation method.
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The main part of the spatial adaptation strategy is the Fup

collocation transform or the approximation of the solution
from the initial conditions or previous time step. All FCT
points are called basic points since they create the basic
grid. Apart from basic points (which are related to a-priori
adaptive criterion), we need additional points which enable
the consistent approximation of the system dynamics (tem-
poral solution changes) during the calculated adaptive time
step Dt. Basic and additional points create the total grid
needed for the description of the system dynamics from
time T to time T + Dt. The basic hypothesis behind the
algorithm (during time step Dt) is that the solution does
not ‘‘move’’ outside the border of the adapted non-uniform
grid. However, the total grid is not appropriate for time
integration because of the repetition of some collocation
points at different levels. Thus, the total grid needs to be
transformed into an effective grid suitable for time
integration.
Xj
K

X2K
X2K-3 X2K-1

X2K-2 X2K

j+1j+1 j+j+1j+1

Xj
K-1 Xj

K
Xj

K-2 Xj
K+2Xj

K+1

Fig. 6. Additional points at the same level (a), level above (b) and at
The spatial grid adaptation strategy consists of com-
monly used steps [15,16,25,29,47]. Their modification and
adjustment to the AFCM are summarized below:

(a) Knowing the function values from the initial condi-
tions or from previous time steps we perform the
FCT solution. In this way we get the basic grid (based
on a-priori adaptive criterion) required for the Fup

approximation with a desired solution accuracy
defined by threshold e. Furthermore, we get a contin-
uous solution and all derivatives in the form of a lin-
ear combination of the Fup basis functions. These
basic points describe the solution at time T, but addi-
tional points are needed for the description of possi-
ble solution changes between T and T + Dt.

(b) For each basic point xj
k we add a certain number of

additional points to the left and right at the same
level ðxj

kþi; i ¼ �N L; . . . ;NRÞ. These points are
included to guarantee an accurate approximation of
the possible movement of sharp solution features dur-
ing the time step (Fig. 6a, NL = NR = 2). For advec-
tion dominated problems, the maximum allowed time
step must be related to the maximum velocity in the
following way [15]: Dtadapt ¼ maxðNL;NRÞDxjmax

=vmax

in order to guarantee that the front will not move
beyond a distance maxðNL;N RÞDxjmax

at the finest res-
olution level. Note that we chose an arbitrary number
of additional points (NL,NR) which are directly con-
nected with the size of the time step.

(c) For each basic point xj
k we add additional points at

the arbitrary number (M) for higher resolution levels

xjþl

2l k�NU
Lð Þ�2lþ1

; . . . ; xjþl

2l kþNU
Rð Þþ2l�1

; l ¼ 1; . . . ;M
� �

.

Note that parameters N U
L and NU

R must be less or
equal to NL and NR, respectively, since it is impossi-
ble to add points at higher levels without the existence
of corresponding points at lower levels. These points
are included to guarantee an accurate approximation
if the solution becomes steeper in this part of the
domain during the time step (Fig. 6b, N U

L ¼
N U

R ¼ M ¼ 1). For these additional points and for
the number of higher resolution levels (M), there is
no exact calculation due to a-priori unknown steep-
ness of the solution during the next time step. Numer-
ical experiments show that M = 1 is usually sufficient
for most problems, but it generally depends on
X2K+3+1X2K+2
j+1j+11

Xj
K-1 Xj

K

X2K

Xj
K-2 Xj

K+2Xj
K+1

X2K+3

j+1

j

X2K-3 X2K-1
X2K-2 X2K+1X2K+2

j+1j+1 j+1j+1j+1j+1j+1

the same and above level (c), NL = NR = 2, NU
L ¼ NU

R ¼ M ¼ 1.
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numerical and physical characteristics and should be
tested for all kinds of problems [15,47]. In this paper
we employ M = 1 as a sufficient number for very
accurate modeling of the groundwater flow and
transport problems. All additional points are shown
in Fig. 6c.

(d) Create the total grid by adding basic and additional
points. In the case of more dependent variables (each
one having its own grid) create the union of all partic-
ular grids.

(e) The effective grid is constructed from the total grid in
the following way: at the zero resolution level all col-
location points belong to the effective grid, but at
higher levels only odd numbered collocation points
are kept. Thus, this procedure reduces the number
of collocation points (approximately 50% for 1-D,
25% for 2-D and only 12.5% for 3-D problems).

Adaptive spatial strategy is directly dependent on the con-
nection between the number of additional points and fre-
quency of the grid adaptation. If the grid adaptation is
not performed frequently, a larger number of points should
be added and vice versa. The optimal strategy is unknown a
priori because it depends on the physical and numerical
side of the considered problem. Furthermore, the proce-
dure can be utilized by different criteria for the grid adap-
tation. Apart from the analysis of function values, the
procedure can use function derivatives or some other phys-
ical criteria (Peclet number) or a combination of different
numerical and physical criteria.

3.2.2. Calculation of spatial derivatives

The time integration algorithm (DAE system 25–26)
requires numerous calculations of spatial derivatives on
an adaptive grid in operators F and G. An efficient algo-
rithm needs fast and accurate calculation of spatial deriva-
tives from the function values at collocation points. Hence
we apply a standard procedure and construct the finite dif-
ference (FD) operator on an adaptive non-uniform grid
[15,47]. Note that the Fup order is closely related to the
order of the FD operator. If we use the same order for
Fup basis functions and for the FD operator, the calculated
spatial derivatives on an adaptive non-uniform grid should
be very similar. A more detailed description of the calcula-
tion of the spatial derivatives is given in Appendix A.

3.2.3. Time integration

Time integration is obtained by solving the system of the
differential-algebraic equations (25) and (26) with initial
conditions obtained either from original initial conditions
(first time step) or from the previous time step. The system
(25) and (26) changes after every time step due to the
applied spatial grid adaptation and contains all points from
the adapted grid. During the time step, the adaptive grid
and the system (25) and (26) remain unchanged.

By applying the collocation procedure to the system (25)
and (26) and using the described FD operator for spatial
derivatives and backward differential formulas (BDF) for
temporal derivatives, a discrete implicit form of the DAE
system can be obtained and can be solved for a given time
step by public domain subroutine DASPK [4]

0 ¼ H tn; un;
oun

ot

� �
¼ H tn; un;

Xk

j¼0

að1Þj un�j

 !
ð27Þ

where að1Þj are BDF coefficients, n is the index of the current
time step and k represents the order of the method.

DASPK uses the implicit Petzold-Gear (BDF) method
with a variable order (up to the fifth order) and the adap-
tive inner step size with variable coefficient strategy. Note
that it is very important to distinguish the outer time step
when the adaptive grid remains unchanged from the inner
time step needed for time integrator routine DASPK to
achieve accuracy and stability. This routine is appropriate
for systems of stiff equations (usually for strongly nonlinear
groundwater problems) and attempts to keep the local
error proportional to a user-specified tolerance [47]. Unfor-
tunately, it does not guarantee that the global integration
error is controlled and therefore this tolerance should be
smaller by a few orders than the threshold e in order to
keep the global numerical accuracy closely related to the
spatial approximation error (Appendix B).

Within a DASPK subroutine, the modified Newton
method is used for solving the nonlinear system (25),(26).
Without a loss of generality, we can show that the Newton
algorithm will have the following form when using the sim-
ple backward Euler method or the BDF method of the
first-order (k = 1)

umþ1
n ¼ um

n �
1

Dtn

oH

ou0
þ oH

ou

� ��1

H tn; u
m
n;

um
n � un�1

Dtn

� �
ð28Þ

where m presents the index of the Newton iteration. Spe-
cial attention should be devoted to consistent initial con-
ditions. This algorithm usually enables only one
factorization of the finite difference Jacobian per time
step, but the procedure loses the quadratic convergence
properties. Despite that, numerical simulations show that
this approach is relatively cheap and efficient. The Jaco-
bian is presented by a very sparse matrix. For 1-D prob-
lems this matrix can be arranged to a banded form, but
for 2-D problems it is not possible. Hence we use a sparse
IMSL routine LFTXG which is implemented in the rou-
tine DASPK. For larger problems, routine GMRES
should be used, but for efficient modeling we must find
the appropriate preconditioner.

3.2.4. Extension of the algorithm for two-dimensional

problems

In this section we present the extension of the AFCM
for 2-D problems (related to wavelet methods [25,46,48]
and the multi-resolution finite difference method by [40]).
The AFCM has a very useful property which can be easily
extended to a higher dimension. Generally, the algorithm
keeps the identical structure and same characteristics for
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any dimension. However, some parts require more detailed
implementation for higher dimensions.

2-D FCT represents an extension of the 1-D algorithm
and retains all properties using two-dimensional Fup

basis functions which can be obtained from the Cartesian
product of two one-dimensional Fup basis functions
defined for each direction. The only important difference
can be seen at the boundary where boundary partial
derivatives are satisfied (Fig. 7). This boundary imple-
mentation is analogous to the 1-D algorithm (Fig. 3),
except for four edge points where we need more equa-
tions, generally ((n + 2)/2)2 � 1. For every external basis
function the order of partial derivative is defined by
the absolute difference between the vertex index and
the corresponding boundary collocation point in each
direction.

The multi-resolution 2-D FCT of the function u(x,y)
can be presented in the following way:

uJ ðx; yÞ ¼
XJ

j¼0

X
k2Zj

dj
k;lu

j
k;lðx; yÞ ð29Þ

where j shows levels from zero to a maximum level J

needed for the approximation Eq. (29) with a desired accu-
racy defined by a prescribed threshold e, Zj is the irregular
grid which contains only the significant collocation points
and Fup basis functions, n is the Fup order, dj

k;l are Fup

coefficients, uj
k;l are Fup basis functions while k presents

the index of collocation points at the current level for x-
direction while l presents the index of collocation points
at the current level for y-direction. The zero level is defined
dxj

dyj
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Fig. 7. Vertices location of internal and external Fup4(x,y) basis functions
and the corresponding collocation points.
by a chosen resolution level jminx for the x-direction and by
jminy for the y-direction. Generally, the banded linear sys-
tem of equations can be obtained at each level
X
k;l2Zj

dj
k;lu

j
k;lðxj

p; y
j
qÞ ¼ Djðxj

p; y
j
qÞ : 0 6 p 6 2jmin xþj;

0 6 q 6 2jmin yþj ð30ÞX
k;l2Zj

dj
k;lu

jðmx ;my Þ
k;l ðxj

p; y
j
qÞ ¼ Dðmx ;my Þ

j ðxj
p; y

j
qÞ :

ðp ¼ 0 or p ¼ 2jmin xþj or q ¼ 0 or q ¼ 2jmin yþjÞ and

ðmx > 0 or my > 0Þ ð31Þ
where mx and my are orders of the derivative in x- and y-
directions, respectively. System (30) and (31) present condi-
tions for satisfying function values within the domain and
partial derivatives in the boundary points. The residual
vector has the following form:
Djðxj
p;y

j
qÞ ¼

f ðxj
p;y

j
qÞ; p;q2 Zj; j¼ 0

f ðxj
p;y

j
qÞ� uj�1ðxj

p;y
j
qÞ; p;q2 Zj; j> 0

(

Dðmx ;my Þ
j ðxj

p;y
j
qÞ ¼

f ðmx ;my Þðxj
p;y

j
qÞ; p;q2 Zj; j¼ 0

f ðmx ;my Þðxj
p;y

j
qÞ� uj�1ðmx ;my Þðxj

p;y
j
qÞ; p;q2 Zj; j> 0

(

ð32Þ

The spatial adaptive strategy, the definition of basic
and additional points, and the total and effective grid
are the same as for the 1-D algorithm, except that all
parameters have indexes related to two directions. The
calculation of spatial derivatives remains the same if
derivatives are defined in only one direction. For mixed
partial derivatives we use a similar algorithm as in [47].
For each collocation point we define a corresponding
level that belongs to the adjacent zone around that point
where there are no points from higher levels and we use
a regular stencil with (n + 1)2 closest points. Since we use
the common MOL approach, the time integration is
independent of the spatial dimension (DASPK [4]).
4. Results and discussion

In this section, we present three examples for illustrat-
ing the efficiency and robustness of the Fup adaptive col-
location method for modeling groundwater flow and
transport problems. The first example is the Buckley–
Leverett problem [16,33] with a moving saturation front,
i.e. a strong nonlinear problem of a multiphase flow. The
next two examples illustrate the strength of the method
in modeling the density driven flow and transport prob-
lems, i.e. the 1-D vertical density driven flow in a sand
column [50] and a well-known 2-D benchmark test case
– the Henry problem [24]. In addition, Appendix B
shows the additional example (Bourges equation) in
order to rigorously show convergence properties of the
AFCM.
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4.1. The Buckley–Leverett problem

The Buckley–Leverett problem arises from the analysis
of the multiphase flow which is particularly important in
the oil industry. In this example we consider a two-phase
flow of water and oil. Oil production is a very complex
process in which numerical modeling plays a key role.
The usual stimulation method consists of water being
injected into wells which pushes oil under pressure to
the production well. Since water and oil are two immisci-
ble fluids, the solution is provided in terms of water
saturation.

The Buckley–Leverett problem describes one of the sim-
plest multiphase flow examples. The complexity of these
processes lies in the complicated interaction between two
fluids at the microscopic scale which is caused by gradient
pressure fluctuations. The problem is described by the fol-
lowing non-dimensional saturation equation:

os�

ot
þ oF ðs�Þ

ox
¼ t

o

ox
Gðs�Þ os�

ox

� �
ð33Þ

and the related functions are defined by

F ðs�Þ ¼ s�2

s�2 þ ð1� s�Þ2
ð34Þ

Gðs�Þ ¼ 4s�ð1� s�Þ ð35Þ

and domain, initial and boundary conditions are:

t ¼ 0:001; x 2 ½0; 1� ð36Þ

s�ðx; 0Þ ¼
1� 3x; 0 6 x 6 1=3

0; elsewhere

� �
ð37Þ

s�ð0; tÞ ¼ 1;
os�ð1; tÞ

ox
¼ 0 ð38Þ

where s* is the non-dimensional water saturation, t and x

are non-dimensional space and time coordinates, while
F(s*) is a function which shows the flow ratio between
two phases.

The problem is characterized by strong nonlinearities
and a narrow saturation front. Moreover, the DAE system
(33)–(38) is very stiff and requires short time steps. There is
no analytic solution, but the problem has been solved
numerically by Kurganov and Tadmor [33] and Cruz
et al. [16] using a high resolution finite difference scheme.
The presented AFCM uses the following parameters:
N¼L N¼R2, N U

L ¼ NU
R ¼ 2, M = 1, n = 2, e = 10�3, jmin = 4.

Fig. 8 shows a multi-level adaptive solution for the mov-
ing saturation front. Initial conditions are relatively simple
except at one point where the saturation front has a discon-
tinuous derivative. Therefore, six levels are needed for this
simple bilinear function. At the early stages of the process
the saturation front moves very slowly and at t = 0.1
reaches the final steepness and sharpness with eight levels
and nearly 140 collocation points.

This example presents the efficiency of the method in
handling strong nonlinear problems and the narrow satura-
tion front with changes in sharpness and location both in
space and time. The adaptive grid follows the system
dynamics and displays a wide range of different spatial
and temporal scales that characterize this complex prob-
lem. The efficiency of the method is usually described by
the compression coefficient (CC) which is defined as a ratio
between the number of collocation points in the non-adap-
tive and adaptive algorithm ðCC ¼ 2jminþj=N ADÞ. Namely, a
non-adaptive algorithm would require all points at the
maximum level in order to obtain the same accurate solu-
tion as the solution described by AFCM. The compression
coefficient is about 30 which clearly show the efficiency of
the proposed AFCM.

The method was also tested and verified (Fig. 8) by com-
parison, at t = 0.2, between solutions obtained by AFCM
and those by Cruz et al. [15]. Fig. 8 shows an almost perfect
match between the two solutions. Cruz et al. [15] used the
adaptive multi-resolution finite difference algorithm which
is essentially similar to the wavelet or Fup collocation
methods, except that it provides a non-oscillating high-res-
olution FD scheme for advection terms, which is especially
well suited for sharp fronts and hyperbolic problems. On
the other hand, AFCM can handle advection dominated
problems with very small, but non-zero dissipative or diffu-
sive terms which stabilize the proposed numerical proce-
dure. This comparison shows that AFCM is comparable
to the mentioned high-resolution scheme. Also, the com-
pression coefficient in recently developed adaptive discon-
tinuous finite element methods [5,34] for similar problems
(Richard equation) is between 1.5 and 5 which shows the
efficiency of the AFCM. Finally, the AFCM controls clas-
sic numerical oscillations and an artificial numerical disper-
sion to a desirable level defined by the prescribed spatial
threshold (oscillations are ten times smaller than the
threshold).

4.2. 1-D vertical density driven flow and transport

Density driven flow and transport play a key role in
many water resources problems, i.e. seawater intrusion in
coastal aquifers, subsurface contaminant transport, radio-
active waste disposal in salt domes, transport of geother-
mal energy, interaction between surface and subsurface
flow, etc. others. Detailed reviews of density driven flow
and transport can be found in [17,27,43]. Density varia-
tions are a fundamental property caused by pressure, con-
centration and/or temperature variability. Apart from the
usual fluxes caused by a hydraulic gradient (advection or
forced convection) and the density gradient (molecular dif-
fusion), the density driven flow is characterized by a
mechanical dispersion (velocity variations mainly caused
by heterogeneity of porous media) and free convection
(reverse stratification of fluids under certain conditions
causes the development of fingers). The last two mixing
mechanisms are very important because they reduce time
scales and increase the transition zone [43]. Numerical
modeling of the advection dominated problems with a
small transition zone requires special treatment due to
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strong nonlinearity, occurrence of numerical instability
(over/under-shooting) and artificial numerical dispersion.

A full set of coupled systems of equations of density dri-
ven flow and transport is given by

qSp
0

op
ot
þ nb0

c

oC
ot
þr � ðqqÞ ¼ QP þ QR ð39Þ

nq
oC
ot
þ qq � rC �r � ðqnDH � rCÞ ¼ ðC� � CÞQR ð40Þ

where C is the concentration (M/M) of the fluid, Cs is the
salt concentration (M/M), C* is the concentration (M/M)
of the injected fluid, n is porosity (�), q is density (M/
L3), p is pressure (M/T2L), b0

C is the salt coefficient, q is a
specific discharge or Darcy velocity (L/T), QP is the pump-
ing mass rate [M/L3T], QR is the recharge mass rate [M/
L3T], Sp

0 is the specific pressure storativity [T2L/M] and
DH [L2/T] is hydrodynamic dispersion tensor.

Density and specific discharge are given by a state equa-
tion and Darcy law, respectively

q ¼ q0 þ b0
cðC � C0Þ ð41Þ

q ¼ � k

l
� ðrp � qgÞ ð42Þ

where q0 is fresh water density (M/L3), C0 is fresh water
concentration (M/M), k is the permeability tensor (L/T),
l is dynamic viscosity (M/TL), and g is the gravity vector
(L/T2). A detailed discussion of the mathematical model
can be found in [6,45].

In this example we consider the density driven flow in
the vertical direction. Input data are given in Table 1.
The results are given in a non-dimensional form

C� ¼ C
Cs
; p� ¼ p

p0

; t� ¼ t
t0

) t0 ¼
lL2

k0p0

¼ 104ðsÞ

where p0 = 105 (Pa) is the referent pressure.
Initial and boundary conditions are given in a non-

dimensional form

C�ðx; 0Þ ¼ 0; p�ðx; 0Þ ¼ 1:7� 0:7x ð43Þ
C�ð0; tÞ ¼ 1) t� 6 0:15

C�ð0; tÞ ¼ 0) 0:15 < t� 6 0:5
;

oC�ðL; tÞ
ox

¼ 0 ð44Þ

p�ð0; tÞ ¼ 1:7; p�ðL; tÞ ¼ 1:0 ð45Þ
Table 1
Input data for 1-D vertical density driven flow and transport problem

Variable Value

Domain length 1 (m)
Salt concentration 0.26
Permeability 10�12 (m2)
Viscosity 10�3 (kg m�1 s�1)
Porosity 0.2
Salt coefficient 769.23
Specific pressure storativity 2 · 10�11 (m s2 kg�1)
Fresh water density 1000 (kg m�3)
Fresh water concentration 0.0
Longitudinal dispersion length 0.001 (0.0001 m)
Initial conditions are very demanding and show that the
initial domain is filled by fresh water with a hydrostatic dis-
tribution. The pulse concentration boundary condition on
the left side consists of the salt water source which enters
the domain during the first part of the simulation. After
that, the concentration is zero (fresh water). The concentra-
tion boundary condition on the right side does not present
a dispersion flux boundary. Both boundary pressure condi-
tions are constant Dirichlet boundary conditions. For this
problem there is no analytic solution, but the numerical
solution has been provided by Zegeling et al. [50] and
Huang et al. [28] who used the r-adaptive finite difference
method with a fixed number of points.

The adaptive algorithm of AFCM uses the following
parameters: NL = NR = 10, N U

L ¼ NU
R ¼ 6, M = 1, n = 4,

eC = 10�2 � 10�5, ep = 10�1, jmin = 3 where eC and ep are
thresholds for concentration and pressure, respectively.
The longitudinal dispersion is aL = 0.001 (m), while the
molecular diffusion is neglected.

Fig. 9 shows the concentration field at four selected non-
dimensional times by AFCM and Zegeling et al. [50]. The
AFCM solution uses four different concentration thresh-
olds to perform the convergence test in order to obtain
the unknown exact solution, while solution [50] used 100
points which are adaptively located inside the domain.
We show only the concentration field because the pressure
distribution remains practically unchanged during that
time. This simulation can be interpreted as an injection
process of denser fluid to fresh water lenses. During the
injection time (t* � 0.15), the concentration front travels
to the right side and the results are similar for these two
methods and all thresholds (Fig. 9a).

After the injection time, a plume is created and travels
by bulk flow (1-D presentation of the plume is a wave with
two fronts, Fig. 9b). However, AFCM and solution [50] are
not in close agreement due to a significant difference in the
backward front. The reasons are twofold: (1) Algorithm
[50] considers a fixed number of points (e.g. N = 100).
After the injection time that algorithm redistributes points
around two fronts and looses accuracy and (2) a descrip-
tion of the shock concentration boundary condition at
the start and end of the injection time causes a very steep
concentration front. The second reason is supported by
Fig. 10 which shows a change in the number of collocation
points during the simulation time for eC = 10�4. Approxi-
mately 100 points are sufficient for the entire simulation
time in order to obtain a very accurate solution except at
the start and end of the injection time.

Moreover, Fig. 9 presents a convergence test with four
AFCM solutions which used four different concentration
thresholds. We show that only the AFCM solution with
the highest threshold eC = 10�2 is different than the other
three solutions, but oscillations are less than the prescribed
threshold. The other three solutions are very similar, while
solutions with eC = 10�4 and eC = 10�5 are practically the
same which confirms that the method converges into a
unique solution (up and down triangles are identical).
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Consequently, a smaller threshold includes more colloca-
tion points and resolution levels in order to obtain a more
accurate solution. For four thresholds eC = 10�2–10�5,
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Fig. 11. Concentration field and adaptive grid for 1-D vertical density driven
(aL = 0.001 m), the left pulse concentration boundary condition and the thres
AFCM, on the average, requires 50, 70, 100 and 140
points, respectively.

After the injection time, the backward front is steeper
than the upward front due to the influence of the left con-
centration boundary condition. For threshold eC = 10�4, at
t* = 0.16 Fig. 11a shows that the grid follows two fronts
while the backward front requires two additional resolu-
tion levels. After some time both fronts need the same res-
olution (t* = 0.30) as shown in Fig. 11b. During the
simulation time the compression coefficient fluctuates
between 20 and 40.

Analyses of the density driven flow are usually closely
related to the grid Peclet and Courant numbers and if they
are satisfied a consistent and stable numerical simulation is
possible [26]. The Peclet number should be satisfied within
a transition zone and in its close neighborhood in order to
avoid the occurrence of numerical instabilities and artificial
dispersion. The AFCM requires only five resolution levels,
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while the grid Peclet number is approximately four. How-
ever, numerical simulations with the AFCM show that
the method is stable despite a higher Peclet number and
that artificial dispersion is negligible with numerical oscilla-
tions below the prescribed spatial threshold. Thus, we have
active control of the numerical error which is one of the key
properties of the proposed adaptive Fup collocation
method. The Courant number is always satisfied within
the DASPK routine due to the stability and accuracy of
this time integrator [4].

The same problem is simulated by setting fixed concen-
tration boundary conditions on the left side with longitudi-
nal dispersion reduced ten times (eC = 10�4). In this case
the transition zone is strongly decreased with a highly non-
linear concentration gradient creating an even more
numerically challenging problem. The presented AFCM
is capable of solving this problem with a relatively high
Peclet number (Pe � 20). The solution (Fig. 12) is stable
and accurate (oscillations are 100 times less than the pre-
scribed threshold eC = 10�4). The transition zone is very
narrow and it requires from six to eight levels and ca 175
collocation points so that the compression coefficient is
greater than 40.

4.3. The Henry problem

The Henry problem is a 2-D standard benchmark test
case for variable density flow and transport [27]. This test
case presents seawater intrusion into a coastal confined
aquifer and has become one of the common benchmark
problems. It is characterized by a relatively wide transition
zone (except at the seaward boundary), a significant con-
stant molecular diffusion and unrealistic constant Dirichlet
seaward concentration boundary conditions. The Henry
solution [24] is called the Henry semi-analytic solution
although it is a pure numerical solution. Segol [42] revised
the Henry solution and discovered some errors in his origi-
nal work. In the last three decades many scientists have
attempted to solve the Henry problem with varying suc-
cess. Some of the most important solutions were obtained
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Fig. 12. Concentration field (left) and adaptive grid (right) for 1-D vertical den
(aL = 0.0001 m), the left constant concentration boundary condition and the t
by Segol et al. [41], Frind [18] and Voss and Souza [45].
The main problems in these classical finite element solu-
tions are velocity and flux discontinuity between elements.
A very accurate and stationary finite difference solution
was presented by Croucher and O’Sullivan [14] with a very
rigorous convergence study. Recently, new advanced finite
element solutions have been achieved by a discontinuous
Galerkin formulation by Kolditz et al. [30], Ackerer et al.
[1], and Bues and Oltean, [11], which enable flux continuity.
The non-adaptive Fup collocation method for solving the
Henry problem was presented by Gotovac et al. [22]. The
applied collocation algorithm has solved the consistent
velocity approximation and flux continuity (essentially
for density driven flow problems) due to localized and infi-
nitely derivable Fup basis functions. The method did not
require typical space discretization and numerical integra-
tion, while the basic solution (pressure, concentration)
and all their derivatives (velocity, other fluxes) were
obtained with the same level of accuracy (according to
polynomial approximation). The adaptive procedure of
AFCM additionally improves numerical modeling of such
processes due to resolved spatial and temporal scales using
an optimal grid. In this example we have showed the new
adaptive non-steady Henry solution and the application
of this method to the 2-D density driven problems. For
the best of our knowledge, this is the first adaptive Henry
solution.

The definition of the Henry problem is presented in
Fig. 13 and Table 2. Voss and Souza [45] formulated equiv-
alent effective parameters (Table 2). The AFCM adaptive
solution was obtained with the following parameters:
NLX = NRX = 1, NLY = NRY = 1, NU

LX ¼ N U
RX ¼ NU

LY ¼
NU

RY ¼ 0, M = 1, jminx = 3, jminy = 2, J = 8, n = 2,
eC = 0.0001, ep = 1.0.

4.3.1. Henry original boundary condition

The original Henry problem was defined by a relatively
large molecular diffusion D* = 18.8571 · 10�6 (m2/s) and a
constant seaside boundary condition C = CS. Moreover,
Henry [24] used constant dispersion (a more realistic
x
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Fig. 13. Illustration of the Henry problem, considered domain and boundary conditions.

Table 2
Other input data for Henry problem

Variable Value

Domain length 2 · 1 (m)
Salt concentration 0.03571
Permeability 10�9 (m2)
Viscosity 10�3 (kg m�1 s�1)
Porosity 0.35
Salt coefficient 700
Left inflow specific discharge 6.6 · 10�5 (m/s)
Fresh water density 1000 (kg m�3)
Fresh water concentration 0.0
Molecular diffusion 18.8571 · 10�6 (6.6 · 10�6 m2/s)
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approach is defined with a velocity dependent dispersion
tensor) due to a dimensionless formulation used in the
Fourier–Galerkin approach. The seaside fixed boundary
condition is not realistic because the mixed outflow water
cannot have sea water concentration. This inconsistent
physical formulation implies a high concentration gradient
and a narrow transition zone near the outflow segment of
the seaside boundary. A comparison between the AFCM
solution and the revised Henry solution by Segol [42] is
in very close agreement (Fig. 14).

The following simulation presents a modified Henry
problem with a reduced dispersion (D* = 6.6 · 10�6 m2/s).
Fig. 15 shows the development of an adaptive solution in
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Fig. 14. Comparison between solutions byAFCM and Sego
time. Initially, the domain is filled with fresh water. At
the beginning of the process, due to a high salt influx, a
very narrow transition zone is created, especially in the out-
flow zone (large concentration gradient). At t = 200 (s)
there is a great difference between the lower and upper
parts of the transition zone. The upper part requires a max-
imum of eight resolution levels, while the lower part
requires only four levels. Furthermore, the saltwater wedge
intrudes inland through the bottom of the aquifer and
increases the lower part of the transition zone. In the upper
part, i.e. in the outflow zone, there are eight maximum res-
olution levels during the entire simulation due to a high
concentration gradient and outflow velocity (relatively
small outflow segment). During the first 1000 (s) the salt-
water wedge intrudes relatively quickly, while after 3000
(s) its movement is significantly reduced. In the outflow
zone, the maximum velocity is 2.18 · 10�3 (m/s). Gener-
ally, the adaptive grid requires more points and levels in
the outflow zones, the narrow transition zones and around
the stagnation point of the saltwater wedge (i.e. t = 3600 s).

After 6000 (s) the solution changes very slowly and after
12,000 (s) a dynamic equilibrium between the flows of fresh
water and salt water are reached. The efficiency of AFCM
is illustrated by the compression coefficient staying around
500. After 6000 (s) the number of collocation points is ca
4000. This means that the non-adaptive algorithm for the
same accuracy within the entire domain requires ca.
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2,000,000 collocation points. Furthermore, after 6000 (s)
the number of collocation points and resolution levels
remains practically unchanged. The steady state solution
is very similar, as expected, to the non-adaptive collocation
solution [22].

4.3.2. Mixed boundary conditions

The Henry original and unrealistic boundary seaside
condition should be replaced by a stronger physical condi-
tion. Voss and Souza [45] and Bear [6] discussed the seaside
boundary condition formulation and its numerical imple-
mentation in more detail. In this paper the mixed boundary
condition is implemented in the collocation procedure.

Segol et al. [41] defined the mixed boundary condition so
that the upper 20% of the seaside boundary is zero disper-
sion flux boundary (Neumann type), while elsewhere they
kept the original Dirichlet boundary condition. Compari-
son between the AFCM and Frind [18] solutions demon-
strated their close agreement (Fig. 16), especially near the
boundary where solutions are comparable. A final AFCM
solution needs less than 3000 collocation points resulting in
a very high compression coefficient of about 800. More-
over, the seaside boundary formulation has a main disad-
vantage due to the fixed outflow boundary that creates
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Fig. 16. Comparison between solutions by AFCM and Frind [17] and adapt
condition and reduced dispersion (D* = 6.6 · 10�6 m2/s).
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Fig. 17. Comparison between solutions by AFCM and Sutra [42] and adapt
boundary condition and reduced dispersion (D*=6.6 · 10�6 m2/s).
an unrealistic high concentration gradient. It is necessary
to formulate the auto-consistent boundary condition where
the numerical algorithm can automatically find the dividing
point. In the finite element this formulation was presented
by Voss and Souza [45] and Galeati et al. [19].

The auto-consistent boundary condition, with respect
to the boundary flux orientation, has been implemented
into the time integration routine DASPK [4]. For those
points where the flux is oriented inland (inflow segment),
AFCM introduces the Chauchy boundary condition (flux
continuity through the boundary); otherwise it uses the
Neumann boundary condition (outflow segment) as
before.

Fig. 17 shows a comparison between AFCM and
SUTRA [44] solutions for the auto-consistent boundary
condition and reduced dispersion. The solutions near the
seaward boundary are in close agreement which show suc-
cessful implementation of this type of boundary condition
to the AFCM. Differences between solutions in the other
parts of the domain are not comparable due to the coarse
finite element mesh in SUTRA simulation with only 200
elements. In this case, the entire transition zone is relatively
wide and there is no requirement for higher resolution lev-
els and frequencies (Fig. 17). Only the central part of the
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transition zone needs three levels; the outflow boundary
requires four levels, while the other parts of the domain
are very smooth. This solution required only 1000 colloca-
tion points.

5. Conclusions

In this paper we presented a multi-resolution adaptive
Fup approach applicable to groundwater flow and trans-
port problems with sharp gradients, fronts and narrow
transition zones. AFCM enables adaptive multi-resolution
evolution of the system dynamics resolving different spatial
and temporal scales with a desired level of accuracy using
the entire family of Fup basis functions. AFCM has been
tested and verified on a few groundwater flow and trans-
port problems, three 1-D problems with sharp fronts (the
Buckley–Leverett problem, the vertical density driven flow
problem and an additional Bourges example) and the stan-
dard 2-D density driven benchmark test case–the Henry
problem. The results demonstrate that AFCM is robust
and efficient having significant advantages over conven-
tional numerical methods. The key characteristics of
AFCM can be summarized as follows:

(a) Accurate solution with a global numerical error clo-
sely related to the prescribed spatial threshold which
implies active control of numerical oscillations and
dispersion.

(b) Resolved wide range of spatial and temporal scales
(particularly for complex nonlinear groundwater
problems) on a nearly optimal adaptive grid.

(c) Reduced computational efforts due to space and time
adaptation.

(d) Classic grid discretization and numerical integration
are avoided.

(e) The solution (i.e. concentration, pressure, etc.) and all
its derivatives (i.e. velocity and other fluxes) are
obtained with the same level of accuracy due to prop-
erties of the localized Fup basis functions which imply
a consistent and continuous velocity and flux approx-
imation. This is particularly important for complex
groundwater flow and transport problems.

The presented multi-resolution adaptive approach imple-
mented in AFCM provides a different modeling opportu-
nity in many areas of complex groundwater flow and
transport problems. The current areas of research include
the extension of AFCM to a simultaneous space–time Fup

approach with a complex domain. Furthermore, we intend
to explore the possibility of applying AFCM to groundwa-
ter flow and transport problems in heterogeneous porous
media characterized by a high permeability variance.
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Appendix A

For each collocation point in the irregular adaptive grid,
n closest collocation points are selected and the spatial
derivatives are calculated by using the Taylor series expan-
sion (for instance n = 4):

ðx1 � x0Þ ðx1�x0Þ2
2!

ðx1�x0Þ3
3!

ðx1�x0Þ4
4!

ðx2 � x0Þ ðx2�x0Þ2
2!

ðx2�x0Þ3
3!

ðx2�x0Þ4
4!

ðx3 � x0Þ ðx3�x0Þ2
2!

ðx3�x0Þ3
3!

ðx4�x0Þ4
4!

ðx4 � x0Þ ðx4�x0Þ2
2!

ðx4�x0Þ3
3!

ðx4�x0Þ4
4!

2
6666664

3
7777775
�

uð1Þ0

uð2Þ0

uð3Þ0

uð4Þ0

2
66664

3
77775 ¼

u1 � u0

u2 � u0

u3 � u0

u4 � u0

2
6664

3
7775

ðA:1Þ
Instead of calculating the above system for each colloca-
tion point, it is possible to find a general expression in
the form of function values:

uðiÞ0 ¼
Xn

j¼0

aðiÞj ui ðA:2Þ

where aðiÞj are weight coefficients which depend on the dis-
tance between collocation points. For the first two deriva-
tives, which are sufficient for most groundwater flow and
transport problems, we get these coefficients in a closed
form by using hi = xi � x0

aðiÞ0 ¼ �
Xn

j¼1

aðiÞj ðA:3Þ

að1Þj ¼ ð�1Þn

Qn
k¼1
k 6¼j

hk

Qn
k¼1
k 6¼j

ðhj � h�kÞ
; h�k ¼

hk ) k 6¼ j

0) k ¼ j

� �
;

j ¼ 1; . . . ; n ðA:4Þ

að2Þj ¼ ð�2Þð�1Þn

Pn
l¼1
l 6¼j

Qn
k¼1
k 6¼j
k 6¼l

hk

Qn
k¼1
k 6¼j

ðhj � h�kÞ
; h�k ¼

hk ) k 6¼ j

0) k ¼ j

� �
;

j ¼ 1; . . . ; n ðA:5Þ

It is possible to write system (25),(26) in the general form for
the adaptive time step and for the adaptive non-uniform
grid where spatial derivatives depend only on function val-
ues. Note that the calculation of the above weight coeffi-
cients is not needed for each collocation point because a
lot of points belonging to the same resolution level also have
the same finite difference stencil. It is unsatisfactory mostly
in points where the FD stencil contains points from different
resolution levels or in points located near the boundary.

http://http:/www.gradst.hr/cer
http://http:/www.gradst.hr/cer
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Appendix B

The Bourges equation results from the application of the
Navier–Stokes equations to unidirectional flow without
pressure gradient and small viscosity. It is classical nonlin-
ear benchmark due to the existence of the analytic solution
included in order to show more general convergence prop-
erties of AFCM. In addition, difference between adaptive
and non-adaptive approach and dependence of the thresh-
old and absolute error are demonstrated. Bourges equation
with initial and boundary conditions is

ou
ot
¼ v

o
2u

ox2
� u

ou
ox

ðB:1Þ

uðx; 0Þ ¼ � sinðpxÞ ðB:2Þ
uð	1; tÞ ¼ 0 ðB:3Þ

where u is the dimensionless velocity, while space–time do-
main and viscosity are defined by

x 2 ½�1; 1�; t 2 ½0; 1:5=p�; v ¼ 10�2=p

Initial conditions are very simple and monotonic. Dirchlet
boundary conditions are homogeneous. Analytic solution
can be found in [47]:
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Adaptive algorithm uses the following parameters:
NL = NR = 1, N U

L ¼ NU
R ¼ 0, M = 1, jmin = 4, Dtadapt =

0.025. Fig. B.1a shows time evolution of the analytic solu-
tion. It is characterized with one dimensional shock that is
stationary in space, but changes in time. During initial
stages, the solution is smooth, but after t = 0.7/p the shock
becomes strongly steeper and numerically demanding.
After t = 1.3/p shock reaches the maximum steepness.

Fig. B.1b–d shows convergence properties of AFCM in
terms of Lmax norm which presents maximum absolute
error between analytic and numerical solution in space
and time. Fig. B.1b shows dependence of the total CPU
time (P4 M processor, 2.2 GHz) and Lmax norm for both,
adaptive and non-adaptive case and for different order of
Fup basis functions. Generally, a significant amount of
the computational work is reduced in the adaptive case.
For the same level of accuracy, adaptive algorithm requires
approximately from 100 to 2000 times less CPU time than
non-adaptive algorithm. Fig. B.1b also demonstrates that
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for higher absolute error (e.g.10�3) the choice of Fup order
is not important. However, by decreasing the absolute
error accuracy (<10�3) the choice of Fup order becomes
significant in terms of CPU time.

Fig. B.1c–d shows dependence between the number of
collocation points and Lmax norm for adaptive and non-
adaptive case and for different order of Fup basis functions.
More collocation points and higher order of basis func-
tions cause higher accuracy, especially for absolute error
smaller than 10�3. We can see similar behavior as before
such that adaptive case requires from 6 to 12 times less col-
location points than the non-adaptive case for the same
level of accuracy (this present compression coefficient-
CR). Finally, Fig. B.1c also presents dependence of the
absolute error and threshold. Smaller thresholds include
more collocation points and higher accuracy. It is a very
important to notice that threshold and absolute error
always have the same order of magnitude for all Fup basis
functions. This additional example clearly presents that
threshold directly defines accuracy of AFCM. Moreover,
threshold defines error indicator and a-priori adaptive cri-
terion in AFCM as direct measure of the difference
between numerical and exact solution, even when exact
solution is not known. Notice that absolute error is strictly
less than the prescribed threshold for higher Fup basis func-
tions or higher chosen thresholds.
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