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Abstract

The concentration fluctuations resulting from hazardous releases in the subsurface are modeled through the concentration
moments. The local solute exposure concentration, resulting from the heterogeneous velocity field and pore scale dispersion in the
subsurface, is a random function characterized by its statistical moments. The approximate solution to the exact equation that
describes the evolution of concentration standard moments in the aquifer transport is proposed in a recursive form. The expressions
for concentration second, third and fourth central moments are derived and evaluated for various flow and transport conditions. The
solutions are sought by starting from the exact upper bound solution with the zero pore scale dispersion and introducing the phys-
ically based approximation that allows the inclusion of the pore scale dispersion resulting in simple closed-form expressions for the
concentration statistical moments. The concentration moments are also analyzed in the relative and absolute frame of reference indi-
cating their combined importance in the practical cases of the subsurface contaminant plume migration. The influence of pore scale
dispersion with different source sizes and orientations are analyzed and discussed with respect to common cases in the environmental
risk assessment problems. The results are also compared with the concentration measurements of the conservative tracer collected in
the field experiments at Cape Cod and Borden Site.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The concentration fields are of great interest in environ-
mental flows and particularly in the subsurface flow. Many
recent environmental regulatory initiatives stipulate that in
order to improve the risk characterization, the ecological
risk analysis needs to identify and conduct the probabilistic
risk assessment. Potential toxicity of contaminated ground-
water and associated health risk depend directly on expo-
sure parameters and contaminant concentration values
[27,33]. It is recognized that the high concentration values,
with its duration and frequency of appearance, are respon-
sible for a severe health risk and need to be predicted prob-
abilistically. The fundamental concept in all methods used
in probabilistic risk assessment consists of estimating the
exposure concentration distribution and confront (using
different methods) it to the distribution of effects obtained
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from the eco-toxicological studies. The tortuous and
unpredictable pathways of groundwater flow resulting
from geologic heterogeneity yield random concentration
field. This randomness of the concentration field is com-
mon in all environmental flows; surface waters, atmosphere
and groundwater. The fact that the concentration field is
random has enormous consequence that the equations gov-
erning the evolution of the concentration field are rather
challenging to solve.

The majority of previous studies focused on evaluating
the concentration first two statistical moments using the
first-order analysis, e.g., in terms of asymptotic perturba-
tions within the Lagrangian framework [13,16,17,38,
14,8,34,18] or the Eulerian truncation [20,25,21,22,31] or
in combined Eulerian–Lagrangian concepts [28,37,39]. In
each case, the concentration moments are derived follow-
ing truncated perturbation or operator expansions differing
only in the choice of a nominal value around which the per-
turbation is considered [26]. As an alternative, Andričević
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[1] proposed the method of using spatially integrated con-
centration statistics to avoid velocity and spatial depen-
dence and any form of truncation such that the closure is
applied on the concentration gradient alone. All of these
studies focused on deriving first two concentration
moments under different flow conditions and using differ-
ent way of accounting for the pore scale dispersion. The
concentration mean and variance at the point in space
and time describe the plume position and the fluctuation
size within the plume structure. However, the exposure
concentration probability density function (pdf) is an ulti-
mate goal for assessing the practical risk coming from the
toxic substances in the nature.

If only the mean and variance of concentration random
process is available, the normal (or lognormal) distribution
is a minimally prejudiced pdf that contains the largest
amount of information [6,8]. The reality and some concen-
tration measurements in other environmental media like
air, and surface waters revealed the presence of a different
concentration pdfs often exhibiting a bimodal shape, indi-
cating two concentration peaks; one close to 0 where clean
water was contaminated by diffusion from the plume core
and the other one close to initial concentration represent-
ing those lenses and fingers containing the most of the ini-
tial mass. The concentration pdf can be constructed from
knowledge of all of its moments such that higher moments
weigh more heavily on extreme concentration events that
are represented in the ‘‘tails” of the concentration pdf.
Given the inherent difficulties in the subsurface transport
problems it appears that the challenge is to define concen-
tration statistics that have theoretically sound approach
and have relevant information content which can be used
in the practical cases.

In this paper we present simple, physically based
approach to obtain solutions to the exact equations that
describe the evolution of the moments of the probability
density function of a conservative contaminant released
in the subsurface flow. In particular, we derive the expres-
sion for evolution of first four moments of exposure
concentration probability density function. The concentra-
tion moments are evaluated in the relative and absolute
frame of reference and analyzed in terms of the influence
coming form the pore scale dispersion, the source size
and orientation. The derived concentration moments could
be further used to estimate point or block pdf and confront
it to some quality standards or eco-toxicological studies to
assess the human health risk resulting from such concentra-
tion exposure. This paper modifies approach in [1] by
replacing spatially integrated statistics and scaling function
with new approximation introduced in Section 3, which
allows a closed-form expression for the concentration
higher moments.

The structure of this paper is as follows: in Section 2 we
present the general problem description; in Section 3 the
methodology for deriving the concentration moments is
proposed; in Section 4 the illustrative examples are intro-
duced and some results analyzed; in Section 4.1 the com-
parison with numerical studies is described; in Section 4.2
the effects from the source size and orientation are exam-
ined; in Section 5 the derived concentration statistics is
evaluated and analyzed in the relative and absolute frame
of reference; and finally the concluding remarks are given
in Section 6.

2. Problem description

We consider incompressible and steady groundwater
flow taking place through a heterogeneous aquifer render-
ing velocity and concentration field random and describ-
able in statistical terms only. The mass conservation
requires the resident concentration cðx; tÞ to satisfy

ocðx; tÞ
ot

þr � ½vðx; tÞcðx; tÞ� ¼ Dr2cðx; tÞ ð1Þ

where cðx; tÞ is defined as the mass per aquifer volume (of
constant porosity) surrounding x at time t; vðx; tÞ is the
groundwater velocity defined on the Darcy scale and
D � Dðx; tÞ is the pore scale dispersion (local dispersion)
tensor commonly defined as Dðx; tÞ ¼ DmI þ avðx; tÞ where
Dm is an effective molecular diffusion and a is a constant
dispersivity tensor. A common approach in accounting
for local dispersion is to replace vðx; tÞ with the uniform
ensemble mean, vðx; tÞ ¼ Efvðx; tÞg ¼ U or to set D as a
constant. Without loss of generality, we accept the later,
e.g. [1,39].

The one-point probability density function of contami-
nant concentration is defined with pðc; x; tÞdc ¼ prob
fc 6 cðx; tÞ 6 cþ dcg and without sources and sinks the
central moments are given by

lnðx; tÞ ¼
Z 1

0

½c� m1ðx; tÞ�npðc; x; tÞdc ð2Þ

where

mnðx; tÞ ¼
Z 1

0

cnpðc; x; tÞdc ð3Þ

are standard moments. m1ðx; tÞ denotes the mean concen-
tration cðx; tÞ and for n P 2; ln can be expressed in terms
of mn; . . . ;m1 such that for the concentration variance
r2

c ¼ l2ðx; tÞ ¼ m2 � ðm1Þ2. In the absence of the pore scale
dispersion, that is D ¼ 0, the concentration central mo-
ments are known functions of the mean concentration
[12,9] and first few moments are

l2ðx; tÞ ¼ cðx; tÞ½C0 � cðx; tÞ� ð4aÞ
l3ðx; tÞ ¼ cðx; tÞ½C0 � cðx; tÞ�½C0 � 2cðx; tÞ� ð4bÞ
l4ðx; tÞ ¼ cðx; tÞ½C0 � cðx; tÞ�½C2

0 � 3C0cðx; tÞ þ 3c2ðx; tÞ�
ð4cÞ

In the subsurface flow there is a certain time span required
for pore scale dispersion to become a dominant force in
destroying the above exact moments for the D ¼ 0 case.
As the source size gets smaller the required time for pore
scale dispersion to become significant is getting larger.
Therefore, the D ¼ 0 case can be regarded as a good
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approximation for the near source condition and for as
long as pore scale dispersion does not reduce significantly
concentration moments. Since pore scale dispersion acts
slowly compared to the advective velocity fluctuations,
the D ¼ 0 approximation provides a conservative envelope
for the concentration moments.

3. Methodology for concentration moments expressions

By multiplying (1) with cnðx; tÞ and taking the ensemble
average, the concentration mass balance in terms of stan-
dard moments can be written as

o

ot
mnþ1 þr � vcnþ1 ¼ Dr2mnþ1 � nðnþ 1ÞDcn�1ðrcÞ2 ð5Þ

where n is the order of standard moments considered, over-
bar denotes an ensemble average and dependence on ðx; tÞ
is omitted for easier notation. The pore scale dispersive
term Dr2mnþ1 is very much smaller than the advective term
r � vcnþ1 and will be neglected. Since the pore scale disper-
sive process acts very slowly compared to the heteroge-
neous advective velocity, we will estimate the advective
term for the D ¼ 0 case.

For the zero local dispersion case and for uniform initial
concentration cð0; 0Þ ¼ C0, the concentration pdf follows
from:

pðc; x; tÞ ¼ ½1� f ðx; tÞ�dðcÞ þ f ðx; tÞdðc� C0Þ ð6Þ
where f ðx; tÞ denotes the particle displacement pdf and dð�Þ
is Dirac delta function. This pdf says that for D ¼ 0 one
has weighted two states of concentration; one being in fluid
phase of zero concentration and another in fluid phase of
initial concentration. The pore scale dispersion is the only
process that is smoothing out these two states of concentra-
tion values.

The exact standard moments for D ¼ 0 case are given
with mnþ1ðx; tÞ ¼ Cn

0cðx; tÞ. Following the reasoning by Sul-
livan [36], we use this expression for exact standard
moments in (5) to arrive at the expression for the advective
term for the zero local dispersion case:

r � vðx; tÞcnþ1ðx; tÞ ¼ �Cn
0

ocðx; tÞ
ot

ð7Þ

This assumption is constant with the fact that groundwater
flows are mostly laminar and pore scale dispersion acts
very slowly in destroying the upper limit moments, leaving
(7) particularly justifiable for the near-field subsurface
transport. Using (7) in (5) the concentration mass balance
in terms of standard moments becomes

o

ot
mnþ1 � Cn

0

oc
ot
¼ �nðnþ 1ÞDcn�1ðrcÞ2 ð8Þ

Reduction of the release conservative concentration
cð0; 0Þ ¼ C0 occurs only through the pore scale dispersion.
In saturated heterogenous aquifers the advective velocity
field pulls and stretches the solute plume by conveying
the released mass through lenses and fingers of higher
velocities. This process creates the concentration gradient
along which the pore scale dispersion acts as diffusion
process diluting high concentration and fattening the
lenses and fingers [23]. As transport time progresses the
two processes balance each other at some effective scale
kc [1], which at large time correspond to actual scale of
developed fingers and lenses (see Plate 1 in [5]). The
dynamics of concentration fluctuations [21] and geological
characteristics of the aquifer with connectivity structure
will affect the size of kc which has finite possible range
0 < kc � I , where I is the hydraulic conductivity correla-
tion scale. The scale of concentration fluctuation dynam-
ics has full analogy in atmospheric diffusion where
balance between turbulent convective motions and molec-
ular diffusion is achieved around the Batchelor conduc-
tion cut-off length which is 10�3–10�5 m for most flows
and also supported with several experimental results [9].

The geological characteristics of the aquifer and its con-
nectivity structure will affect the size of kc. In practice, kc

can be estimated through borehole measurements using
in situ dilution tests, geophysical logging and by labeling
the whole water column with tracers [30]. Alternatively,
kc may be estimated numerically with kc ¼

R1
0 ScðkÞdk=R1

0
k2ScðkÞdk, where ScðkÞ is the power spectrum of c

obtained from the fine grid (e.g., 6 0:1IÞ at given time
and k is the wave number. Using this alternative approach,
one may solve numerically only one realization of the mean
concentration over the subdomain to get kc estimate which
can then be used to evaluate the concentration higher
moments at any domain size. The significant values of
ðrcÞ2 are expected to be present only over thin lenses
and fingers characterized with the developed kc scale such
that the gradient approximation is

rcðx; tÞ ¼ cðx; tÞ � c�ðtÞ
kcðtÞ

ð9Þ

where c�ðtÞ is a background threshold concentration such
that c�ðtÞ ! 0 as t! 0 and c�ðtÞ ! cðx; tÞ as t!1. The
later case, as in [1], will be used to close (8) together with
kcðtÞ assumed to remain constant over the plume at large
time t. This assumption of large time is related to the slow
acting local dispersion and balances out the assumption
used for the advective term (advective term evaluated for
D ¼ 0 case) in (7) which applies not only at early time,
but also whenever the solute mass is advancing in the
new region of the host fluid assuming the slow acting local
dispersion mechanism. This is particularly true for the sub-
surface flow where solid and liquid phase are spatially
mixed and inherently limit the mixing process compared
to other one phase environmental media.

Using (9) in (8) results in a suitable form of the govern-
ing equation for the concentration standard moments with
n P 1:

o

os
mnþ1 þ

nðnþ 1Þ
c2Pe

½mnþ1 � 2cmn þ c2mn�1� ¼ Cn
0

oc
os

ð10Þ

where s ¼ tU
I is dimensionless time, Pe ¼ UI=D is the Peclet

number, and c ¼ kc=I is a scale factor between concentration
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(gradient) scale and log-conductivity correlation scale.
Eq. (10) is a first-order linear homogeneous ordinary differ-
ential equation which has solution in the form

mnþ1ðx; sÞ ¼ Cn
0cðx; sÞ þ ja expð�jasÞ

Z s

0

cðx; fÞ

� expðjafÞ � ½2mnðx; fÞ
� cðx; fÞmn�1ðx; fÞ � Cn

0�df ð11Þ

where j ¼ nðnþ 1Þ and a ¼ ðc2PeÞ�1 ¼ DI
Uk2

c
is dimension-

less parameter that represents the ratio between the local
dispersion and flow conditions described with concentra-
tion scale kc: For an infinite Peclet number (e.g., zero local
dispersion case) a equals zero and (11) reduces to
mnþ1ðx; tÞ ¼ Cn

0cðx; tÞ; exact expression for concentration
standard moments for D ¼ 0. The magnitude of a in (11)
determines the strength of local dispersion process. Expres-
sion in (11) is in recursive form and can be potentially used
to evaluate any number of concentration standard mo-
ments needed.

The second, third and fourth concentration central
moments follow from (11) as

l2ðx; sÞ ¼ cðx; sÞ½C0 � cðx; sÞ� þ 2a expð�2asÞ

�
Z s

0

cðx; fÞ expð2afÞ½cðx; fÞ � C0�df ð12aÞ

l3ðx; sÞ ¼ cðx; sÞ½C0 � cðx; sÞ�½C0 � 2cðx; sÞ�

þ 6a expð�6asÞ
Z s

0

cðx; fÞ expð6afÞ

� ½2m2ðx; fÞ � c2ðx; fÞ � C2
0�df

� 6acðx; sÞ expð�2asÞ

�
Z s

0

cðx; fÞ expð2afÞ½cðx; fÞ � C0�df ð12bÞ

l4ðx; sÞ ¼ cðx; sÞ½C0 � cðx; sÞ�½C2
0 � 3C0cðx; sÞ

þ 3c2ðx; sÞ� þ 12a expð�12asÞ

�
Z s

0

cðx; fÞ expð12afÞ

� ½2m3ðx; fÞ � cðx; fÞm2ðx; fÞ � C3
0�df

� 24acðx; sÞ expð�6asÞ

�
Z s

0

cðx; fÞ expð6afÞ

� ½2m2ðx; fÞ � c2ðx; fÞ � C2
0�df

þ 12ac2ðx; sÞ expð�2asÞ

�
Z s

0

cðx; fÞ expð2afÞ½cðx; fÞ � C0�df ð12cÞ

In comparison with (4a)–(4c) it is clear that above derived
moments are having the first term on the right hand side
representing the exact solution for D ¼ 0 and the remaining
terms represent the dilution effect coming from D 6¼ 0. This
solution is equally applicable to other environmental flows
where concentration scalar is introduced or incidentally
released.
4. Illustrative examples

Consider the case of a pulse injection over a finite vol-
ume X0. To evaluate derived concentration moments, con-
sider the Gaussian distribution of mean concentration in
the form

cðxr; sÞ ¼ MC0ðsÞ exp � Y 2
1

2Y 11

� Y 2
2

2Y 22

� Y 2
3

2Y 33

� �
ð13Þ

where C0ðsÞ ¼ ½ð2pÞ3=2ðY 11Y 22Y 33Þ1=2��1
; Y i is the particle

displacement relative to the center of mass, and Y ii denotes
the relative displacement variance. From now on the spa-
tial coordinate vector xr denotes the coordinate system rel-
ative to the plume center such that solutions in (12a)–(12c)
will be evaluated in the relative frame of reference. For
example, for a planar source of size A0 ¼ hx � hy , the rela-
tive displacement variance follows from the two-particle
analysis [e.g., [4]].

Y ii¼
Y 0ii
I2

Y

¼ 2

Z s

0

ðs� s0ÞCuiðs0; 0; 0Þds0

� 2

A2
0

Z
A0

Z
A0

Z s

0

ðs� s0ÞCuiðs0; by ; bzÞds0 dby dbz

ð14Þ

where Cui denotes the normalized velocity covariance, i.e.,
Cui ¼ u0iu

0
i=U 2; bi is an initial separation between particles,

and s ¼ tU=I . The relative displacement variance was pre-
viously analyzed by Kitanidis [24], Dagan [10,11], Rajaram
and Gelhar [33] and Zhang et al. [39].

Using (13) and setting C0 ¼ MC0ð0Þ creates initial small
inconsistency which is not great since a uniform source
quickly develops into a Gaussian profile [35]. This can also
be seen as placing a uniform source at some distance
upstream. The initial source concentration MC0ð0Þ will be
used as normalizing constant in presented examples.

In Figs. 1a–1c the comparison is made between concen-
trations moments for the zero local dispersion case (4a)–
(4c) and general solution (12a)–(12c) for l2; l3 and l4,
respectively. The second, third and fourth concentration
moments are evaluated along the plume centerline along
the flow direction and for the two-dimensional source
scaled by I, such that hx ¼ 0:2 and hy ¼ 1:0. Each profile
for concentration moments is presented for four different
travel times, s ¼ 1; 2; 5, and 10. The solid thin line in all fig-
ures represents the upper limit solution given in (4a)–(4c).
The concentration moments are normalized with the initial
source concentration of unit mass and displayed as a func-
tion of dimensionless distance from the source. Two levels
of the pore scale dispersion strength are considered
(a ¼ 0:01 and 0.1). The concentration variance for
a ¼ 0:01 case is still close to the upper limit defined with
(4a) while third and fourth concentration moments are
showing some more pronounced effect from the presence
of the local dispersion. It is clear that the pore scale disper-
sion is diluting (reducing) the higher concentration
moments the most. This characteristic is even more
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Fig. 1a. Normalized concentration variance for four travel times com-
pared with the upper limit (4).
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Fig. 1b. Normalized third concentration moment for four travel times
compared to upper limit (4).
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Fig. 1c. Normalized third concentration moment for four travel times
compared to upper limit (4).
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pronounced as we increase the local dispersion strength
with a ¼ 0:1. This result is expected based on physical
grounds (larger local dispersion, larger the reduction in
concentration moments) and it is also expressed in the
derived solutions (12a)–(12c). The concentration moments
spatial distribution for a ¼ 0 are following unimodal shape
whereas the a 6¼ 0 cases are often exhibiting the bimodal
shape for the second, third and fourth concentration
moments.

Figs. 2a–2c are displaying the second, third and fourth
concentration moments in the transverse direction along
the plume center. The effects from the local dispersion in
diluting the higher concentration moments are also present.
The form of the concentration moments are maintaining
the unimodal shape even for larger strength coming from
local dispersion. Besides the local dispersion, the sampling
volume is also the mechanism that creates additional dilu-
tion of concentration moments [1] and should not be over-
looked when comparing the theoretical results with field or
laboratory measurements.

4.1. Comparison with the field-case studies

In the subsurface flow and transport studies it is very
rare to find concentration statistics based on the field mea-
surements. This is particularly true for concentration
higher moments. Unfortunately, exactly those higher con-
centration moments are providing information about pos-
sible existence of thin lenses filled with the contaminant
mass that can adversely affect the groundwater quality
and human health. Those areas if intercepted by water
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Fig. 2a. Transversal profile of normalized concentration variance for four
travel times compared to upper limit (4).
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Fig. 2b. Transversal profile of normalized concentration third moment for
four travel times compared to upper limit (4).
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Fig. 2c. Transversal profile of normalized concentration fourth moment
for four travel times compared to the upper limit (4).
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supply wells or discharged in some recipient can create the
severe risk by exposing some population to high mass dur-
ing some prescribed time.

For the purpose of comparison, the presented formula-
tion for the concentration variance (12a) is compared with
the concentration measurements of the conservative tracer
(bromide) collected in the field experiments at Cape Cod
(CC) and Borden Site (BS). Fitts [19] statistically analyzed
the concentration measurements from CC and BS intro-
ducing the variable F ¼ ln½cðx; tÞ=cmðx; tÞ� which was found
to follow approximativelly normal distribution N ½0; r2

F �.
Fitts [19] defines cmðx; tÞ as modeled concentration which
is derived analytically from (1) assuming the advection by
the mean velocity and plume spreading controlled by the
constant macrodispersion coefficients Dii ¼ AiiU . The mod-
eled concentration cmðx; tÞ is given by the analytical solu-
tion [19, Eq. (4)]:

cmðx; tÞ ¼ C0xðx1Þxðx2Þxðx3Þ

xðxiÞ ¼
1

2
erf

xi � Uit þ hi=2

2
ffiffiffiffiffiffiffi
Diit
p

� �
� erf

xi � U it � hi=2

2
ffiffiffiffiffiffiffi
Diit
p

� �� �

ð15Þ
The statistical analysis of F was done by comparing cmðx; tÞ
with actual observed concentration limiting pairs to the
low concentration threshold of 0.3 mg/l. Following the Fit-
ts’ [19] assumption of the lognormality of c the standard
deviation of lnðc=cmÞ is given with [16]
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rF ¼ ½lnð1þ r2
c=c2Þ�1=2 ð16Þ

By assuming that the field-case plumes at CC and BS are
ergodic in terms of rF we can exchange the spatial average
(reported by Fitts [19, Table 3]) with the ensemble average.
The computation of the plume average of rF is achieved by
the volume integration of (16) constrained with the cut-off
value of 0.3 mg/l. The same approach in comparing the sec-
ond concentration moment with Fitts [19] data was pre-
sented in [16].

In Fig. 3a the experimental results for Cape Cod test in
terms of rF as a function of time is compared to three levels
of transverse dispersivity. The results indicate that
aT ¼ 5 mm used in some previous studies seems to overes-
timate the mixing process in the average sense while
aT ¼ 1:5 mm (as suggested by Fitts [19]) shows good agree-
ment with data. Lower transverse dispersivity of
aT ¼ 0:5 mm begins to underestimate the mixing process
on average at the Cape Coda data.

In Fig. 3b a similar comparison is presented for the Bor-
den Site experiment. Three values of transverse dispersivi-
ties are examined. Again, the previously used value of
aT ¼ 5 mm shows increased mixing compared to data,
whereas aT ¼ 1 mm shows good agreement with experi-
mental data. This comparison shows that value of
aT ¼ 2:2 mm, as suggested by Fitts [19], only in the early
stage of transport confirms with the data while for the later
stage shows increased mixing in the average sense.

In this comparison only transverse macrodispersivity aT

was varied while all other variables were taken from the
independently determined data of the two plumes. The
dimensionless parameter appearing in (12a) that controls
the strength of the local dispersion is attributed in this
example to the vertical transverse dispersivity and was eval-
uated with a ¼ aT I3=k

2
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Fig. 3a. Comparison between the Cape Cod field experimental rF [19]
(solid diamonds) and theoretical rF for different values of transverse local
dispersivity using log10 in (16).
This statistical analysis of the plume average value of rF

is highly dependent of the concentration cut-off threshold
since (16) increases rapidly in plume tails. Therefore, the
oscillations found in the Fitts’ [19] data may be due to
the fixed limited sampling of the moving plume besides
some possible nonergodicity. The agreement between the
experiment and theory should be viewed in the context of
comparing the plume average value of (16) under assump-
tion of lognormal concentration pdf. To compare the the-
ory with experiments for higher order concentration
moments, derived in (12b) and (12c), is a future challenge
which will also help to check the validity of the lognormal
assumption.

In addition, the presented formulation for the concentra-
tion variance (12a) was compared with the numerical simu-
lations of Burr et al. [7, Fig. 7]. They performed numerical
examination of the actual field-scale transport by ground-
water at the Borden Site. The proposed expression for con-
centration variance in (12a) showed very good qualitative
agreement with the numerical results of Burr et al. [7] par-
ticularly in confirming the bimodal shape that was clearly
detected in the numerical simulations and in (12a). The
bimodal profile for concentration moments, appearing in
solution (12a)–(12c), results as combined effect between
the magnitude of local dispersion and time needed for
advection process to stretch and distort the plume.

4.2. Effects from the source size and orientation

The source size and its orientation with respect to the
mean flow direction also have significant effect on the evo-
lution of concentration moments. The concentration
moments are having different magnitude and different spa-
tial support depending on the source size and orientation.
Using (13) and (14), modified to account for injection over
a finite volume [6], the normalized concentration variance
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is presented in Fig. 4 as a function of four different source
sizes defined with A0ðx; yÞ. The x coordinate is aligned in
the mean flow direction. Since the concentration moments
are derived in the relative frame of reference, the source
size of A0ð0:1; 0:1Þ denotes almost the point source and
majority of concentration variability in space is attributed
to the meandering of the plume and only small portion
of velocity heterogeneity on the scale of order 0.1 and less
is creating the concentration variance presented with the
dotted line in Fig. 4. It is interesting to note that the signif-
icant source width in the mean flow direction (on order of
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Fig. 4. Normalized concentration variance as a function of travel distance
for four different source sizes and orientation.

0.001

0.001

0.001

0.003

0.003

0.006

0.006

0.
00

8

0.010

0.
01

0

0.012
0.015

Distance from 

T
ra

ns
ve

rs
al

 d
is

pl
ac

em
en

t 
(y

/I
)

5 6 7 8 9
-1

-0.5

0

0.5

1

σ2
C/C0

2

0.007

0.021

0.021

0.032

0.080

Distance from 

T
ra

ns
ve

rs
al

 d
is

pl
ac

em
en

 t
(y

/I
)

7 8 9 1

-0.5

0

0.5
σ2

C/C0
2

Fig. 5a. 2-D plot of normalized concentration v
ln K correlation scale), regardless whether we have square
source or line source in the direction of the mean flow,
yields the concentration variance much higher than in
any other cases examined.

Figs. 5a–5c display the second third and fourth concen-
tration central moments field for the case of thin line source
placed perpendicular to the mean flow direction A0ð0:2; 1Þ
(bottom) and line source aligned with the mean flow
A0ð1; 0:2Þ (top) for the local dispersion parameter a ¼ 0:1.
The line source aligned with the mean flow generates larger
magnitude of the concentration moments with bimodal
peak placed close to each other. On the other hand, the line
source perpendicular to the mean flow also exhibits the
bimodality with larger separation between peaks, which is
becoming even more pronounced for the higher order con-
centration moments.

There will always be a large uncertainty about the
source size and general flow conditions when accidental
release happens in the subsurface and in any other environ-
mental media. The scientific ability to predict the exposure
concentration fluctuations is very limited even under per-
fect knowledge of source size and orientation and any
methodology that is theoretically sound and consistent is
valuable tool for risk assessment and management.

5. Concentration statistics in absolute frame of reference

The exposure concentration moments derived in ((12a)–
(12c)) are provided in the relative frame of reference due to
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Fig. 5b. 2-D plot of normalized concentration third moment for two different source orientation.
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Fig. 5c. 2-D plot of normalized concentration fourth moment for two different source orientation.
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the expression for the mean concentration field (13). The
results presented up to now are in the relative frame of ref-
erence and indicate the plume advection and dispersion
process generated with the velocity heterogeneity scale on
the order of the instantaneous plume dimension and smal-
ler. The large scale meandering of the plume (created with
the heterogeneity scale on order of the plume size and
larger) was removed from the absolute displacement vari-
ance (e.g., the second term on the right hand side of
(14)). However, when modeling and predicting the expo-
sure concentration statistics in the practice, either for the
environmental risk assessment studies or monitoring net-
work design, the model output or prediction is often sought
in the absolute frame of reference. The extreme fluctuations
that accumulate a certain amount of injected mass within
lenses and fingers are responsible for a risk in groundwater
pollution problems only if the plume is passing near the
supply well. Thus, the main aim of this section is to intro-
duce the way how to convert the relative framework
results, so far explained, to the absolute frame of reference.

Consider the notation that at each time t the contami-
nant concentration field at position x ¼ ðx1; x2; x3Þ, denoted
with cðx; tÞ; has a position vector of the plume center
denoted as RðtÞ ¼ ½R1 ¼ X C

1 ;R2 ¼ X C
2 ;R3 ¼ X C

3 �, where

X C
1 ;X

C
2 ;X

C
3

� �
¼ M�1

Z Z Z
R3

x1; x2; x3cðx; tÞdx1 dx2 dx3

ð17Þ
At each time t, it is now possible to redefine the absolute
frame of reference (see Fig. 6) as x ¼ xr þ R such that the
concentration field relative to the plume center
cðxr; tÞ ¼ cðx� R; tÞ. Furthermore, R; cr; and c can be con-
sidered as stationary random variables, in the subsurface
transport, each having its own pdf.

Hence, the absolute frame one-point concentration pdf
pðc; x; tÞ can be related to the relative frame pdf prðc; xr; tÞ
through the spatial convolution relationship (e.g., [29])

pðc; x; tÞ ¼
Z Z Z

R3

prðc; xr; tÞpRðx� xr; tÞdxr
1 dxr

2 dxr
3 ð18Þ

where pR denotes the pdf of the plume center position.
From (18) the relationship between concentration moments
in absolute frame of reference and relative moments can be
obtained directly:
R1(t)=X1
C R2(t)=X2

C

R(t)

x

y

xr

Fig. 6. Schematic presentation of relative and absolute frame of reference.
ms
nðx; tÞ ¼

Z Z Z
R3

mr
nðxr; tÞpRðx� xr; tÞdxr

1 dxr
2 dxr

3 ð19Þ

where mr
nðxr; tÞ are relative frame of reference concentration

standard moments evaluated by (12a)–(12c) using (13) with
(14). In very early works on relative dispersion Gifford [20]
assumed the Gaussian shape for the plume center position
pdf. The similar conclusion was later followed by Kitanidis
[24], Dagan [11], Pannone and Kitanidis [32], Zhang et al.,
[39] for subsurface concentration or in the solute flux ap-
proach by Andričević and Cvetkovic [3,4]. Recently, Ye
and Wilson [38] also came to the same conclusion in the
atmospheric turbulence problems. The assumed Gaussian
shape for plume center pdf has spatial displacement vari-
ance evaluated, for example, with the second term on the
right hand side of (14).

By solving (19), the comparison between concentration
standard moments is depicted in Fig. 7, for two travel times
(s ¼ 10 and s ¼ 20). The concentration standard moments
evaluated on the plume center line, for the source A0ð0:2; 1Þ
and local dispersion strength of a ¼ 0:05; demonstrate
important concentration statistics behavior in the relative
and absolute frame of reference. The relative framework
concentration moments are 4–5 times higher in magnitude
than moments in the absolute framework, for this example,
indicating the degree of attenuation in the concentration
moments magnitude created with large scale heterogeneity
features (plume meandering). On the other hand the con-
centration moments in the absolute frame of reference have
wider spatial support than relative framework moments
indicating the important concentration uncertainty present
in selecting the proper monitoring network design in space
[2]. In addition, the bimodality feature observed in the rel-
ative framework concentration moments (especially for
higher moments) is not any more present in the absolute
framework moments, again, due to the plume meandering.
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In reality, of course, we have only one realization and
relative framework moments clearly describe the internal
plume fluctuation structure and actual concentration mass
that could be experienced in the field by an observer. How-
ever, where this scenario will be taking place in the space is
uncertain. This uncertainty results from the large scale het-
erogeneity and is quantified with plume meandering.
Hence, both frameworks, absolute and relative, are provid-
ing crucial information needed in practice since the concen-
tration fluctuations observed at a fixed point in space is
combined result of internal mixing and plume meandering.

In Fig. 8 the concentration moments in absolute frame-
work are present for two selected control points; CP(8, 0)
and CP(8, 0.5). The magnitude of the moments presents
the combined effect coming from the large and small scale
velocity heterogeneity and can be seen as combined infor-
mation consisting of uncertainty whether the plume will
pass near the CP and what might be the internal plume
fluctuation structure for that scenario. As expected, the
CP(8, 0.5) placed one half ln K correlation scale off the x-
direction has reduced concentration moments.

6. Concluding remarks

This paper proposed a simple, yet theoretically sound
and consistent, method of evaluating any number of con-
centration moments in absolute and relative frame of refer-
ence for a plume subject to the heterogeneous velocity field
in the subsurface. The derived second, third and fourth
concentration central moments in (12a)–(12c) are functions
of the mean concentration and pore scale dispersion
responsible for the dilution process. The pore scale disper-
sion appears to have significant influence on the magnitude
and shape of the concentration higher moments. The solu-
tion for the zero local dispersion case is a conservative
envelope with concentration moments exhibiting unimodal
shape whereas the solution with the non-zero local disper-
sion often becomes bimodal. This is particularly the case
for larger local dispersion and higher concentration
moments. The results from the numerical studies which
are based on a detailed field experiment showed good
agreement with proposed solution for the concentration
variance.

Applying the spatial convolution principle a simple rela-
tionship between the relative and absolute framework con-
centration standard moments is presented. The
comparison between concentration standard moments in
the relative frame of reference and moments in the abso-
lute framework revealed the practical importance of both.
While relative framework moments are describing the
internal fluctuation structure as seen by someone moving
with the plume, the absolute moments are combining the
plume meandering created from large scale heterogeneity
and small scale heterogeneity responsible for internal
plume structure. Both information are valuable in the
practice. The internal fluctuation structure of the plume
is critical in the proper assessment of the risk that might
be affecting the population exposed to such plume struc-
ture. On the other hand, the plume meandering can not
be just removed since for a fixed point observer the concen-
tration fluctuations result from the internal mixing and
plume meandering. Meandering of the plume is a relatively
slow process compared to the internal plume mixing and
may not play important role in the near field. Thus, the
absolute framework moments are balancing out the
unavoidable uncertainty coming from the plume meander-
ing and plume structure development in one information
which is particularly suitable for the monitoring network
design and for establishing the environmental protection
zones in the nature (e.g., wellhead protection zones).

The knowledge of first two concentration moments
describes only the position and fluctuation size of the moving
plume, while higher concentration moments are providing
additional information for the extreme values that could be
present in the tails of the concentration pdf. The ability to
predict the concentration moments in practice for some acci-
dental spills is valuable information, however, one often
needs to know the point or block exposure concentration
pdf for probabilistic risk assessment studies. The evaluation
of such concentration pdf can be obtained using, e.g., maxi-
mum entropy formalism [15] or any other statistical tech-
niques when at least four concentration moments are
available. Besides estimating the concentration pdf, it is also
important to determine the exposure duration of high con-
centration values or the injected mass at some point in space.
Some of these aspects and evaluation possibilities in the prac-
tice deserve the future research efforts in order to improve the
environmental risk assessment.
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