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The circular internal hydraulic jump
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Circular hydraulic jumps are familiar in single layers. Here we report the discovery
of similar jumps in two-layer flows. A thin jet of fluid impinging vertically onto a
rigid horizontal plane surface submerged in a deep layer of less-dense miscible fluid
spreads radially, and a near-circular internal jump forms within a few centimetres
from the point of impact with the plane surface. A jump is similarly formed as a jet
of relatively less-dense fluid rises to the surface of a deep layer of fluid, but it appears
less stable or permanent in form. Several experiments are made to examine the case
of a downward jet onto a horizontal plate, the base of a square or circular container.
The inlet Reynolds numbers, Re, of the jet range from 112 to 1790. Initially jumps
have an undular, laminar form with typically 2–4 stationary waves on the interface
between the dense and less-dense layers but, as the depth of the dense layer beyond
the jump increases, the transitions become more abrupt and turbulent, resulting in
mixing between the two layers. During the transition to a turbulent regime, single
and sometimes moving multiple cusps are observed around the periphery of jumps.
A semi-empirical model is devised that relates the parameters of the laboratory
experiment, i.e. flow rate, inlet nozzle radius, kinematic viscosity and reduced gravity,
to the layer depth beyond the jump and the radius at which an undular jump occurs.
The experiments imply that surface tension is not an essential ingredient in the
formation of circular hydraulic jumps and demonstrate that stationary jumps can
exist in stratified shear flows which can be represented as two discrete layers. No
stationary circular undular jumps are found, however, in the case of a downward
jet of dense fluid when the overlying, less-dense, fluid is stratified, but a stationary
turbulent transition is observed. This has implications for the existence of stationary
jumps in continuously stratified geophysical flows: results based on two-layer models
may be misleading. It is shown that the Froude number at which a transition of finite
width occurs in a radially diverging flow may be less than unity.

1. Introduction
1.1. Background; jumps in single layers

The circular hydraulic jump observed in a kitchen sink is a familiar phenomenon.
The jump, or abrupt change in thickness of the flowing water, forms in the radial flow
of a thin layer of water surrounding the point of impact of a jet of water (from a
tap or faucet) directed vertically onto a smooth horizontal surface (the bottom of the
sink). Typically the thin radially flowing layer is less than a millimetre in thickness
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and the jump forms at a radius of a few centimetres from the vertical jet, increasing
the water depth by a factor of order five or more.

Study of circular jumps has attracted much interest over the years since being
mentioned by Rayleigh (1914) in a paper on hydraulic jumps and bores. Laboratory
experiments and theoretical analyses of circular jumps are described by Watson
(1964), Craik et al. (1981), Bowles & Smith (1992), Bohr, Dimon & Putkaradze
(1993), Higuera (1994), Bush & Aristoff (2003) and Bush, Aristoff & Hosoi (2006).
(The latter give further references.) Viscosity affects the thin radial flow and surface
tension influences the character of the jump. Jumps of relatively small amplitude, in
which the water depth does not change greatly in the transition, are often preceded
by 3–5 stationary capillary waves and followed by a small but detectable change in
surface slope, described by Craik et al. (1981) as an ‘outer ring’. Watson’s (1964)
theory for the flow approaching a jump and for its location is in fair agreement
with laboratory experiments and forms the basis of several subsequent studies, e.g.
those of Higuera (1994) and of Bush & Aristoff (2003). (We shall later, in § 3, adapt
Watson’s theory to two layers.) The form of larger jumps is unstable, with temporally
periodic fluctuations and sometimes with well-defined cusps around the periphery of
the jump. Capillary–gravity waves are observed propagating downstream beyond the
jump. Boundary layer separation and closed circulation cells or ‘rotors’ are observed
in the jump, the latter causing the surface slope change or the ‘outer ring’, and stable
shapes other than circular are found to be possible. The more recent studies have
used numerical techniques to model the flow, and experiments have been made with
a variety of different fluids to test effects of viscosity and surface tension, together
with high-speed video to track microbubbles and so to estimate flow speeds.

1.2. Jumps in two-layer flows

No comparable study appears to have been made of circular internal hydraulic jumps
in either miscible or immiscible fluids. These are produced as a vertical downwards-
going jet of fluid denser than that into which it is introduced spreads horizontally
from its point of impact with a horizontal surface, or when an upward jet of relatively
lower density spreads after meeting the free surface of its surrounding fluid. Examples
of these internal jumps are shown in § 2. In the miscible fluids described here and
unlike the single-layer circular jump, surface tension is negligible, the way in which
the velocity profile in the radially spreading flow is controlled by viscous drag differs
(and differs also in the two cases of upward- and downward-going jets) and a feature
of the jumps is that, when their amplitude (the ratio of the flowing layer’s thickness
after and before the jump) is moderate, they are characterized by stationary circular
waves; transitions with small depth change are undular in form.

Our purpose is to draw attention to the phenomenon, rather than to match
the relatively sophisticated studies recently made of surface jumps. The subject of
whether stationary internal hydraulic jumps can occur in a stratified flow beneath
an unstratified stationary layer is of importance in relation to the jumps of much
greater size that are postulated to occur in rapid flows through channels on the
sides of mid-ocean ridges and through passages connecting deep ocean basins (Polzin
et al. 1996; Thurnherr et al. 2005; Thorpe 2007). Such flows, for example of the
Antarctic Bottom Water through the Romanche Fracture Zone, are separated by
relatively intense density gradients from the slow movement and low stratification of
the overlying water. It is possible that the mixing observed downstream of sills in
the passages is caused by stationary jumps, although there are as yet no observations
with sufficient resolution to establish the presence or otherwise of such transitions.
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In some circumstances the theory of jumps in inviscid two-layer flows is almost
identical to that in a single layer and the occurrence of circular interfacial jumps is
therefore not unexpected. In a two-layer flow, with the lower layer of thickness h and
density ρ2 in uniform motion, u, beneath a deep stationary fluid of density ρ1(ρ1 < ρ2),
long internal waves move relative to the lower layer at a speed, C = (g′h)1/2, where
g′ is the reduced gravity, g′ = g(ρ2 − ρ1)ρ2, which, remarkably, is the same as that
of waves on the interface when the lower layer is at rest (Appendix: A 1). There are
two possible speeds for long waves: one downstream relative to the flow, the other
upstream. The speed of these waves relative to the upper stationary layer are (u+C),
corresponding to a wave moving downstream relative to the flow, and (u−C), a wave
propagating against the flow. If the Froude number, (u/C)2, is greater than 1, the
second wave has a positive downstream speed, (u−C) > 0, between that of the lowest
flow speed – which is zero (the speed of the upper layer) – and that of the lower layer.
This wave therefore travels at speeds within the range of those in the mean flow. Since
the long waves are the fastest moving and because the group velocity of long waves is
equal to the phase speed, C, and is less than C for waves of smaller length, all linear
waves and their wave energy must propagate downstream. No wave energy from a
region of a stationary transition in a flow with Froude number > 1 can propagate
or change the flow upstream of a transition. Downstream of a transition where the
Froude number is less than 1, long waves can travel both towards and away from
the transition. These are conditions usually found as necessary for hydraulic jumps
to occur and, in particular, are those found in relation to jumps in single-layer flows.

1.3. Jumps in stratified flows

Whilst jumps in naturally occurring stratified fluids are commonly represented as
being at the interface between two uniform layers (e.g. see Baines 1995; Holland et al.
2002; Hassid, Regev & Poreh 2007), in reality flows are generally continuously strati-
fied with no discontinuities in either density or velocity. In such shear flows, waves (and
waves are intimately related to the presence or absence of hydraulic jumps as explained
above) have properties that differ from those in two layers. For example, inviscid two-
layer flows with non-zero velocity difference are unstable since wave disturbances can
be found that, if sufficiently short, will grow through Kelvin–Helmholtz instability
but, by the Miles–Howard theorem, in a continuously stratified flow instability is only
possible when the smallest gradient Richardson number in the flow, Rimin, < 1/4.
Because of the critical layer phenomenon in continuously stratified shear flow, contrary
to what is described above at a Froude number > 1 in a two-layer flow, waves cannot
travel with a horizontal phase speed within the range of the mean flow.

The definition of an appropriate Froude number in a stratified shear flow requires
some discussion. An appropriate choice is one that provides information about the
propagation of wave energy in a direction contrary to the flow measured relative to
a transition. Here the transition is supposed to be stationary. Let us assume, as in
Thorpe & Ozen (2007), that a stratified layer with unidirectional velocity, U (z), and
density, ρ(z), lies beneath a static layer which is at rest (a case that approximates to
that of the circular hydraulic jump). A suitable measure, and one consistent with that
in single-layer hydraulic theory, is the square of the mean downstream velocity, 〈u〉 in
the flowing layer divided by the square of the greatest group velocity in the upstream
direction measured relative to the mean downstream velocity, Fr = 〈u〉2/(max(Cg))

2.
If Fr exceeds 1 then no waves can transmit energy upstream from the stationary
transition. For reasons given later in § 1.3, in some stratified shear flows Fr may
always be less than unity. It is evident that, in choosing and applying this definition,
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both the speed of the flow over the ground and the speed of a transition must be taken
into consideration. The spatial variations in flow speed and stratification resulting
from the radial flow approaching a circular jump add further complexity that is not
present in unidirectional flows.

When the smallest gradient Richardson number in the flow, Rimin , exceeds 1/4 this
conclusion is consistent with Bell’s (1974) study of the range of speeds of internal
waves: waves must either travel at speeds, C, greater than the maximum in the flow,
umax , or less than the minimum flow speed, umin . When a stratified layer has a velocity
that is everywhere downstream and lies beneath a stationary layer of uniform density
(so excluding the possibility of internal wave radiation upwards from disturbances in
the lower layer) the condition C <umin implies that waves may travel with negative
velocity and so upstream, because umin = 0. Long internal waves propagate faster than
those of finite length and (like long surface waves) their group velocity is equal to
their phase speed. An example in which long waves can travel upstream, whatever the
magnitude of a specified mean flow in a fluid with two layers of uniform density, is
given in Appendix A 2. Instability is not assured by the Miles–Howard theorem when
Rimin < 1/4; some inviscid flows with Rimin < 1/4 that are close to a plane horizontal
boundary are stable to small disturbances. Long waves are found in such flows that
can propagate and transport energy upstream, although at speeds small compared to
the greatest speed within the moving lower layer (Thorpe & Ozen 2007). Whether
jumps can then occur is uncertain, but appears unlikely.

Observational evidence is less than decisive. There seem to be no experiments in
which stationary jumps are formed in continuously stratified unidirectional flows over
a rigid boundary but where the motion is zero at some height above the boundary.
Wilkinson & Wood (1971) report a laboratory experiment in which a stationary jump
appears to occur in a miscible two-layer flow just downstream of the entry of an
upper heated (and therefore less dense) layer into a tank of stationary, colder (denser)
water. (For experimental convenience this is the inverse of that described earlier.
In Wilkinson & Wood’s experiment, it is the relatively thin upper layer that is in
motion, but in the Boussinesq approximation this is equivalent to the case where the
lower layer is in motion.) The upper layer is restricted or ‘controlled’ downstream by
a broad-crested inverted weir. The interface between the layers descends gradually
from close to the inlet (which prevents the possibility of upstream wave propagation),
with no sign of internal waves but with evidence of mixing by small billows, before
a region is reached containing a ‘roller’ but where there are no signs of overturning
at the interface and where, indeed, there is little or no further entrainment of fluid
across the now indistinct interface. The roller does not have a form with a change
in interface level like the hydraulic jumps observed in single layers downstream of
weirs or in tidal bores. It seems possible that the transition and mixing observed
may be a consequence of Kelvin–Helmholtz shear instability as in the laboratory
experiments of Brown & Roshko (1974), rather than a hydraulic jump or transition.
The persuasive image of what is described as a stationary internal hydraulic jump
in the lee of the Sierra Nevada range in the books by Turner (1973; his figure 3.11)
and Lighthill (1978; his figure 117) is attributed by Scorer (1972) to flow separation
ahead of a rotor within the leading wave of train of large internal waves, but appears,
nevertheless, to be a stationary flow transition.

The conditions in which stationary hydraulic jumps may occur in stratified flows
are therefore not entirely clear. The present study shows that stationary undular
jumps can exist in the flow of two miscible fluids when, by analogy with single-layer
flows and as discussed in § 1.2, hydraulic jumps are indeed expected. When, however,
the stratification is continuous (when the overlying, stationary and less-dense layer
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Figure 1. Apparatus for (a) the downward-going jet and (b) the upward-going jet. At the
top, well above the lower tank, is a header tank filled of (a) saline water (ρ2) or (b) fresh
water (ρ1). This tank is connected by a tube, with a tap to control and set the flow rate, Q,
to the lower tank where the circular jumps are produced. In some experiments, the header
tank is replaced by an adjustable-speed pump to set the flow rate. The fluid passes through
a vertically pointing nozzle (a) downwards in fresh water contained in the lower square tank
or circular pie dish, or (b) upwards in saline water. Visualization is provided by colouring the
fluid introduced into the lower tank and, in (a), by shadowgraph.

is stratified), a further experiment described in § 5.2 shows that stationary undular
jumps do not form, but a turbulent transition is observed.

1.4. Content and arrangement

The two-layer experiments are described in § 2 and a theoretical model relating
to the radial position of the jump is developed in § 3. (Details of the model are
given in Appendix C.) The experimental results are compared with the model in § 4.
Conclusions are discussed in § 5, together with the results of the experiments referred
to above in which a diffuse interface is inserted above the lower fluid to make the
stratification continuous. A note on the Froude number required for a transition of
finite width in a two-layer radial flow is presented in Appendix D pointing to effects
associated with curved jumps.

2. Experiments
The apparatus is sketched in figure 1. Initial experiments (figure 1a) were made in a

1 m square Perspex tank. Subsequent experiments were made in a 58.4 cm square tank
with a glass bottom, or in a circular Pyrex container (a pie dish) with a base of radius
9.35 cm placed within the 58.4 cm tank into which fluid could overflow. Preliminary
results are given in Kavc̆ic̆ (2008). The tanks are first filled with fresh water of density
ρ1 to a depth of 30–50 mm or enough to completely submerge the 35 mm deep pie
dish when it is used, and left to settle for at least 10 min. Salt solution of density ρ2,
where (ρ2 − ρ1)/ρ2 ≈ (0.05–0.1), is then introduced at a constant rate, Q, through
a vertical tube terminating in a downwards pointing nozzle of radius a, at a height
of about 0.3 cm from the horizontal base of the tank. (The height is kept small to
avoid mixing between the descending fluid and that surrounding it.) Although larger
nozzle radii were tried, the steadiest jumps were obtained with a ≈ 1 mm. Flow rates,
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Q, range from 0.398 to 7.42 cm3 s−1. The Reynolds number of the flow, U0 =Q/πa2,
through the nozzle is Re = U0a/ν = Q/πaν, where ν is the kinematic viscosity, and
ranged from 112 to 1790 (an order of magnitude less than in Watson’s experiments
in a single layer – he defines Re as Q/aν), and sufficiently small for the flow through
the inlet tube to be laminar. The reduced gravity, g′ = g(ρ2 − ρ1)/ρ2, has values of
about 50 and 100 cm s−2.

The diverging flow of the dense saline fluid over the base of the tank takes the
form of a density current that spreads radially from the nozzle to the tank walls in
a time depending on the reduced gravity g′, the flow rate and the tank dimensions,
but typically 30–100 s. Reflected waves return on the interface between the fresh and
saline layers towards the centre of the tank, but a relatively steady state of outward
radial flow is set up after a minute or so, the larger times corresponding to larger
tanks and to smaller Q or less-dense saline injections. At an early stage, often whilst
the spreading density current is still visible, a circular undular jump forms at the
interface between the saline fluid and the fresh water at distances from the nozzle of
about 10–50 mm. No evidence of growing disturbances or Kelvin–Helmholtz billows
is seen in the radially divergent flow approaching the jump.

Close to the location of the nozzle, the thickness, h, of the layer of dense water
spreading radially on the bottom of the tank could not be directly measured but
appeared to be less than 1 mm. Because of the continued influx, Q, into the finite
container, the depth of the layer of dense water downstream of the jump slowly
increases in time. Its mean depth, 〈h2〉, can be estimated as Qt/A, where t is the filling
time and A the area of the tank outside the jump, and ranges during experiments
from about 0.3 to 8 mm.

Photographs of the jumps were taken at periods sufficient to record the main
changes apparent in the slowly varying flow patterns, every 30 s or less. In the first
experiments jumps were made visible by using potassium permanganate to dye the
saline water and colour filters were used to enhance contrast in the photographic
images. Figure 2 shows a series of photographs taken in the 1m square Perspex
tank. with Re = 783 as the mean depth, 〈h2〉, gradually increased. In figure 2(a) three
stationary dark bands, indicating stationary wave crests where the thickness of the
saline water is increased, are formed around the inlet. The innermost wave appears
as a dark band and is one of elevation; the depth of the dye layer is increased. The
innermost circular band appears darker than those of greater radii and darker than
the surrounding layer beyond the jump, suggesting that the layer in the band is deeper
than the surrounding layer. The distance between successive waves, their wavelength,
is roughly 5 mm but decreases with increasing distance from the nozzle, a feature that
is shown in § 3.1 to be a condition for interfacial waves to be stationary in a flow that
decreases in speed as radius increases. The transition from the interior flow, before
it reaches the inner dark ring, to the exterior region of relatively uniform shade of
darkness and therefore uniform thickness, occurs between radii of about 16 mm and
30 mm.

As time and 〈h2〉 increase the radius at which the jump occurs decreases slowly.
After a few minutes, the waves lose their perfectly circular form, with evidence of
patches of azimuthal undulations around the periphery of the jump with wavelength
comparable to that of the circular waves. These are already seen in the top right
quadrant of figure 2(a). They become more cusp-like, the radius of the jump decreases,
and the width of the transition and number of visible waves decreases; the abrupt
jumps, without waves, that eventually develop have radii that are less than the radii
at which the undular jumps are observed. In some cases, e.g. figure 3(d), the pattern
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Figure 2. The circular internal hydraulic jump around a downward-going jet as in figure 1(a):
a series of photographic images obtained using dye to colour the saline water as the thickness
of the layer outside the jump gradually increases. The scale is in centimetres and the black
silhouette in the lower part of the images is the entry tube and supports. The nozzle’s radius
is 1 mm and it is placed 3 mm from the floor of the 1 m square Perspex tank. The flow rate
Q = 2.46 cm3 s−1 with corresponding Re = 783, and the upper layer of water is 34 mm thick.
The ‘reduced’ acceleration due to gravity is g′ = g(ρ2 − ρ1)/ρ2 ≈ 104 cm s−2, where g (taken as
981 cm s−2) is the acceleration due to gravity. Values of respective times, depths and parameters
are listed in table 1.

of cusps is seen to rotate around the periphery of the jump, and this rotation indicates
the beginning of a transition to turbulence. There is evidence of irregular turbulent
motion around the circumference of the jump at the stages shown in figure 2(d–f). The
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transition to an abrupt turbulent jump is accompanied by the outward propagation
of interfacial waves.

Clearer images were subsequently obtained using shadowgraph images produced
by shining a parallel beam of light upwards through the tank onto a transparent
screen just above the fresh water layer. A ruler was placed on the screen, or lines and
circles were drawn, to provide a scale.

Figure 3 illustrates the development of the jump in the 58.4 cm square tank when
Re = 232. The first image, (a), is 20 s after filling with the dense fluid had begun, and
a circular jump is already visible. The innermost circle is lighter, consistent with its
being caused by a wave of elevation focusing light refracted as it passes upwards
through a concave interface between the salt and fresh water; the bright bands are
formed at wave crests and dark bands are the wave troughs. The density current
reached the sidewalls of the tank after about 50 s, and by the time of (b), at 2:10 min
after filling began, the dense layer surrounding the jump is well established and
fairly steady. Three stationary waves are visible in (b) and two in (c), at 4:50 min,
with radius decreasing in time. In (d) at about 6 min, a pattern of cusps or waves
is formed, moving counter-clockwise around the inner stationary circular wave at a
speed of roughly 0.5 cm s−1. In (e) this pattern becomes unstable and begins to distort
the stationary innermost wave, with evidence of small-scale turbulent structure that
develops still further in (f, g), intruding into the region close to the nozzle. After
about 14 min (h, i), the double ring pattern (possibly the boundaries of a rotor)
surrounding the nozzle has a regular azimuthal pattern with a wavenumber of about
14 (i.e. with some 14 ‘cells’ around the nozzle) but apparently in a less dynamic state
of turbulence than at the transitional stages (f, g).

The images in figure 4 (Re = 1790) are obtained in the 1m square tank. The first
image shows 3–4 near circular waves surrounding the inlet. The circular pattern is
disturbed at bottom left by a feature seen in some other experiments. The single
arrow-like protrusion develops a linear striation in (b) that breaks down into an
eddying structure in (c). The image (b) shows the appearance of wisps or fine
structure surrounding the ring, particularly at the upper right side, indicative of a
transition to irregular motion. These become more evident in (c), but are not visible
in figure 2. The multiple cusp-like features of figure 2 or figure 3(d) are not as evident
in figure 4.

In some experiments dye was introduced into the flow in the hope of detecting
the presence or absence of a rotor in the jump similar to that in single-
layer jumps (remnants of the dye are visible in figure 3a, b), but these were
inconclusive.

Values of the measured radii at the jump (r1), the mean depth outside the jump
(〈h2〉), and the Froude number, Fr2 = u2

2/g
′〈h2〉 for the experiments shown in figures 2–

4 are given in table 1. The mean flow speed, 〈u2〉, is calculated from the volume flux,
Q =2πr1〈h2〉〈u2〉 giving Fr2 = Q2/(4π2r2

1g
′〈h2〉3). The values of Fr2 are generally less

than 1, as expected. There is some latitude in the definition of r1, particularly when
waves are present. Here it is taken to be the radius at which the onset of a rise in
the interface is estimated to occur or rw − λ/2, where rw is the radius of the crest of
the innermost wave and λ is its wavelength. This radius may be less than the radius
at which the lower layer reaches the thickness 〈h2〉 downstream of the transition, and
this may be why some values of Fr2 in table 1 exceed 1. The value 〈h2〉 may not
however represent the value of the depth of the lower layer immediately downstream
of the jump, a matter to which we return in § 3.1.
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(g) (h) (i)

(d) (e) ( f )

Figure 3. Patterns observed using shadowgraph in the 58.4 cm square tank at times after filling
with the saline solution commenced of (a) 20 s, (b) 2:10min, (c) 4:50min, (d) 6:08min, (e)
7:50 min, (f ) 8:50min, (g) 10:50min, (h) 13:58min and (i) 17:14min. Here Q = 0.828 cm3 s−1,
Re = 232. The ‘reduced’ acceleration due to gravity is g′ = g(ρ2 − ρ1)/ρ2, ≈ 48.8 cm s−2, The
images are 7 cm square. The two dark lines from the top left to the centre are the sides of the
filling tube. Dark streaks in (a) and (b) are potassium permanganate dye introduced through
the circular hole to the left of the nozzle to visualize the flow. Parameters for (b–d) are listed
in table 1.

A few experiments were made as shown in figure 1(b) with a jet of fresh water
directed upwards through a nozzle towards the surface of a saline solution in a
65 cm diameter circular tank. These also resulted in the formation of waves and
jumps. The irregular structure of the jump shown in figure 5 indicates that, as
was observed, the transitions surrounding an upward-going jet spreading below a
free surface are much less stable that that in a flow around a downward-going jet
impinging on a horizontal rigid plane.
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(a)

(b)

(c)

Figure 4. The circular internal hydraulic jump around a downward-going jet as in figure 1(a):
images obtained using shadowgraph as the thickness of the layer outside the jump gradually
increases. The nozzle’s radius is 1 mm and it is placed 3 mm from the floor of the 1 m
square Perspex tank. The flow rate Q = 5.63 cm3 s−1 with corresponding Re = 1790, and
the upper layer of water is 34 mm thick. The ‘reduced’ acceleration due to gravity is
g′ = g(ρ2 − ρ1)/ρ2 ≈ 98.8 cm s−2. Values of respective times, depths and parameters are listed
in table 1. The images are 15 cm wide.
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Figure t (min:s) r1 (cm) 〈h2〉 (mm) Fr2 h2 (mm) Fr2(λ)

2(a) 8:30 1.60 1.25 0.295 0.68 0.904
2(b) 11:0 1.45 1.62 0.156 0.75 0.835
2(c) 11:30 1.52 1.70 0.130 – –
2(d) 12:30 1.37 1.85 0.124 – –
2(e) 13:30 1.35 2.00 0.101 – –
2(f ) 15:30 1.25 2.30 0.078 – –

3(b) 2:10 1.03 0.32 10.7 0.291 0.939
3(c) 4:50 0.92 0.70 1.20 0.294 0.919
3(d) 6:08 0.88 0.89 0.65 – –

4(a) 7:0 2.00 2.35 0.157 1.10 0.750
4(b) 8:15 1.90 2.70 0.114 1.20 0.708
4(c) 10:0 1.90 3.40 0.072 – –

Table 1. Values of the parameters of figures 2–4. In figure 2, Q = 2.46 cm3 s−1 and
g′ = g(ρ2−ρ1)/ρ2, is about 104 cm s−2. In figure 3, Q = 0.828 cm3 s−1 and g′ is about 48.8 cm s−2.
In figure 4, Q = 5.63 cm3 s−1 and g′ is about 98.8 cm s−2. The columns are: figure number; the
time after filling started (t); the radius at the onset of the jump (r1); the mean depth outside
the jump 〈h2〉 estimated from Q and t; the Froude number, Fr2 = Q2/(4π2r2

1g′〈h2〉3), based on
the depth 〈h2〉; the depth, h2, determined from the wavelength as in § 3.1 using (3); and the
Froude number, Fr2(λ), determined from (1). Gaps (−) occur where jumps are not undular, so
that λ cannot be estimated.

3. Theory and a model
3.1. Estimating h2

Suppose the jump occurs at a radius r1 beyond which the flow speed, U1, is uniform
through the depth, h2, of the lower layer and zero above. The depth h2 may be
estimated from the filling rate, the time since filling begins and the tank area beyond
the jump. However, since the radial flow speed in the region r > r1 beyond the jump
must tend to zero at the sidewalls of the tank, the pressure must increase radially, and
so must the depth of the lower layer. In quasi-steady conditions, the depth at the jump
at r1 is therefore probably less than 〈h2〉. The values of Fr2 ∝ 〈h2〉−3 in table 1 may
substantially underestimate the Froude number of the flow just downstream of the
jump. An assessment of the magnitude of the underestimate is given in Appendix B.

An alternative estimate of the depth h2 at the jump, r = r1, is available. With the
assumption that the flow in the lower layer is uniform and equal to U1 beyond the
transition at radius r1, we use the fact that waves are stationary to estimate the depth
of the layer, h2. The condition that the upstream phase speed of the waves is zero
gives a relation between the Froude number and kh2,

Fr2 ≡ U 2
1 /g′h2 = (tanh kh2)/kh2, (1)

where kh2 = 2πh2/λ, and λ is the wavelength ((A 5), Appendix A1). It follows that
Fr2 must be less than unity. Using Q =2πrh2U1, we can write (1) as

Q2/
(
4π2r2g′h3

2

)
= (tanh kh2)/kh2. (2)

If h2 does not change with radius, r , it follows that, since the right-hand side of (2)
decreases with increase in kh2, kh2 increases as r increases, and so the wavelength
must decrease with increasing radius, as observed.
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1 2
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(a)
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Figure 5. An example of an internal hydraulic jump around a upward-going jet of dyed
water as in figure 1(b) ascending to the surface of a 190 mm thick layer of saline water with
Q =0.484 cm3 s−1, Re = 154 and g′ = g(ρ2 − ρ1)/ρ1 ≈ 98 m s−2. The nozzle radius is 1 mm and
it is placed 5 mm below the surface at the centre of a circular tank of 32.5 cm radius. The
images are 4 cm square. The dark band from bottom right is the tube leading to the nozzle.
Photos are taken at times (a) 5 min, (b) 7 min, and (c) 9 min after filling through the nozzle
commenced, so that, based on the filling rate, the mean thickness of the upper layer, 〈h1〉, is
0.44, 0.61 and 0.79 mm, respectively.
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Figure 6. The radially spreading viscous layer. The boundary layers at the horizontal plane
and at the interface combine at a radius r0, beyond which there is a similarity solution for the
radial velocity and layer depth, h(r). The jump or transition occurs at radius r1, and beyond
this the flow, U1, is assumed to be uniform in depth. Flows induced in the upper layer are
relatively slow and have been disregarded.

Multiplying (2) by (kh2)
3 gives

x2tanh x = Φ, (3)

where Φ =2πQ2/(r2g′λ3) and x = kh2. The values of Q, r , g′ and λ contributing to Φ

can be determined from the experiments, so Φ , and hence x, can be estimated from (3)
at the mean radius r of a wave of length λ. The layer thickness, h2, is then h2 = λx/2π.
The estimate depends however on the assumption that the mean flow where the
waves occur is uniform through the layer and that curvature of the wave crests can
be neglected. The latter will be valid provided the wavelength is much less than the
radius at which the waves occur. The ratio of wavelength to radius in the experiments
is, however, typically 0.3, so the assumption is at best dubious. The effect of shear in the
layer may be assessed using the model described in Appendix A 2. The uncertainty in
the estimate of h2 depends on Φ . Typical values range from about 0.3 to 1.3, and values
of h2 may be in error by ±50 %. The comparison of theory and observation must be
viewed with this uncertainty in mind, as well as the effects of the other assumptions
made. We test the sensitivity of a model of the jump to estimates of h2 in § 4.

3.2. The viscous flow at r <r1

We suppose that the rapid shallow radial flow in the lower layer is strongly affected
by the viscous stresses on its boundaries at radii less than r1 at which a jump occurs,
but that in the slower flow at radii exceeding r1 viscosity is of less importance and the
flow can be regarded as inviscid and irrotational. Figure 6 is a sketch of the supposed
development of the flow with distance, r , from the location where the vertical jet meets
the horizontal plane. Following Watson (1964) we suppose the lower layer of density
ρ2 is of thickness h(r) at radius r from the nozzle as it approaches the jump. The
flow in the layers will be affected by the presence of viscous stresses at the underlying
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horizontal plane and at the interface between the layers. We shall neglect the effects
of diffusion of salt across the interface since the molecular diffusion coefficient, κS is
about 1.4 × 10−5 cm2 s−1, and is much less than the coefficient of molecular viscosity,
ν ≈ 10−2 cm2 s−1; over the radial distance taken for the flow to reach the transition,
the flow in the lower layer will affect that in the upper through viscous forces, but
the layers will remain almost uniform in density.

Details of the procedure used to estimate the flow in the lower layer are given
in Appendix C 1. The analysis supposes that very close to the nozzle the flow in
the lower layer is uniform and equal to U0, but with increasing radius the effects of
the viscous stresses at the horizontal lower boundary and at the interface with the
upper layer spread vertically, reducing the momentum of the flow. The effects extend
throughout the depth of the lower layer at a distance r0 from the nozzle when the
two boundary layers merge as sketched in figure 6. Beyond this radius a self-similar
solution of the form

u = U (r)f (z/h) (4)

is found, where U is the maximum horizontal speed in the layer and 0 � f � 1.
The non-dimensional function, f , satisfies the equation f ′′ = −3c2f 2/2 with a non-
dimensional constant c, and f (0) = 0 to satisfy the no-slip boundary condition at the
horizontal plane at z = 0. The maximum flow is at a level z/h = η∗ where f (η∗) = 1.
The solution for U is

U (r) = 2c2
1Q

2/[c2ν(r3 + l3)] (5)

and

h(r) = c2ν(r3 + l3)/[2Qc1r] (6)

where l is a length, and c and c1 are constants such that ((C 8) in Appendix C)

c ≈ 2.804 −
∫ f (1)

0

(1 − f 3)−1/2 df (7)

and (C9)

c1 ≈ c

[
1.725 −

∫ f (1)

0

f (1 − f 3)−1/2 df

]−1

. (8)

The maximum speed, U , decreases with r , and the layer thickness, h, decreases to a
minimum at r = 2−1/3l and then increases monotonically. The height at which the
flow reaches its maximum value is given by (C 7a):

η∗ ≈ 1.402c−1. (9)

3.3. The radius, r2, at the jump

Entrainment from the upper to the lower layer at the jump is disregarded, as is
mixing at the interface; the lower layer is assumed to maintain its uniform density
ρ2. Conservation of momentum at the transition is expressed as equality between the
net downstream force due to pressure and the rate of increase in the momentum at
the transition, with the addition of any momentum lost by friction on the bottom in
the transition region or lost through a flux of momentum downstream (as expressed
in (C 14) Appendix C 2). The latter may be a result of transport in interfacial waves.
Using (4)–(6) to describe the flow approaching the jump, the equations of conservation
of volume and momentum flux at the jump lead to an equation (C 19):

Y = Z, (10)
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where

Y = r1h
2
2g

′/(νπRe)2 + a2/(2π2r1h2) + M,

and

Z =
{
8πc3

1Re/(3c3[(r1/a)3 + (l/a)3])
}
[1 − f ′(1)/c]

+ g′a4c4[(r1/a)3 + (l/a)3]2}/
(
4π4r1ν

2c2
1Re4

)
,

provided that r1 > r0, where Re =Q/(πaν), M = 2r1a
2m/Q2 and ρ2m is the loss of

momentum flux at the jump as a consequence of viscous stress at the boundaries of
the moving layer and downstream radiation in the interfacial waves.

Watson finds that the radius, r0, at which the bottom boundary layer extends to the
top of a spreading single layer, is approximately 0.4621aRe1/3. Since in the two-layer
flow there are growing boundary layers at both the upper and lower boundaries,
a smaller value of r0 may be anticipated. The smallest observed value of r1 is
0.878aRe1/3, and we therefore assume that r1 >r0 and that (10) is valid. The terms r1,
h2, Re, g′ and a in (10) can all be estimated from the experiments. The constants c

(7), c1 (8) and f ′(1) = − c(1 − f (1)3)1/2 (C 6b), all depend only on f (1); the integrals
in the expressions for c and c1 can be evaluated numerically once a value for the
unknown, f (1), is specified. From (C13) we may write l/a = qRe1/3, where q is a
second unknown constant. The non-dimensionalized momentum loss, M , is likely to
be proportional to the square of the amplitude of the interfacial waves and to the
kinematic viscosity, but without further information we shall suppose it is constant.
The unknown quantities in (10) are therefore f (1), q and M . If they can be found,
(10) provides an equation from which, in principle, the radius, r1, at which the jump
occurs can be found provided some means of estimating h2 is available.

The above analysis depends on several approximations and assumptions about
the growth of the boundary layers and the nature of the transition (all described in
Appendix C), but given the generally favourable comparison between Watson’s theory
and his laboratory measurements of jumps in a single layer, it appears that the analysis
may provide a suitable framework within which to analyse the two-layer experiments.

4. Estimates of the model constants from the laboratory data
Empirical ‘best fit’ values for the three unknowns, f (1), q and M , are determined

by inserting a set of trial values into the expression (Y −Z) evaluated using data from
15 experiments in periods when undular jumps are observed. Data are taken at times
after the dense layer has spread as a density current to the container boundaries and
after the time at which any reflected disturbances have reached the nozzle location.
Each experiment provides between 1 and 4 sets of values of the measurable terms,
giving sets of values to optimise the solution of (10). The trial values that give the
minimum sum of (Y − Z)2 are taken as the best estimates of the unknowns.

Figure 7(a) shows Y plotted against Z with the best fit values of f (1) = 0.910,
q =0.840 and M =2.15 × 10−3, giving c = 1.754, c1 = 0.2319, f ′(1) = −0.870 when the
wavelength of the innermost internal waves is used in (3) to estimate h2. The data
from the experiments give 34 sets of measured values and collapse fairly well onto
the straight line, Y = Z, with increasing values of Y and Z as Re decreases and g′,
increases. The r.m.s. (root mean square) value of (Y − Z), a measure of the scatter of
the data about a linear fit, is equal to 1.34 × 10−3. There is no apparent effect of tank
shape or size; at the same value of a, Q and g′, waves of the same wavelength (and
therefore h2) are found at the same jump radius in the small pie dish and the 0.584 m
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Figure 7. The variation of Y and Z given by equation (10) with optimal values of f (1), q
and M given in the text with (a) h2 derived from (3) using the wavelength of the stationary
waves and (b) h2 derived from the filling rate, Q. The symbols correspond to different values
of Re and g′ as shown. ‘Worst case’ error bars are indicated for points with Re = 354. Errors
in Y arise mainly from possible uncertainty in the values of h2 in (a) (40%) and in r1 in (b)
(7%), whilst worst case errors in Z (20 %) are dominated by uncertainty in r1.
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square tank so h2, is independent of the tank dimensions. The height, η∗ = z/h, at
which the greatest velocity occurs in the thin radially spreading dense layer is given
by (9): η∗ ≈ 0.80.

The relatively small value of M indicates that, except at the higher values of Re,
the rate of loss in momentum flux through wave radiation or viscous stress is small.
In dimensional terms this flux is given by

ρ2m = 1.07 × 10−3ρ2Q
2/r1a

2. (11)

If this is due entirely to the waves, and if the wave stress is of order ρ2〈uw〉h2

(ρ2 times the vertically integrated mean product of the horizontal and vertical velocity
fluctuations), it follows that m =O(〈uw〉h2). Equation (11) then leads to values of
〈uw〉1/2 that are of the same magnitude as the vertically uniform speed U1 downstream
of the jump (e.g. 〈uw〉1/2/U1 ≈ 0.43 and 0.98 when Re = 233 and 1790, respectively).
Velocity fluctuations that are comparable to the mean flow are indicative of conditions
in which rotors may occur.

The collapse of the laboratory data using the determined values of the unknown
quantities onto a straight line appears to imply that numerical solution of (10)
provides a consistent model. However, in spite of evidence in the experiments to the
contrary, values of q = h2/h1 found using values of h1 given by (6) are, in many
cases, less than unity and Fr1 is sometimes less than unity. The mean estimate of q

is 0.830 and of Fr1 is 1.66 (but dominated by a single outlying value of 16.14, the
removal of which decreases Fr1 to 1.22). Whilst values of Fr1 < 1 may be possible as
argued in Appendix D, q < 1 appears unphysical. Moreover if h2 is determined from
the wavelength of the waves, (10) includes two ‘unknowns’, h2 and r1, and even with
the determined empirical values of f (1), q and M cannot alone provide a means of
predicting the radius, r1, of the jump.

The radial location of an undular jump must depend on the ‘external measures’,
a, Q (or Re), g′, ν, the tank geometry and the time, t , for which the tank has been
filled. We can estimate 〈h2〉 from Q, t and the tank dimensions, and use this in
the optimization of (10), together with the other values. Fits using data from the
small circular pie dish are generally poor, possibly because of the relatively rapid
deepening of the layer and the consequent rapid changes in the nature of the jump
and its location, but the collapse of data from the larger square tanks is better. The
best-fit values from eight experiments (24 sets of values) are f (1) = 0.950, q =0.980
and M = 1.05 × 103, giving c = 1.66, c1 = 0.2365, f ′(1) = −0.628 and η∗ ≈ 0.84. The fit
of Y to Z is shown in figure 7(b). The r.m.s. value of (Y − Z) is equal to 1.34 × 10−3,
coincidentally equal to the value for figure 6(a). Remarkably, the empirical values do
not differ greatly from those obtained from data with h2 derived from (3). Values of
q = 〈h2〉/h1 and Fr1 are shown in figure 8. There is considerable scatter and some
values of q and Fr1 are less than unity (again see Appendix D), but there is some
indication that Fr1 increases with q . Values of 〈uw〉1/2/U1 are similar to those found
using h2 derived from (3) (e.g. 〈uw〉1/2/U1 ≈ 0.44 and 1.03 when Re = 233 and 1790,
respectively), again favouring rotor formation.

5. Discussion and further experiments
5.1. Discussion

Circular internal jumps occur when a thin layer of fluid spreads radially beneath (or
above) a relatively deep layer of less (or more) dense, miscible fluid. In the case of
a less-dense layer spreading on the surface of a deep dense layer shown in figure 5,
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Figure 8. Values of the jump amplitude, q = 〈h2〉/h1, and the Froude number of the flow
approaching the jump, Fr1, derived from experimental data incorporated into the model
described in Appendix C 2. Symbols are as shown in figure 7(b). Error bars at q = Fr1 = 2 are
shown assuming no error in estimates of c and c1.

jumps are relatively unstable. This study has focused on the more stable jumps in
dense saline layers spreading on a horizontal surface beneath fresh water.

This method of producing internal jumps provides a relatively simple means of
studying their properties in closely controlled conditions. When first formed in a
container of limited extent, the jumps are undular in form. As the thickness of the
surrounding layer increases, the radial distance from the injection point at which jumps
occur decreases, and the jumps become more abrupt with evidence of turbulence.
The circumferences of the jumps observed during the transition from an undular and
laminar form to one that is abrupt and turbulent are sometimes indented by azimuthal
waves or cusp-like features with an appearance similar to the cusp/lobe structures
observed at the head of a density current (Simpson 1997). Rotors were not detected in
the experiments, but may have been present in the transition region. The absence of
surface tension demonstrates that it is not an essential factor in the formation of all
classes of circular hydraulic jumps, but viscosity does have an effect, at least on the
properties of the flow between the inlet and the jump. The variations and irregular
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flows observed in the presence of a free boundary in the inverted, less-stable case
(figure 5) suggests that viscosity may affect the stability of jumps.

Numerical solution of (10), the equation derived from the model, with the
empirically determined values for the unknown constants and the input of measured
values, offers a means to predict the approximate radius at which an undular jump
will occur. The model is unsatisfactory because no consideration is given to the
motion of the upper layer of density ρ1, a feature that should be addressed in a more
thorough investigation through which, for example, an analytical value of f (1) might
be derived and a more sophisticated model of the transition developed.

The presence of a pattern of circular internal waves, a circular undular jump, is
in contrast to the relatively abrupt circular jumps observed in single-layer flows. The
difference appears to be because, in the single layer, waves are affected by surface
tension. The group velocity of relatively long gravity waves observed in undular
bores in rivers is less than the phase speed; consequently energy is transmitted
downstream by the stationary waves. However, the group velocity of short two-
dimensional capillary–gravity waves, those of length less than 1.7 cm on a clean free
surface not affected by surface-active contaminants, exceeds the phase speed. If the
dynamics of the circular jump were controlled by short stationary waves – capillary
waves – their energy would be directed upstream, modifying the approaching flow as
noted by Craik et al. (1981).† Instead a finite-amplitude abrupt jump is formed. In
the two-layer flow, surface tension is absent and the group velocity of waves is less
than the phase speed, so the energy of stationary waves is transmitted downstream.
In this sense, although these arguments disregard the effects imposed by the radial
flow, the two-layer circular jump is more closely analogous to an undular bore in a
river than to a small-scale circular jump in a single layer.

Craik et al. measured the changing height of the water surface across circular
jumps in single-layer flows. The depth rises rapidly at the beginning of the jumps,
the slope of the water surface decreasing to zero over distances of typically 0.4 times
the radius of the jump. The equation of conservation of momentum in a jump of
finite width in a radial flow differs from that in channel flow, and may lead to a
critical Froude number that is less than unity, as explained in Appendix D. Bohr
et al. (1993) remark that radial momentum is not conserved, and that ‘even though
radial momentum is not conserved during the flow, it is still continuous across the’
(circular) ‘jump’, taken to be a flow discontinuity of zero width. But, as applied in
Appendix D, momentum is directional, whilst ‘radial momentum’ is not. In a more
general context, the analysis suggests that curvature of jumps, a feature common
in the natural environment, may change the conditions for transition in ways not
represented in two-dimensional jumps.

5.2. Experiments in continuous stratification

Two experiments were made, intended to test the conjecture expressed in § 1.3 that
stationary jumps may not occur in continuously stratified shear flows beneath a static
layer. A dense bottom layer with an approximate thickness of 3.6 mm was produced
by passing saline water through the nozzle for a short period into the 9.35 cm radius

† The capillary waves observed by Craik et al. (1981) upstream of the change in water level
identified as a jump appear to be akin to those formed in the ‘Fish-line problem’ (Lamb 1932,
para 272) or the parasitic capillaries found ahead of the crest of short surface gravity waves
(Longuet-Higgins 1992 Duncan et al. 1999), but seem to play, at most, only a minor part in the
dynamics of the jump.
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Figure 9(a–d). For caption see the facing page.
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(e)

(f )

(g)

Figure 9. Shadowgraph images in experiments with (left) two layers and (right) continuous
stratification both with Q =1.26 cm3 s−1, Re = 353 and g′ = 95.1 cm s−2, at the same times (a)
40 s, (b) 50 s, (c) 60 s, (d) 70 s, (e) 80 s, (f ) 90 s, and (g) 100 s, after filling commenced in
the 9.35 cm radius pie dish. The photographs are 7 cm × 7 cm. Lines from upper left to the
centre are the two sides of the filling tube leading to the nozzle. The offset of the nozzle in
the two-layer experiment is a result of the non-alignment of the light beam producing the
shadowgraph image. The black (left) or white (right) mark to the left of the nozzle is a hole
used for injecting a thin wire to which crystals of potassium permanganate are attached to
visualize the flow.

pie dish, already submerged in fresh water in the larger tank. The layer was left
to settle and diffuse for a period, t = 3.17 h, so forming a continuously stratified
layer beneath the fresh water. The thickness of the interface between the upper fresh
water layer and the saline layer after this time, t , is about (πκSt)

1/2, where κS is the
molecular diffusion coefficient of salt, about 1.4 × 10−5 cm2 s−1. The interface thickness
is therefore about 7.1 mm after 3.17 h, so producing a stratified layer reaching to the
bottom of the tank. A steady flow of saline water of the same density as before was
then commenced as in the experiments described in § 2 and with Re = 353, to produce
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a continuously stratified radial shear flow instead of the previous radial two-layer
flow. Shadowgraph was used as before to seek evidence of the formation of a circular
hydraulic jump.

Figure 9 is a comparison of shadowgraphs obtained in an earlier two-layer
experiment (at the left) and one of the present ‘stratified’ experiments (at the
right) at the same values of Q ( = 1.258 cm3 s−1), the same density of the saline
fluid (g′ = 95.1 cm s−2) and at the same times after the start of filling. In none of the
stratified experiments are stable laminar patterns of waves observed, and the diverging
flow becomes turbulent close to the injection point. Unlike the formation of waves
and the subsequent transition to irregular turbulent motion observed in the two-layer
experiments, in the stratified experiments there is relatively little change with time
in the appearance of the shadowgraph pattern surrounding the nozzle. At the stage
reached at (f) after the waves have disintegrated in the two-layer experiments and the
diverging flow has become turbulent close to the nozzle, the patterns in the two-layer
experiments are virtually identical to those of the ‘stratified’ experiments.

It is likely that with the removal of the large stabilizing density gradients of the
earlier two-layer experiments, the turbulence occurring in the diverging flow close
to its point of impact with the horizontal plane in the stratified experiments is a
result of shear-induced Kelvin–Helmholtz instability. At times following the onset
of mixing in the two-layer experiments, the production of fluid of intermediate
density and its intrusion along the interface towards the injection point may result
in conditions there that are similar to those in the stratified experiments. This
accounts for the similarity of the pattern at the stages shown in figure 9 (f, g). Such
changes in density cannot occur in the case of the single-layer circular hydraulic
jump.

In the ‘stratified’ experiments, there does, however, appear to be a stationary
transition or perhaps a rotor, albeit of a turbulent nature, at a radius similar to that
in the later stages of the earlier two-layer flow, suggesting that stationary transitions
may still occur in continuously stratified shear flows. Just as in Craik et al.’s (1981)
experiment, when stationary capillary waves cannot provide a means to transport
energy downstream from a jump and, instead of an undular jump, a jump forms
with a rotor and an abrupt finite change in level, so too in the stratified case (where
stationary waves are precluded but upstream-going waves may occur as explained in
§ 1.3) an abrupt and turbulent jump is found to form.

A possibly important control on upstream wave propagation results from the
change in the speed of the mean radial flow approaching the jump. An increase in
flow speed as radius decreases, e.g. as in (5), may prevent the upstream propagation
of internal waves from a jump. The effects of the divergent flow and viscosity are not
insignificant in the present experiments.

In view of their importance in geophysical flows of much greater scale, the
conditions in which well-defined jumps or stationary waves can occur in stratified
shear flows deserve further investigation.

The first experiments on the circular internal jumps were made in 1983 at the
Institute of Oceanographic Sciences with Paul Hutt, and even after a long space
of years S.A. T. is most grateful for his help. Further experiments were made by
I.K., and much of this was written or developed, at the 2007 GFD Summer School
at Woods Hole Oceanographic Institution. Experiments made by I.K. during the
Summer School are described in the 2007 Proceedings. We are grateful for Keith
Bradley’s help and to the organisers for inviting us to attend. I.K.’s work was partly



The circular internal hydraulic jump 121

supported by the Croatian Ministry of Science, Education and Sports under the
project “Numerical methods in geophysical models” (No. 037-1193086-2771).

Appendix A. Waves in two layers with uniform flow or shear in the lower layer
We take u =U + αz to represent shear in the lower layer of uniform density ρ2 and

thickness h, and assume the deep upper layer is at rest and of density ρ1. Assuming
potential flow in the upper layer and that the streamfunction in the lower layer
(supposed inviscid) satisfies Rayleigh’s equation (Drazin & Reid 1981, section 23),
then on matching the vertical velocity and pressure at a disturbed interface, z = h+η,
the equation for the phase speed, C, of small-amplitude interfacial waves in terms of
their wavenumber, k, is

(C − U − αh)2 + (C − U − αh)(Cρ1/ρ2 + αh/kh)tanh kh = (g′/k) tanh kh, (A 1)

where g′ = g(ρ2 − ρ1)/ρ2. If U = αh= 0, (A 1) reduces to the equation for interfacial
internal gravity waves:

C2[1 + (ρ1/ρ2)tanh kh] = (g′/k)tanh kh (A 2)

(Lamb 1932, para 231).

A.1. Uniform flow in the lower layer

If αh= 0, (A 1) reduces to

(C − U )2 + (C − U )(Cρ1/ρ2)tanh kh = (g′/k)tanh kh. (A 3)

For stationary waves of wavenumber k with zero wave speed, the flow speed, U , is
given by

U 2 = (g′/k)tanh kh; (A 4)

this is the speed of the waves (stationary in space) measured relative to U . (For long
waves, (A 4) gives U 2 = g′h, exactly equal to the speed of long-wave propagation if
the fluid is at rest with no shear at the interface, i.e. (A 2) with U = 0. For waves of
finite kh, however, (A 4) gives a speed different from the wave speed (A 2).)

Equation (A4) may be written as

Fr ≡ U 2/g′h = tanh kh/kh, (A 5)

and which must be less than unity; stationary waves can occur only if Fr < 1. In the
limit as kh tends to zero, (A 3) gives

(C − U )2 = g′h, (A 6)

giving the speed of long waves as C = U [1 ± (1/Fr)1/2]. If U > 0, waves can travel
with negative velocity and so contrary to the flow U only if Fr < 1.

A.2. Uniform shear in the lower layer

Suppose however that there is a shear in the lower layer. Putting U = 0 in (A 1), so
that the velocity, u =αz, satisfies the no-slip boundary condition at z = 0, we have

(C − αh)2 + (C − αh)(Cρ1/ρ2 + αh/kh)tanh kh = (g′/k)tanh kh. (A 7)

In the long-wave limit as kh tends to zero, this gives

C2 − αhC − g′h = 0. (A 8)
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The mean speed of the lower layer is 〈u〉 =αh/2, and if we write Fr = 〈u〉2/g′h, (A 8)
becomes

C2 − 2〈u〉C − 〈u〉2/Fr = 0. (A 9)

This gives C = 〈u〉[1 ± (1 + 1/Fr)1/2], so C < 0 or C > 〈u〉 =αh, the maximum flow
speed. Unlike the case described above with a uniform flow in the lower layer, the
speed of long waves lies outside the range (0 to αh) of u.

Differentiating (A 7) with respect to k, we find an equation for the group velocity,
Cg = ∂σ/∂k. In the limit as kh tends to zero, Cg = C, and long-wave energy travels at
the speed of propagation of the long waves.

A remarkable feature is that long waves can therefore propagate energy upstream
whatever the value of Fr.

Waves can however remain stationary in the flow. Using (A7), the condition for
stationary waves, C = 0, becomes

4〈u〉2 = (g′h)tanh kh/(kh − tanh kh). (A 10)

The corresponding Froude number, Fr ≡ 〈u〉2/(g′h) is equal to tanh kh/[4(kh −
tanh kh)]. This is continuous as kh increases, and tends to 3/(4k2h2) as kh tends
to zero and to zero as kh tends to infinity: stationary waves can be found for all
values of Fr .

With Q =2πrh〈u〉, (A 10) gives

x3tanh x/[4(x − tanh x)] = Φ, (A 11)

where Φ = 2πQ2/r2g′λ3 as in (3) and x = kh = 2πh/λ, so that, as in § 3.1, h can be
determined if the terms on the right-hand side of (A 11) are known. Equation (A 11)
leads to greater (or smaller) values of h than (3) if Φ > (or <) 0.827. If Φ = 0.5, ((3):
no shear) gives values of h that are 31 % greater than ((A 11); with shear), and if
Φ =1.5, (3) gives values of h that are 30 % less than (A 11).

Appendix B. Flow beyond the jump
Suppose that there is a steady potential inviscid flow in the lower layer of density

ρ2 at radii beyond that of the jump, r1. A solution for the velocity potential, φ, that
satisfies ∇2φ =0, is

φ = U1r1(z
2 − r2/2 + R2 log r)/

(
R2 − r2

1

)
. (B 1)

This satisfies the boundary conditions

u = ∂φ/∂r = U1 at r = r1, 0 � z � h′
2, (B 2)

where h′
2 is the value of h2 just downstream of the jump at r = r1, and

u = ∂φ/∂r = 0 at an outer boundary, r = R, (B 3)

assuming the boundary is circular and vertical, in addition to

w = ∂φ/∂z = 0 at z = 0. (B 4)

The velocity components are u = U1r1(R
2−r2)/[r(R2−r2

1 )], and w = 2U1r1z/(R
2−r2

1 ).
The radial velocity, u, differs from the inviscid solutions of Watson (1994) for flow
spreading radially from the nozzle into a region unlimited in horizontal dimension.

We suppose that the depth, h2, of the lower layer is much less than the radius of
the container, R, and it follows that u � w except within a distance of a few times



The circular internal hydraulic jump 123

the depth from the outer boundary. Supposing the pressure at r = r1, z = h′
2, is p0,

applying Bernoulli’s theorem in the lower layer, neglecting w in comparison with
u, time variations in U1 (valid if dU1/dt � U 2

1 /L where L is the tank width) and
equating the pressure at z = h2 to that in the stationary and hydrostatic overlying
layer, p0 − gρ1(h − h2), after some algebraic manipulation we obtain

h2 = h′
2 +

(
U 2

1 r2
1

)(
R4 − r2r2

1

)(
r2 − r2

1

)/[
2g′r2r2

1

(
R2 − r2

1

)2]
. (B 5)

If Fr ′
2 =U 2

1 /g′h′
2 is a Froude number based on the layer depth h′

2 we find

〈h2〉 =

∫ R

r1

h22πr dr
/[

π
(
R2 − r2

1

)]
= h′

2(1 + Fr ′
2Θ) (B 6)

where, if x0 = r1/R,

Θ =
(
2 − x2

0 + x4
0

)[
4
(
1 − x2

0

)2]
+ x2

0 log x0/
(
1 − x2

0

)3
. (B 7)

For small values of x0, as in the experiments, Θ ≈ 1
2

and 〈h2〉 ≈ h′
2(1 + Fr2/2). This

is less than 3h′
2/2, if Fr ′

2 < 1.
The mean value, 〈h2〉, of the layer depth beyond the jump estimated from the

inflow, Q, and time may exceed the layer depth just downstream of the jump, h′
2,

by a factor of up to 50 %, leading to estimates of Fr2 = Q2/(4π2r2
1g

′〈h2〉3) that are
as much as one-third of Fr ′

2. In practice the estimate gives, at best, an approximate
guide to the value of 〈h2〉 because the tank is not circular and the flow is not inviscid,
but this provides a rough measure of the substantial uncertainty involved in the use
of 〈h2〉 as the depth of the layer, h′

2, at the jump.

Appendix C. The spreading layer and the location of the jump
C.1. The viscosity-affected flow in the lower layer

Following Watson (1964) we suppose the lower layer is of density ρ2 and of thickness
h(r) at radius r from the nozzle. At small values of r , the flow, U0, from the nozzle
(of radius a) is undiminished, and

Q = πa2U0 = 2π rh U0, (C 1)

where Q is the flow rate, and so

rh = a2/2. (C 2)

We assume that the effects of viscosity and loss of momentum within the lower
layer resulting from the stress on the horizontal plane and at the interface between
the two layers spread vertically from the lower boundary and the interface into the
lower layer, eventually modifying the flow throughout the layer at some radius r0, as
sketched in figure 6. At greater radii the flow speed in the layer is assumed to be given
in a self-similar form, u(r, z) = U (r)f (η), where U is the maximum flow speed and f

is a function of η = z/h. Since the upper layer exerts a stress at the interface that acts
to retard the lower layer (or equivalently motion in the upper layer is driven by the
viscous drag of the moving lower layer) then f ′ = df/dη < 0 at z =h (i.e. f ′(1) < 0).
The maximum flow, U , is found in the lower layer at a level η = η∗ < 1 where f ′ = 0.
Furthermore 0 � f (1) � 1; the lower bound (zero) is found when the upper layer is
immobile, e.g. when its viscosity is relatively very large, and the upper bound (unity)
is when the upper layer is inviscid (and the solution becomes that considered by
Watson with zero stress at the upper boundary). In practice, the upper layer will have
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properties between these limits and we expect that f (1) exceeds zero but is less than
unity.

Following Watson, by continuity the volume flux in the lower layer is

Q = 2πr

∫ h(r)

0

u dz = 2πrUh

∫ 1

0

f (η) dη, (C 3)

and

rUh = c1Q, (C 4)

where c1 is a dimensionless constant, independent of r , and equal to 1/[2π
∫ 1

0
f (η) dη].

The vertical velocity, w = Uh ′ηf (η), is derived from div u = 0. Neglecting the
horizontal pressure variation in the lower layer, the equation of conservation of
horizontal momentum gives h2U ′f 2 = νf ′′, where ν is the viscosity of the lower layer.
This implies that for constant kinematic viscosity, ν, the product h2U ′ is a constant
which we choose as −3c2ν/2, where c is a non-dimensional constant, taken to be
positive. (The derivative of f decreases through the layer and so f ′′ < 0.) It follows
that

f ′′ = −3c2f 2/2. (C 5)

Integrating we find

f ′ = c(1 − f 3)1/2 if 0 � η � η∗, (C 6a)

so f ′ = c when η = 0 since f (0) = 0, and

f ′ = −c(1 − f 3)1/2 if η∗ � η � 1. (C 6b)

Integrating (C 6a) from η = 0(f = 0) to η∗(f = 1) we find

cη∗ =

∫ 1

0

(1 − f 3)−1/2 df ≈ 1.402 (C 7a)

(Watson’s equation (20)), whilst integration of (C 6b) gives

c(1 − η∗) =

∫ 1

f (1)

(1 − f 3)−1/2 df. (C 7b)

Adding these equations we obtain

c ≈ 2.804 −
∫ f (1)

0

(1 − f 3)−1/2 df. (C 8)

Noting that, for example, (C 6a) may be written as (1 − f 3)−1/2 df = cdη, multiplying
by f and integrating (C 6a) and (C 6b) we find

∫ 1

0

f dη = c−1

[∫ 1

0

f (1 − f 3)−1/2 df +

∫ 1

f (1)

f (1 − f 3)−1/2 df

]
,

≈ c−1[1.725 −
∫ f (1)

0

f (1 − f 3)−1/2 df ],
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since (as shown by Watson),
∫ 1

0
f (1 − f 3)−1/2 df ≈ 0.8625. Hence

c1 ≈ c

[
1.725 −

∫ f (1)

0

f (1 − f 3)−1/2 df

]−1

. (C 9)

From (C 4) and the equation h2U ′ = − 3c2ν/2, we find

U (r) = 2c2
1Q

2/[c2ν(r3 + l3)] (C 10)

and

h(r) = c2ν(r3 + l3)/[2Qc1r] (C 11)

where l is a constant length.
Like Watson, we assume that a boundary layer grows upwards from the plane z =0

into the layer flowing at speed U0 but also that a second layer grows downwards into
the lower layer from its upper boundary. The total extent of these layers at radius r

is proportional to (νt)1/2 where t is the time, r/U0. The boundary layers will extend
across the moving lower layer when (νr/U0)

1/2 is of order h, that is (using (C 1)
and (C 2)) at a radius, r0, proportional to aRe1/3, where Re = U0a/ν =Q/πνa is the
Reynolds number of the flow in the nozzle. At r = r0− (the limit as r0 is approached
from below), however, the maximum flow still (just) unaffected by the boundary layers
is U0, and matching to the similarity solution (C 10) at r = r0+, we find

U0 = 2c2
1Q

2
/[

c2ν
(
r3
0 + l3

)]
, (C 12)

which leads to

l3 = 2c2
1Q

2/c2νU0 − r3
0 = 2πc2

1a
3Re/c2 − r3

0 , (C 13)

and so l is also proportional to aRe1/3.

C.2. The location of the jump

Suppose that a hydraulic jump occurs at radius r1 >r0, where the similarity solution
is expected to hold. Supposing that the radial extent of the jump is small (a limitation
discussed in Appendix D) and that there is a layer of uniform velocity U1 and thickness
h2 downstream of the jump, conservation of momentum (the net downstream pressure
force leading to a change in momentum flux), gives

ρ2g
′(h2

1 − h2
2

)/
2 = ρ2U

2
1 h2 − ρ2

∫ h

0

u2 dz + ρ2m, (C 14)

at r = r1. Here g′ = g(ρ2 − ρ1)/ρ2, accounting for a hydrostatic pressure exerted by
the upper layer of density ρ1 on the lower layer. We include the term ρ2g

′h2
1/2

representing the pressure in the lower layer upstream of the jump, a term omitted
by Watson consistent with his assumption that h2

1/h2
2 � 1. The term ρ2m represents

the flux of momentum that is radiated downstream by internal waves or lost in the
transition by viscous stress at the boundaries of the layer. Using the equation of
continuity of flux, Q, in the layer downstream of the transition (C 14) gives

r1

(
h2

2 − h2
1

)
g′a2/Q2 + a2/(2π2r1h2) + M = (2r1a

2/Q2)

∫ h

0

u(r1, z)
2 dz, (C 15)

where

M = 2r1a
2m/Q2. (C 16)
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Figure 10. Notation for a two-layer transition of finite radial width, r2 − r1, within a radial
segment of angle 2δα. The height of the stippled interface above the bottom of the tank
at level z = 0 increases from h1 at r = r1 to h2 at r = r2, and the radial flow changes from u1

to u2.

When r > r0, the velocity u = Uf , and U and h are given by (C 10) and (C 11), so at
r = r1:∫ h

0

u(r1, z)
2 dz = U 2h

∫ 1

0

f 2dη =
{
2c3

1Q
3
/[

c2νr1

(
r3
1 + l3

)]} ∫ 1

0

f 2 dη. (C 17)

Using the equation of continuity of flux across the transition and the definition of
c1, we can write

r1h
2
1g

′a2/Q2 = {g′a4c4[(r1/a)3 + (l/a)3]2}/4π4r1ν
2c2

1Re4. (C 18)

Substituting these expressions, using Re =Q/πaν, and evaluating
∫ 1

0
f 2 dη using

(C 5), (C 15) leads to the equation

Y = Z, (C 19)

where

Y = r1h
2
2g

′/(πνRe)2 + a2/(2π2r1h2) + M,

and

Z = {8πc3
1Re/(3c3[(r1/a)3 + (l/a)3])}[1 − f ′(1)/c]

+ g′a4c4[(r1/a)3 + (l/a)3]2}/(4π4r1ν
2c2

1Re4),

provided r1 >r0.

Appendix D. Conservation laws in jumps of finite width in inviscid radial flows
Consider the outward radial flow in a layer of density ρ2 through a transition that

lies within a segment of angle 2δα from r1 to r2 about a direction, x, as shown in
figure 10, where the layer depth at r1 is h1 and at r2 is h2. The overlying layer is at rest
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and of density ρ1. If the pressure, p, is hydrostatic and equal to p0 at a height h2, then
to order δα, the outward pressure force in direction x at radius r1 is 2δαr1

∫
p dz from

z = 0 to z = h2, which is equal to 2δαr1[p0h2+gρ1(h2−h1)
2+gρ2h

2
1]. The corresponding

inward force at radius r2 is 2δαr2

∫
p dz from z = 0 to z = h2, which is equal to

2δαr2[p0h2+gρ2h
2
2]. An x–directed outward pressure force on the sides of the segment

equal to twice the double integral of the pressure from z = 0 to z = h2, and from r1 to r2,
times sin δα, gives a further force 2δα[p0h2(r2−r1)+gρ1h

2
2(r2−r1)/2+g(ρ2−ρ1)

∫
h2dr]

if δα � 1, where the integral is from r1 to r2 and where h(r) is the height of the interface
between r1 and r2. Summing these terms, the net outward force acting on fluid in the
segment is 2δαg(ρ2 − ρ1)[(r1h

2
1 − r2h

2
2)/2 +

∫
h2 dr].

(The last of these force terms is absent in parallel channel flows. If the pressure
forces on the sides of the segment shown in figure 10 are ignored, the pressure,
p0, at z = h2 leads to an x-directed pressure force, 2δαr1p0h2 at the inner radius,
r1, that is not balanced by the corresponding force, 2δαr2p0h2 at the outer radius,
r2, and leaves a term containing p0 in the expression for Fr1. This effect of a
finite width transition appears to have been overlooked in the transition in a single
layer where p0 is taken to be zero. In the expression for the work done by the
pressure the related terms are 2δαr1p0h1u1 at r1 and 2δαr2p0h2u2 at r2, and these are
equal because of the continuity of volume flux. There is no normal component of
velocity through the sides of the sector and the work done there by the pressure is
zero.)

If we neglect the entrainment of fluid from the upper layer into the lower, this net
outward force leads to a rate of change in the x-directed momentum of fluid passing
through the segment, equal to 2δα[ρ2r2h2u

2
2 − ρ2r1h1u

2
1], correct only to order δα

because of the spreading field of motion, where ui is the velocity supposed uniform
over the vertical sector normal to the flow at radius ri , i =1, 2. Equating the net
force and the rate of change of momentum in direction x (and, in the inviscid flow,
neglecting momentum loss through the stress on the lower boundary) gives

ρ2

(
r2h2u

2
2 − r1h1u

2
1

)
= g(ρ2 − ρ1)

[(
r1h

2
1 − r2h

2
2

)
+

∫ ∫
h2 dr

]/
2. (D 1)

Writing R = r2/r1 (a jump width parameter), q =h2/h1 (the jump amplitude),
y = h/h1, and x = r/r1, and using the continuity equation, Q =2πr1u1h1 = 2πr2u2h2,
(D 1) reduces to

Fr1 ≡ u2
1/g

′h1 = qR

[
Rq2 − 1 −

∫ R

1

y2 dx

]/
[2(qR − 1)], (D 2)

an equation for the Froude number, Fr1, at the transition in terms of possibly
measurable, but as yet unavailable, quantities, e.g. q , R and y, defining the transition’s
shape. If R =1, an abrupt jump, we recover the equation Fr1 = q(q +1)/2, familiar in
channel flows, but in a radial flow of one or two layers additional terms are present
in jumps of finite width when R =1.

The rate of loss of the radial flux of energy, 2πr[
∫

(ρu)2/2) u dz +
∫

pu dz +∫
(gρz)u dz], presents no problem similar to that of the (directional) momentum,

and is found to be

Eloss = 2π[ρ1u
3
1h1r1/2 − ρ2u

3
2h2r2/2 − u1h1r1g(ρ2 − ρ1)(h2 − h1)], (D 3)
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Figure 11. The relation between wave amplitude, q , and internal Froude number, Fr1.
Curves are labelled with values of the jump width parameter, R.

after use of the continuity equation. Substituting for q and R and putting ρ2 ≈ ρ1,
leads to

Eloss = πρ2u1h
2
1r1g

′{(u2
1/g

′h1)[1 − 1/(Rq)2] − 2(q − 1)}, (D 4)

which, with no supply of energy in the transition from r1 to r2, must be �0. We
therefore require that

Fr1[1 − 1/(Rq)2] − 2(q − 1) � 0, (D 5)

with Fr1 = u2
1/g

′h1, given by (D 2).
If R = 1 (i.e. an abrupt change in level or a very thin transition) (D 4) gives

Eloss/2π = [ρ2u1h1r1g
′/4q](q − 1)3, (D 6)

so, for a loss in energy flux, q � 1. This is the familiar result in single- or two-layer
channel flows. For a non-negative loss in energy flux, from (D6), q must be greater
than 1 and, from Fr1 = q(q + 1)/2, it follows that Fr1 � 1.

A radial flow with a transition of finite width does not always have a critical value,
Fr1 = 1. If, for example, h is continuous with a quadratic shape and with dh/dr =0 at
h =h2, corresponding approximately to the height profiles measured by Craik et al.

(1981); their figure 6), then
∫ R

1
y2 dx = (R − 1)[1 + 4(q − 1)/3 + 8(q − 1)2/15]. For

R > 1, values of Fr1 > 0 given by (D 2) that satisfy the condition (D5) lie on the pairs
of curves shown in figure 11. One set of curves (those on the right of the figure) have
q > 1 but with values of Fr1 that may be less than unity for the smaller values of q ,
whilst the other has q < 1 and Fr1 > 1.

It appears that finite width transitions can occur at values of Fr1 that are less than
unity, or at values of q < 1 (a reduction in the layer thickness), although their stability
and related physical existence have not been addressed and remain in doubt.
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