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Abstract

A new formulation is proposed to describe immiscible compressible two-phase flow in porous media. The main
feature of this formulation is the introduction of a global pressure. The resulting equations are written in a
fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global
pressure equation) and a nonlinear diffusion-convection one (the saturation equation) which can be efficiently
solved numerically. To cite this article: B. Amaziane, M. Jurak, C. R. Mecanique ??? (2007).

Résumé

Une nouvelle formulation des écoulements diphasiques immiscibles compressibles en milieux po-

reux. Une nouvelle formulation est proposée pour décrire les écoulements diphasiques immiscibles compressibles
en milieux poreux. Ce modèle est basé sur la notion de pression globale. Les équations du problème sont écrites sous
forme de flux fractionnel et introduisent un système couplé faisant intervenir une équation parabolique nonlinéaire
(équation de la pression globale) et une équation de diffusion-convetion nonlinéaire (équation de la saturation).
Cette formulation permet la mise en oeuvre d’une méthode de calcul numérique performante pour le système
diphasique complet. Pour citer cet article : B. Amaziane, M. Jurak, C. R. Mecanique ? ? ? (2007).
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1. Introduction

Motivation for the following problem arises in the area of modeling flow and transport of two-phase
problems related to the environment and the energy. Many difficult problems arise in the numerical
simulation of complex fluid processes in reservoir simulation, subsurface contaminant transport and re-
mediation, gas migration through engineered and geological barriers for a deep repository for radioactive
waste, sequestration of CO2 and other applications.

Historically, there have been two main approaches to modeling multiphase flow in porous media. The
first is based on individual balance equations for each of the fluids, while the second involves manipula-
tion and combination of those balance equations into modified forms, with concomitant introduction of
ancillary functions that we will refer to as the fractional flow or global pressure saturation formulation.
The notion of global pressure was first introduced by [2,3] and was then revisited by other authors, see
for instance [4]. It has been since used in a wide range of engineering specialities related to numerical
simulation in hydrology and petroleum reservoir engineering, see for instance [5] and references therein.
It has been proven that this fractional flow approach is far more efficient than the original two-pressure
approach from the computational point of view [5].

In this Note, we focus our attention on the study of immiscible compressible two-phase flow in porous
media. The fractional flow formulation employs the saturation of one of the phases and a pressure as
independent variables. The fractional flow approach treats the two-phase flow problem as a total fluid
flow of a single mixed fluid, and then describes the individual phases as fractions of the total flow. This
approach leads to two coupled equations: the global pressure equation; and the saturation equation.

Numerical methods are very sensitive to the choice of form of the governing equation. In the light
of the new and continuing developments in numerical methods for the solution of the multiphase flow
equations, it is worthwhile revisiting the question of the form of the governing equations and exploring
the implications of this equation form for a numerical method based on it.

The aim of this Note is to derive a new fractional flow formulation for immiscible compressible two-
phase flow in porous media which can be efficiently solved numerically. We will restrict our attention
to water (incompressible) and gas such as hydrogen(compressible), however, the methodology and the
analysis can be extended to problems where both fluids are assumed to be compressible.

The rest of the Note is organized as follows. In the next Section, we review the differential problem de-
scribing immiscible compressible two-phase flow in porous media. In Section 3 we briefly recall a simplified
fractional flow formulation described in [2]. Then, in Section 4 we derive a new more general fractional
flow formulation. This formulation leads to a coupled system which consists of a nonlinear parabolic (the
global pressure equation) and a nonlinear diffusion-convection one (the saturation equation). Finally, nu-
merical results for water-gas flow are presented to see the performance of the approach by comparing the
simplified and the new formulation.

2. Governing equations

The usual equations describing immiscible compressible two-phase flow in a porous medium are given
by the mass balance equation and Darcy’s law for each of the fluid phases (see, e.g., [1]):

Φ
∂

∂t
(ραSα) + div(ραqα) = Fα and qα = −K

krα(Sα)

µα

(∇pα − ραg), (1)

where Φ and K are the porosity and absolute permeability of the porous medium; α = w denotes the
wetting phase (e.g. water), α = g indicates the nonwetting phase (e.g. gas), ρα, Sα, pα, qα and µα are,

2



respectively, the density, (reduced) saturation, pressure, volumetric velocity, and viscosity of the α-phase,
Fα is the source/sink term, krα is the relative permeability of the α-phase, and g is the gravitational,
downward-pointing, constant vector. In addition to (1), we also have the customary property for satura-
tions and the capillary pressure function:

Sw + Sg = 1, and pc(Sw) = pg − pw. (2)

The primary variables are Sα, pα, and qα. Here we assume that the porosity Φ and the absolute permeabil-
ity K are functions of space. The water density ρw and viscosities µw, µg are constant; the gas density sat-
isfies the ideal gas law: ρg(pg) = cgpg where cg is a constant. Finally, we assume that the capillary pressure
and relative permeabilities depend upon the saturation solely. For notational simplicity, we neglect their
dependence on space. For expositional convenience, we introduce the phase mobility functions: λw(Sα) =
krw(Sα)/µw, α = w, g and the total mobility λ(Sw, pg) = ρwλw(Sw)+ρg(pg)λg(Sw). Finally, we define the
fractional flow functions: fα(Sw, pg) = ραλα(Sw)/λ(Sw, pg), α = w, g. Let us define the following nonlinear
functions: ρ̄(Sw, pg) = (λw(Sw)ρ2

w +λg(Sw)ρg(pg)
2)/λ(Sw, pg), bg(Sw, pg) = ρwρg(pg)λw(Sw)λg(Sw)(ρw−

ρg(pg))/λ(Sw , pg), and a(Sw, pg) = −ρwρg(pg)λw(Sw)λg(Sw)p′c(Sw)/λ(Sw , pg).
The governing equations (1)–(2) are a set of coupled, nonlinear partial differential equations (PDEs).

The basic equations can be mathematically manipulated into several alternate forms with various choices
of primary dependent variables. The choice of equation form and primary solution defined by variables
have considerable implications for the mathematical analysis and the numerical method used to solve
these equations.

Here we rewrite the eqations in the gas phase and water saturation formulation with a total flux, i.e.
pg (gas pressure), Qt = ρwqw + ρg(pg)qg (total flux), and Sw (water saturation) are chosen as primary
variables. In this case, one checks easily, that the set of equations can be written as a system of two
coupled evolution equations given by

Φ
∂

∂t
(Swρw +(1−Sw)ρg(pg))−div (λ(Sw, pg)K [∇pg − fw(Sw, pg)∇pc(Sw) − ρ̄(Sw, pg)g]) = Fw +Fg, (3)

Qt = −λ(Sw, pg)K (∇pg − fw(Sw, pg)∇pc(Sw) − ρ̄(Sw, pg)g) , (4)

Φρw

∂Sw

∂t
+ div(fw(Sw, pg)Qt + Kgbg(Sw, pg)) − div(Ka(Sw, pg)∇Sw) = Fw. (5)

The governing equation for pressure (3) is a nonlinear parabolic PDE and the equation for saturation (5)
is a nonlinear convection-diffusion PDE.

3. Simplified global formulation

In this section, we give a short description of a simplified fractional flow formulation of the system
(3)–(5), i.e., in terms of a global pressure p and saturation under the assumption that we can ignore the
error caused by calculating the gas density at p instead of pg. This kind of approximation is widely used
in petroleum engineering for production of hydrocarbons from petroleum reservoirs (oil and gas flow in
reservoirs) and in hydrology (water and air in dams or soil). However this condition is not satisfied for
all the existing immiscible compressible two-phase flow.

Equations (3)–(5) are strongly coupled, as noted. To reduce the coupling, we now write them in a
different formulation, where a global pressure is used. To this end, define the global pressure p as the
solution of the following nonlinear equation ([2]):

Π(Sw , p) = pg, where Π(Sw , p) = p + γ(Sw, p), with γ(Sw, p) =

∫ Sw

1

fw(s, p)p′c(s) ds, (6)
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where we have assumed, for simplicity, that pc(1) = 0. Then it follows from (3)–(5) that the system can
be written as follows

Φ
∂

∂t
(Swρw + (1 − Sw)ρg(p)) − div (λ(Sw, p)K[ω(Sw, p)∇p − ρ̄(Sw, p)g]) = Fw + Fg, (7)

Qt = −λ(Sw, p)K(ω(Sw, p)∇p − ρ̄(Sw, p)g), (8)

Φρw

∂Sw

∂t
+ div(fw(Sw, p)Qt + Kgbg(Sw, p)) − div(Ka(Sw, p)∇Sw) = Fw, (9)

where ω(Sw, p) = 1 + ∂
∂p

γ(Sw, p). Equations (7)–(9) are the global pressure and saturation equations,
respectively.

We end this section with three remarks. First, instead of the total flux, we could just use the total
velocity q = qw + qg, and derive a similar set of PDEs. However, it follows from the expression of the
total flux that it behaves more smoothly. It is easy to see that λ(Sw, p)ω(Sw, p)∇p = ρwλw(Sw)∇pw +
ρg(pg)λg(Sg)∇pg. This implies that the global pressure is the pressure that would produce a flow of fluid
(with mobility λω) equal to the sum of the flows of fluids w and g. Third, the phase pressure-saturation
form (3)–(5) is much more complicated than the global pressure-saturation form (7)–(9). In particular,
the coupling between the pressure and saturation equations in (3)–(5) is stronger then in (7)–(9), and
thus these equations are more expensive to solve, for more details see [5].

4. A new global formulation

In this section, we extend the global pressure-saturation formulation with the total flux in the general
case where the assumption done in the last section on the gas density may not be satisfied. The purpose
of the following computations is to define a global pressure p such that equations (1)–(2) are exactly
equivalent to a set of two coupled equations in p and Sw only. For this, let us set pg = Πn(Sw, p) =
p + γn(Sw, p) where Πn and γn are nonlinear functions which will be defined later (the superscript n
stands for new). Then we want to obtain ∇pg = ωn(Sw, p)∇p + fw(Sw, Π(Sw, p))p′c(Sw)∇Sw, which can
be written in the following form:

∂Πn

∂Sw

(Sw, p)∇Sw +
∂Πn

∂p
(Sw, p)∇p = ωn(Sw, p)∇p + fw(Sw, Πn(Sw, p))p′c(Sw)∇Sw.

Since p and Sw are independent variables we have

∂Πn

∂Sw

(Sw, p) = fw(Sw, Πn(Sw, p))p′c(Sw) (10)

∂Πn

∂p
(Sw, p) = ωn(Sw, p). (11)

We integrate (10) to obtain Πn then ωn is defined by (11). Setting Πn(1, p) = p we get

Πn(Sw, p) = p + γn(Sw, p) where γn(Sw, p) =

∫ Sw

1

fw(s, Πn(s, p))p′c(s) ds, (12)

then it is easy to see that we have pw = Πn(Sw, p) − pc(Sw) ≤ p ≤ Πn(Sw, p) = pg.
The difference between (12) and (6) is that in (12) we have a family of Cauchy problems to solve. By

considering the global pressure p as a parameter, we get

dΠn(S, p)

dS
=

ρwλw(S)p′c(S)

ρwλw(S) + cgλg(S)Πn(S, p)
, S ∈]0, 1[, Πn(1, p) = p. (13)
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We have to show that this problem has a global solution in ]0, 1]. The main difficulty is that the right
hand side function in (13) may be infinite at S = 1. Note that u = pc(Sw) can easily be inverted and we

can write Sw = Sw(u). Then, for any function of water saturation f(Sw) we write f̂(u) = f(Sw(u)). Let
us introduce the function Π̂n(u, p) as a solution of the following Cauchy problem (p being a parameter),

dΠ̂n(u, p)

du
=

ρwλ̂w(u)

ρwλ̂w(u) + cgλ̂g(u)Π̂n(u, p)
, u > 0, Π̂(0, p) = p. (14)

Now it is easy to see that problem (14) has a global solution, and that Πn(Sw, p) = Π̂n(pc(Sw), p). Thus
the function Πn is well defined. Then we have from (11)

ωn(Sw, p) = 1 +

∫ Sw

1

∂

∂p
fw(s, Πn(s, p))p′c(s) ds. (15)

Again, for each p, we have to solve the following linear Cauchy problem:

dωn(S, p)

dS
= −

cgρwλw(S)λg(S)p′c(S)

(ρwλw(S) + cgλg(S)Πn(S, p))2
ωn(S, p), S ∈]0, 1[, ωn(1, p) = 1.

Now it is easy to obtain an analytic solution of this problem, then ωn(S, p) is well determined.
The rest of the computations to obtain the fractional flow formulation is the same as in Section 3 with

the difference that p should be replaced by Πn(Sw, p) in all coefficients. Therefore we define: λn(Sw, p) =

ρwλw(Sw)+cgλg(Sw)Πn(Sw, p), fn
w(Sw, p) = ρwλw(Sw)/λ̂(Sw, p), ρ̄n(Sw, p) = ρ̄(Sw, Πn(Sw, p)), an(Sw, p) =

a(Sw, Πn(Sw, p)), and bn
g (Sw, p) = bg(Sw, Πn(Sw, p)). Then we obtain a new global pressure-saturation

formulation of the problem given by:

Φ
∂

∂t
(Swρw + cg(1 − Sw)Πn(Sw, p)) − div

(

λn(Sw, p)K(ωn(Sw, p)∇p − ρ̄n(Sw, p)g)
)

= Fw + Fg, (16)

Qt = −λn(Sw, p)K(ωn(Sw, p)∇p − ρ̄n(Sw, p)g), (17)

Φρw

∂Sw

∂t
+ div(fn

w(Sw, p)Qt + Kgbn
g (Sw, p)) − div(Kan(Sw, p)∇Sw) = Fw. (18)

Note that the expression of ω in the simplified formulation (7)–(9) and ωn in the new formulation (16)–
(18) are not simply related. It should be noted that this new formulation requires to solve a family of
ordinary differential equations which could numerically be done by using standard libraries existing in
the literature.

5. Numerical comparison

In this section we compare numerically coefficients in simplified and new global pressure formulations.
Data are chosen from the benchmark problem Couplex-Gaz [6] proposed by the ANDRA (the French

National Radioactive Waste Management Agency), we consider the van Genuchten function with param-
eters n = 1.54 and Pr = 2 MPa.

Differences between corresponding coefficients in PDEs (7)–(9) and (16)–(18) behave in a consistent
way when varying the global pressure p, so that it is sufficient to represent one of them. We choose to
present the diffusion coefficient a(Sw, p) from (9), and the corresponding diffusion coefficient an(Sw, p) =
a(Sw, Πn(Sw, p)) from (18).

Furthermore, to see better graphics of coefficients we have presented them as functions of the capillary
pressure u instead of the water saturation Sw. The two diffusion coefficients are presented in the right
colon of Figure 1. In the left colon we plot gas pressure Π̂n(u, p) (see (14)) from the new global formulation
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Figure 1. Comparison of coefficients between simplified and new models.

and the gas pressure Π̂(u, p) given from the simplified global formulation (see (6)), where hat denotes
again that the water saturation is replaced by the capillary pressure. We present functions for three
different fixed values of the global pressure p, namely, 2, 4 and 6 MPa.

From the behavior of coefficients we can draw several conclusions. If we look only at the error committed
by calculating the coefficients in global pressure instead of gas pressure then we see that this error can be
significant only when typical capillary pressure in the system is comparable to global or gas pressure. That
may be the case for small operating pressures, for example in hydro-geological applications of water-air
system. In the other hand that difference can be safely ignored in typical oil field conditions. Contrary
to that the error committed in calculating gas density in (7) by replacing the gas pressure by the global
pressure stays significant and leads to unacceptable loss of mass balance which is an important property
of the physical solution. This can clearly be seen from the left colon of Figure 1.
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