
Building a Search Engine Model with Morphological

Normalization Support

Jure Mijić1, Bojana Dalbelo Bašić1, Jan Šnajder1

1Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

{jure.mijic, bojana.dalbelo, jan.snajder}@fer.hr

Abstract. Searching a collection of doc-
uments can seem like an easy task, but
manipulating textual data can be difficult
because the data are mostly unstructured. We
undertook the task of building an effective
search engine for a collection of Croatian
legislative documents. The developed search
engine model supports multiple modules
for information retrieval. To improve the
effectiveness of the retrieval, we used a
morphological normalization module that uses
an inflectional lexicon automatically acquired
from a document corpus. As we do not have
a gold standard for our legislative document
collection, we evaluated our search engine
on three English test collections, explored the
effects of stemming, and compared the results
to the vector space model.

Keywords. Information need, Informa-
tion retrieval, Morphological normalization,
Search engine.

1. Introduction

The need for correct information is becom-
ing a part of everyday life, and, with the abun-
dance of information available, especially on
the Internet, satisfying that information need
has become a challenging task.

The benefits of using machine processing
for purposes of information retrieval are self-
evident. The recent increase in computer
power enables us to use more complex algo-
rithms and to process data faster than ever
before. The problem is, however, that algo-
rithms used in computer processing are often
low level in terms of understanding the data
they are processing; i.e., the meanings of the
words and the relations among words are un-

known. It is up to the programmer to de-
velop better algorithms that can represent the
data in a way that enables manipulation of
those data on a higher level. The form of the
user query can greatly influence the results of
the retrieval. The form of the user query can
greatly influence the results of the retrieval.
The same query can be formulated in many
different ways, so it is logical to expect that
different users will formulate different queries
for the same information need.

In Section 2, we will give a brief view of
the process of building an information retrieval
system and describe some systems that have
already been developed. The implementation
of our search engine is described in Section 3,
and the results of the evaluation are presented
in Section 4. Conclusions are given in Section
5.

2. Information retrieval systems

To overcome the technical difficulties of effi-
cient computer resource usage, the major fac-
tors in an effective information retrieval (IR)
system are the algorithms for information pro-
cessing. In general, information can be struc-
tured or unstructured. Here, we will limit
the field of information retrieval to the textual
data type, as we are building a search engine
for text documents. Most of the documents
are represented in some sort of marked-up for-
mat and are regarded as ”semi-structured”.
These documents are usually divided into sec-
tions, paragraphs, and the signature, and the
title of the document is almost always marked.
Documents can also be interlinked, as in the
case of web pages. This document link struc-
ture can also be exploited in the ranking of the
retrieval results. Our search engine is designed



for use in a limited document collection, so we
will not focus our research on web retrieval.

Documents are represented by document
features, and the most logical choice for fea-
tures are the words contained in the docu-
ments. Using the words as document features
results in a high dimensionality of the docu-
ment collection, as there are many words and
word forms, especially for morphologically rich
languages such as Croatian. The high dimen-
sionality can be reduced by word normaliza-
tion, i.e., lemmatization or stemming. Along
with the words themselves, some other word
features can be used for document representa-
tion, i.e., the part-of-speech tag of the word,
capitalization of the word, and position of the
word in the sentence. Sequences of characters
or character n-grams can also be used as docu-
ment features. The dimensionality when using
character n-grams depends on the length of the
n-grams, as there can be more character com-
binations in longer character sequences. The
logic behind character n-grams is that they en-
compass the roots of words and outnumber
the odd character combinations that appear
on word boundaries, such as commas, punc-
tuations, and other special characters. This
approach has its advantages; for instance, the
frequencies of n-grams that encompass typo-
graphic errors in the document are low com-
pared to the n-grams from correctly spelled
words, making the model more resilient to ty-
pographic errors. Another advantage is that
the model can eliminate language-dependent
features such as grammar for stemming, stop-
words, or even matters as simple as where to
break individual words. The disadvantage of
this model is the higher memory needs be-
cause of the higher number of n-grams. The
use of character n-grams has been explored for
the classification of textual documents [2] and
their use as document features showed simi-
lar classification performance to word features,
but at the cost of larger memory consumption.

The SMART system [7] was developed by
Gerard Salton and his students at Cornell Uni-
versity. The system uses a vector space model
for representing documents, and it performs
automatic indexing by removing stopwords,
stemming, and term weighting. Queries are
also converted into vectors and compared with

each document. The similarity measure of
query vector and document vector is used for
ranking. The system returns the top n doc-
uments, where n is a number defined by the
user.

The Indri retrieval system [8] was devel-
oped at the University of Massachusetts and
is based on inference networks. It combines
the advantages of the inference net framework
with the language modeling approach to re-
trieval. The Indri search engine is designed
to support complex queries and retrieval at
various levels of granularity (e.g., sentence,
passage, XML field, document, and multi-
document). The system is also designed to
support very large databases, optimized query
execution, and fast and concurrent indexing
and querying. The effectiveness of the sys-
tem was proven on the TREC Terabyte Tracks
[5, 9]. An Indri index is actually composed of
a set of smaller self-contained indexes. The
system is therefore able to evaluate a query
against many indexes simultaneously, and the
indexes do not need to reside on the same ma-
chine.

3. Our search engine model

Our goal is to develop an intelligent search
engine for a limited collection of legislative
documents. As we are planning to experiment
with various information extraction methods,
we decided to develop our own search engine
model instead of using existing software.

The document collection can be considered
small by today’s standards. The collection
currently consists of 10000 documents and will
eventually grow to about 15000 documents.
The collection contains legislative documents
of the Republic of Croatia written in Croat-
ian. All the documents have a similar struc-
ture, which consists of a title, introduction,
body, and signature. Furthermore, the body
is divided into articles and each article into
paragraphs. This document structure is use-
ful, as it can be exploited in the retrieval pro-
cedures. So far we have considered the title of
the document by assigning higher weights to
the terms of the document title. Legal doc-
uments also reference other documents from
the collection, and that document link struc-



ture can also be used to enhance the retrieval
results. The link structure of legal docu-
ments resembles a hierarchy, where documents
of law amendments reference the document of
that law. This structure is different from the
link structure of web documents, where there
are many more random document connections.
Web page links are based on the author’s opin-
ion on the value of that link to the given doc-
ument. This is what the PageRank algorithm
exploits, but that algorithm would not be very
useful in our case because the documents at
the top of the link hierarchy would always get
higher scores and the documents at the bottom
would not benefit at all because they have no
or few documents linked to them.

For the purpose of text processing, we use
the Text mining tools (TMT) library [1]. The
most basic text processing operation is the to-
kenization procedure, which is implemented
for use with the UTF-8 character set, which
we use for internal text representation. In-
put documents are in XML format, and some
characters can be encoded using XML entities,
so we added an additional procedure for con-
verting the character entities to their respec-
tive UTF-8 codes. We also use the procedures
of morphological normalization, as the Croat-
ian language is morphologically complex. The
normalization procedures are implemented us-
ing an inflectional lexicon acquired using an
innovative method [6]. The lexicon is auto-
matically acquired from a given document cor-
pus using the morphology description of the
Croatian language, i.e., a set of inflectional
rules. Unlike stemming, lexicon-based nor-
malization allows for precise normalization of
the inflectionally complex Croatian language.
The acquired lexicon is of large coverage (over
99%) and allows for good normalisation per-
formance ((the understemming index is less
than 7%, and the overstemming index is less
than 3%); cf. [6] for a detailed evaluation.
The use of morphological normalization for the
Croatian language, although based on a dif-
ferent approach, has already been applied in
one Croatian web search engine [3], and the
improvements of using normalization are sig-
nificant [4].

Generally, our search engine model can sup-
port multiple search engine implementations,

each with its own parameters. At the core
of every implementation is an index database,
containing all words found in the document
collection, along with their respective posi-
tions in the documents. The main part of
the index is a tree of a specified depth, where
each level of the tree branches according to
one character. As characters are represented
in the UTF-8 code page, the index can sup-
port words from multiple languages that may
contain special or language specific characters.
Additional data can also be added to the im-
plementation, i.e., a document-word matrix
for the vector space model. For the time
being, we have implemented a basic full-text
search module. A document collection index
database is built using an index builder tool,
which processes the documents from the col-
lection and stores the words and their respec-
tive positions in the documents. By using the
morphological normalization module, the in-
dex builder tool can add the normalized forms
of words instead of the original word forms.
Additionally, by specifying a stopwords file, we
can omit those words from the index database.
A summary of each document is also stored in
the index database, but in a compressed form.
The index database is saved to a file in binary
format and later loaded with the search en-
gine module. Serialization and deserialization
procedures used are also implemented in the
TMT library.

The input for our basic full-text search is a
simple search string containing the keywords
we want to search with. The search proce-
dure finds the locations of all the keywords
from the query, using the index database. The
documents are then ranked using a heuristic
algorithm that we implemented. The algo-
rithm gives higher scores to phrases containing
many different keywords from the query; i.e.,
longer phrases get higher scores. The score
for the particular phrase will be higher if the
phrase contains different keywords and if the
keywords are closer together; i.e., some other
words can be between the keywords. The or-
der of the keywords in the phrase is ignored.
At the end, scores of all the keywords and
phrases for each document are summed, and
a score is assigned for each document. This
algorithm is actually very intuitive, as the



user usually searches for a particular phrase
or phrases. Documents with longer phrases
will have higher rankings. The document score
will also be higher if it contains more keywords
and phrases, but a limit is necessary to avoid
higher ranking for very long documents. Ex-
act phrase matching is also supported; phrases
in the query must be marked with quotation
marks. In that case, the order of the key-
words in a phrase must match the order of
the keywords in the query. The search pro-
cedure returns documents ranked by the rele-
vance score. As some documents can be very
large, we could also try to find the minimal
part of the document that satisfies the infor-
mation need, for instance, an article or per-
haps even a paragraph, but we will leave that
feature to future implementations.

4. Experimental evaluation and dis-
cussion

Due to the time constraints for this paper,
we did not develop a gold standard for our leg-
islative document collection, and we also did
not find any other Croatian test collection that
could be used to evaluate the effects of mor-
phological normalization in the retrieval pro-
cess. For the evaluation of the ranking pro-
cedure, we used three English test collections
and explored the effects of stemming and the
removal of stopwords.

The test collections used were Medline,
CACM, and CISI developed for the SMART
system. Table 1 shows the information for
these three collections, including the number
of documents and the number of queries for
the collection. Table 2 shows more informa-
tion about the distribution of relevant docu-
ments for the queries, such as the average num-
ber of relevant documents for all queries. We
also added the median, minimum, and max-
imum numbers of relevant documents. For
the CACM and CISI collections, some of the
queries have a small number of relevant docu-
ments, and there are a few queries that have a
very high number of relevant documents. The
Medline collection, however, has a distribution
that is more dense and uniform.

We compared the performance of our search
engine (SE) against a vector space model that

Table 1: Number of documents and queries
for document collections

collection documents queries
Medline 1033 30
CACM 3204 52
CISI 1460 76

Table 2: Number of relevant documents per
query

collection average median min max
Medline 23 23 9 39
CACM 15 12 1 51
CISI 41 32 1 155

Figure 1: Recall

uses the bag-of-words (BOW) representation.
Evaluation was performed with three standard
measurements: recall, precision, and F1 mea-
sure. We also compared the influence of the re-
moval of stopwords and the use of stemming,
i.e., Porters stemming algorithm for the En-
glish language. In the vector space model,
all the stopwords were removed, but stemming
was not used.

A first look at the results reveals low lev-
els of recall and precision for all tests on both
the CACM and CISI collections. This could
be explained by the fact that half of the doc-
uments in the CACM collection have only the
title of the document, which is, in most cases,
very short. In the CISI collection, the queries
are mostly in the form of a question, and
some queries are quite long and complex. The
queries for the Medline collection, however, are
relatively short and full of relevant keywords,
and the documents are larger than the docu-
ments in the CACM and CISI collections.

From Fig. 1 we can see that the recall for
the vector space model is higher than the recall



Figure 2: Precision

Figure 3: F1 measure

of our search engine, i.e., 0.63 for the vector
space model versus 0.58 as the best result of
our search engine. The reason for this is that
the vector space model ranks the document
based on the similarity of the query vector and
the document vector in the vector space. The
document vectors in the vector space can be
similar to the query vector not only by the
keywords from the query but also by other
features. This means that the documents re-
trieved in the search results do not have to
contain the keywords from the query but that
they could contain other words that have sim-
ilar meanings to some of the keywords.

The downside of the vector space model is
the lower precision because the keywords from
the query can have different semantic mean-
ings. The precision for the vector space model
is 0.28, while the best case precision of our
search engine is 0.34. Fig. 2 shows that the
drop in precision is more pronounced for the
vector space model, so the F1 measure is lower
than the best result of our search engine.

The removal of stopwords and the use of
stemming can give different results for differ-
ent collections. We compared their use with
our search engine. In Fig. 1 and Fig. 2, we can
see that the removal of stopwords increased
both recall and precision on all collections; i.e.,

on the Medline collection recall increased from
0.4 to 0.57 and precision increased from 0.23 to
0.34. This was expected because stopwords do
not carry any semantical meaning. For the use
of stemming, the results on the Medline col-
lection indicate that it tends to increase recall
at the cost of precision; i.e., recall increased
from 0.57 to 0.59, and precision decreased from
0.34 to 0.29. On other collections, the differ-
ence is not significant. This is explained by
the fact that some words of different meanings
are reduced to the same stem; thus, more doc-
uments will be returned. The larger number
of documents returned by the search engine
contributes to the increase of recall, but some
documents can be returned only because they
contain some words that have the same stem
as the words from the query even though they
have totally different meanings and contexts.
The decrease of the precision for the Medline
collection was significantly higher than the in-
crease of recall, which is visible by the F1
measure in Fig. 3. The F1 measure shows
a good balance between precision and recall,
and the results show better performance with
the removal of stopwords. Slightly better per-
formance was achieved with the use of stem-
ming, but only on the Medline collection. We
expect that the use of morphological normal-
ization would yield significantly better results
for a Croatian document collection.

5. Conclusion

We have developed a search engine model
and implemented a simple full-text search al-
gorithm. The process of indexing uses the pro-
cedures of stopword removal and morphologi-
cal normalization for the Croatian language.
As we did not have a Croatian test collec-
tion, the evaluation was done on three English
test collections, and the results indicate bet-
ter performance than the vector space model
using the bag-of-words representation. The re-
moval of stopwords proved to enhance the re-
trieval results, while the use of stemming did
not yield significantly better results. The use
of morphological normalization for the Croat-
ian language could prove to be more useful, as
the Croatian language is more morphologically
complex than the English language.



Further development will be in the areas of
information extraction, and methods such as
named entity recognition and coreference res-
olution will be researched and evaluated. Tak-
ing advantage of the document structure and
with the use query expansion, we hope to fur-
ther refine the search procedure.

Acknowledgments

This work has been jointly supported by
the Ministry of Science, Education and Sports,
Republic of Croatia and the Government of
Flanders under the grant No. 036-1300646-
1986 and KRO/009/06 (CADIAL).

References

[1] Artur Šilić, Frane Šarić, Bojana Dalbelo
Bašić, and Jan Šnajder. TMT: Object-
oriented text classification library. In ITI
2007 Proceedings of the 29th International
Conference on INFORMATION TECH-
NOLOGY INTERFACES, pages 559–566,
2007.

[2] Artur Šilić, Jean-Hugues Chauchat, Bo-
jana Dalbelo Bašić, and Annie Morin. N-
grams and morphological normalization in
text classification: A comparison on a
croatian-english parallel corpus. In Lecture
Notes in Artificial Intelligence vol. 4874,
Progress in Artificial Intelligence: 13th In-
ternational Conference EPIA 2007; Pro-
ceedings, pages 671–682, 2007.

[3] Damir Krstinić and Ivan Slapničar. Web
indexing and search with local language
support. In Proceedings of SoftCOM 2003,
pages 488–492, 2003.

[4] Damir Krstinić and Ivan Slapničar. Im-
proving text search performance with
grammar support. In Workshop on Infor-
mation and Communication Technologies,
pages 71–75, 2004.

[5] Donald Metzler, Trevor Strohman, and
W. Bruce Croft. Indri at TREC 2006:
Lessons learned from three terabyte tracks.
2006. In online Proceedings of Text RE-
trieval Conference.

[6] Jan Šnajder, Bojana Dalbelo Bašić, and
Marko Tadić. Automatic acquisition of
inflectional lexica for morphological nor-
malisation. Information Processing &
Management, 2008. In press. DOI:
10.1016/j.ipm.2008.03.006.

[7] G. Salton. The SMART Retrieval System–
Experiments in Automatic Document Pro-
cessing. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1971.

[8] Trevor Strohman, Donald Metzler,
Howard Turtle, and W. Bruce Croft.
Indri: A language model-based search
engine for complex queries, 2005. poster
presentation.

[9] Xing Yi and James Allan. Indri at TREC
2007: Million query (1mq) track. NIST,
2007.


