
 Abstract—This paper presents the architecture and
characteristics of a memory database intended to be used as a
cache engine for web applications. Primary goals of this database
are speed and efficiency while running on SMP systems with
several CPU cores (four and more). A secondary goal is the
support for simple metadata structures associated with cached
data that can aid in efficient use of the cache. Due to these goals,
some data structures and algorithms normally associated with
this field of computing needed to be adapted to the new
environment. 

Index Terms—web cache, cache database, cache daemon,
memory database, SMP, SMT, concurrency

I.    INTRODUCTION

e observe that, as the number of web applications
created in scripting languages and rapid prototyping

frameworks continues to grow, the importance of off-
application cache engines is rapidly increasing [1]. Our own
experiences in building high-performance web applications has
yielded an outline of a specification for a cache engine that
would be best suited for dynamic web applications written in
an inherently stateless environment like the PHP language and
framework1. Finding no Open Source solutions that would
satisfy this specification, we have created our own.

W

II.    SPECIFICATION

The basic form for an addressable database is a store of key-
value pairs (a dictionary), where both the key and the value are
more or less opaque binary strings. The keys are treated as
addresses by which the values are stored and accessed.
Because of the simplicity of this model, it can be implemented
efficiently, and it's often used for fast cache databases. The
first point of our specification is thatthe cache daemon will
implement key-value storage.

However, key-value databases can be limiting and
inflexible. In our experience one of the most valuable features


1Because of the stateless nature of the HTTP, most languages and
frameworks widely used to build web applications are stateless, with various
workarounds like HTTP cookies and server-side sessions that are more-or-less
integrated into frameworks. 
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a cache database could have is the ability to group cached keys
by some criterion, so multiple keys belonging to the same
group can be fetched and expired together, saving
communication round-trips and removing grouping logic from
the application. To make the cache database more versatile,
the cache daemon will implement simple metadata for cached
records in the form of typed numeric tags.

Today's pervasiveness of multi-core CPUs and servers with
multiple CPU sockets has results in a significantly different
environment than what was common when single-core single-
CPU computers were dominant. Algorithms and structures that
were efficient in the old environment are sometimes
suboptimal in the new. Thus,the cache daemon will be
optimized in its architecture and algorithms for multi-
processor servers with symmetric multi-processing (SMP).

Finally, because of the many operating systems and
environments available today,the cache daemon will be
written according to the POSIX specification and usable on
multiple platforms.

A.    Rationale and discussion

Cache databases should be fast. The primary purpose of this
project was to create a cache database for use in web
applications written in relatively slow languages and
frameworks such as PHP, Python and Ruby. The common way
of using cache databases in web applications is for storing
results of complex calculations, both internal (such as
generating HTML content) and external (such as from SQL
databases). The usage of dedicated cache databases pays offif
the cost of storing (and especially retrieving) data to (and
from) the cache database is lower than the cost of performing
the operation that generates the cached data. This cost might
be in IO and memory allocation but we observe that the more
likely cost is in CPU load. Caching often-generated data
instead of generating it repeatedly (which is a common case in
web applications, where the same content is presented to a
large number of users) can dramatically improve the
application's performance.

Though they are efficient, we have observed that pure key-
value cache databases face a problem when the application
needs to atomically retrieve or expire multiple records at once.
While this can be solved by keeping track of groups of records
in the application or (to a lesser extent) folding group
qualifiers into key names, we have observed that the added
complexity of bookkeeping this information in a slow
language (e.g. PHP) distracts from the simplicity of the cache
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engine and can even lead to slowdowns. Thus we added the
requirement for metadata in the form of typed numeric "tags"
which can be queried. Adding tags to key-value pairs would
enable the application to off-load group operations to the
cache daemon where the data is stored.

With the recent trend of increasing the number of CPU
cores in computers, especially with multi-core CPUs [10], we
decided the cache daemon must be designed from the start to
make use of multiprocessing capabilities. The project is to
explore efficient algorithms that should be employed to
achieve the best performance on servers with 4 and more CPU
cores. Due to the read-mostly nature of its purpose, the cache
database should never allow readers (clients that only fetch
data) to block other readers.

Multi-platform usability is non-critical, it is an added bonus
that will make the result of the project usable for many more
users.

III.    IMPLEMENTATION OVERVIEW

We have implemented the cache daemon in the C
programming language, using only the standard or widespread
library functions to increase its portability on POSIX-like
operating systems. POSIX Threads (pthreads) were used to
achieve concurrency on multi-processor hardware.

The deamon can be roughly divided into three modules:
network interface, worker threads and data storage. The
following sections will describe the implementation details of
each of the modules.

A.    Network interface

The network interface module is responsible for accepting
and processing commands from clients. It uses the standard
BSD "sockets" API in non-blocking mode. By default, the
daemon creates both a "Local Unix" socket and a TCP socket.
The network interface is run in the starting thread of the
process and handles all incoming data asynchronously,
dispatching complete requests to worker threads.

The network protocol (for both "Local Unix" and TCP
connections) is binary, designed to minimize protocol parsing
and the number of system calls necessary to process a request.

B.    Worker threads

The daemon implements a pool of worker threads which
accept requests from the network code, parse them and execute
them. The threads communicate with the network interface
using a protected (thread-safe) job queue. The number of
threads is adjustable via command-line arguments. This feature
includes a special support for "threadless" operation, in which
the network interface calls the protocol parser as a function
call in the same thread, eliminating synchronization overheads.

C.    Data storage

Data storage is the most important part of the cache daemon
as it has the biggest influence on its performance and

capabilities. There are two large data structures implemented
in the cache daemon.

The first is a hash table of static size whose elements
(buckets) are roots of red-black trees which contain key-value
pairs. These elements are protected by reader-writer locks
(also called "shared-exclusive" locks). The hash table is
populated by hashing the key portion of the pair. This mixing
of data structures ensures a very high level of concurrency in
accessing the data. Reader-writer locks per hash buckets allow
for the highly desirable behaviour that readers (clients that
only read data) never block other readers, greatly increasing
performance for usual cache usage. The intention behind the
design of this data structure was that, using a reasonably well
distributed hash function, high concurrency of writers canalso
be achieved (up to the number of hash buckets). An illustration
of the data storage organisation is presented in Fig. 1.

Fig. 1. Illustration of the key-value data structure used asthe primary data
storage pool

The second big data structure indexes the metadata tags for
key-value records. It is a red-black tree of tag types (an integer
value) whose elements are again red-black trees containingtag
data (also an integer value) with pointers to the key-value
records to which they are attached. The purpose of this
organization is to enable performing queries on the data tags of
the form "find all records of the given tag type" and "find all
records of the given type and whose tag data conforms to a
simple numerical comparison operation (lesser than, greater
then)". The tree of data types is protected by a reader-writer
lock and each of the tag data trees is protected by its own
reader-writer lock, as illustrated in Fig. 2. Again, readers never
block other readers and locking for write operations is
localised in a way that allows concurrent access for tag
queries.
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Fig. 2.  Illustration of the tag tree structure

Records without metadata tags don't have any influence on
or connection with the tag trees.

D.    Rationale and discussion

We chose to implement both asynchronous network access
and multithreading to achieve the maximum performance for
the cache daemon [2]. This model is a hybrid of pure multi-
process architecture (MP) and the even-driven architecture,
and is sometimes calledasymmetric multi-process event-
driven (AMPED) [3]. In it, we dedicate a thread to network IO
and accepting new connections. This model has been explored
in part in [13], with the difference that our focus is on
maximizing performed operations per second instead of
network bandwidth. Our implementation tries hard to avoid
unnecessary system calls, context switches and memory
reallocation [11] [12]. The implementation has avoided most
of protocol parsing overheads by using a binary protocol
which includes data structure sizes and count fields in
command packet headers.

Since the number of clients in the intended usage (web
cache daemon) is relatively low (in the order of hundreds), we
have avoided explicit connection scheduling described in [14]-
[16].

We have opted for a thread-pool design (in which a fixed
number of worker threads perform protocol parsing and data
operations) to allow the administrator to tune the number of
worker threads (via command line arguments) and thus the
acceptable CPU load on the server. We have also implemented
a special "threadless" mode in which there are no worker
threads, but the network code makes a direct function call into
the protocol parser, effectively making the daemonsingle
process event driven(SPED). This mode can not make use of
multiple CPUs, but is included for comparison with the other
model.

As discussed in [7] and [9], the use of multi-processing and
the relatively high standards we have set for concurrency of
the requests have resulted in a need for careful choice of the
structures and algorithms used for data storage. Traditional
structures and algorithms used in caches, such as LRU and
Splay trees [4], are not directly usable in high-concurrency
environments. LRU and its derivatives need to maintain a
global queue of objects, the maintenance of which needs to
happen on every read access to a tracked object, which
effectively serializes read operations. Splay trees radically

change with every access and thus need to be exclusively
locked for every access, serializing both readers and writers
(much more seriously than LRU).

In order to maximize concurrency (minimize exclusive
locking) and to limit the in-memory working set used during
transactions (as discussed in [11]), we have chosen to use a
combination of data structures, specifically a hash table and
binary search trees, for the principal data storage structure.
Each bucket of the hash table contains one binary search tree
holding elements that hash to the bucket and a shared-
exclusive locking object (pthread rwlock), thus setting a hard
limit to the granularity of concurrency: write operations (and
other operations requiring exclusive access to data)
exclusively lock at most one bucket (one binary tree). Read
operations acquire shared locks and do not block one another.
The hash table is the principal source of writer concurrency.
Given an uniform distribution of the hash function and
significantly more hash buckets than there are worker threads
(e.g. 256 vs. 4), the probability of threads blocking on data
access is negligibly small, which is confirmed by our
simulations. To increase overall performance and reduce the
total number of locks, the size of the hash table is determined
and fixed at program start and the table itself is not protected
by locks. The garbage collector (which is implemented naively
instead of a LRU-like mechanism) operates when the exclusive
lock is already acquired (probabilistically, during write
operations) and operates per hash-bucket. The consequenceof
operating per hash-bucket is a lower flexibility and accuracy in
keeping track of the total size of allocated memory, and
memory limits are forced to become per-bucket instead of per
entire data pool. 

The metadata tags structures design was driven by the same
concerns, but also with the need to make certain query
operations efficient (ranged comparison and grouping, i.e.
less-than or greater-than). We have decided to allow the
flexibility of queries on both thetype and thevalue parts of
metadata tags, and thus we implemented binary trees which are
effective for this purpose.

IV.    SIMULATIONS

To aid in understanding of the performance and behaviour
of the key-value store (the hash table containing binary search
trees), we have created a GPSS simulation. The simulation
models the behaviour of the system with a tunable number of
worker threads and hash buckets. The simulated parts are: a
task generator, worker threads, lock acquisition and release
according topthread rwlocksemantics (with increased writer
priority to avoid writer starvation) and the hash buckets. The
task generator attempts to saturate the system. The timings
used in the model are approximate and thus we're only
interested in trends and proportions in the results. Fig. 3,4 and
5 illustrate the percentage of "fast" lock acquisitions from the
simulations, where "fast" is either uncontested lock acquisition
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or contested where total time spent waiting on a lock is
deemed insignificant (less than 5% of average time spent
holding the lock i.e. processing the task). Graphs are plotted
with the number of hash buckets on the X-axis and a
percentage of fast lock acquisitions on the Y-axis. Results
cover the timings for both shared locks and exclusive locks,
obtained during same simulations. The simulations were run
for two cases: with 64 worker threads (which could today
realistically be run on products such as the UltraSPARC T2
from Sun Microsystems [5]) and with 8 worker threads (which
can be run on readily available servers on the common x86
platform [6] [10]). Individual figures describe the system
behaviour with a varied ratio of reader and writer tasks.

Fig. 3.  Cache behaviour with 90% readers and 10% writers

Predictably, Fig 3. shows how a high ratio of hash buckets
to threads makes almost all lock acquisitions fast. 

Fig. 4.  Cache behaviour with 80% readers and 20% writers

Trends in the simulated system continue in Fig. 4 with
expected effects of having a larger number of exclusive locks
in the system. We observe that this load marks the boundary
where having the same number of hash buckets and worker
threads makes 90% of shared lock acquisitions fast.

Fig. 5.  Cache behaviour with 50% readers and 50% writers

In the situation presented in Fig. 5 the abundance of
exclusive accesses (locks) in the system introduces significant
increases in time spent waiting for hash bucket locks. Both
kinds of locks are acquired with noticeable delays and the
number of fast lock acquisitions falls appropriately.

The simulation results emphasise the lock contention,
showing that equal relative performance can be achieved with
the same ratio of worker threads and hash table buckets, and
show an optimistic picture when the number of hash buckets is
high. From these results, we have set the default number of
buckets used by the program to 256, as that is clearly adequate
for today's hardware. The graphs do not show the number of
tasks dropped by the worker threads due to timeouts
(simulated by the length of the queue in the task generator).
Both types of simulated systems were subjected to the same
load and the length of the task queue in systems with 8 worker
threads was from 1.5 to 13 times as large as the same length in
systems with 64 worker threads. This, coupled with simulated
inefficiencies (additional delays) when lock contention is high
between worker threads can have the effect of favouring
systems with a lower number of worker threads (lock
acquisition is faster because the contention is lower, but on the
other hand less actual work is being done).

V.    EXPERIMENTAL RESULTS

As this is a work in progress, we have performed only
preliminary measurements of system performance and
behaviour (of the key-value data store), on a limited variety of
hardware. 

To discover the impact of thread synchronization primitives,
we benchmarked the program's performance on a single-CPU
system with Pentium M @ 1.5 GHz, running FreeBSD 7.0,
with both the daemon and the client on the same system,
communicating via Unix Local sockets. As this is a single-
CPU system, we present the results of measurements in
"threadless" mode and with a single worker thread, to illustrate
the tradeoffs present in the chosen architecture.
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Fig. 6.  Tradeoffs of multi-threading

Fig. 6 shows that the best option for single-CPU systems is
the "threadless" mode (with a minimum 25% performance
edge), in which the daemon degenerates into SPED-like
behaviour. The costs of managing the thread-safe queue of
tasks and the context switches involved in handing off the
tasks from the network thread to the worker thread is high
enough to result in noticeable slowdowns. The results lead us
to conclude that in case of "Null transactions" (which are
complete transactions, only without a payload command),
these costs are almost the same as the processing time required
for processing the transactions themselves.

Another type of benchmark was performed to explore the
limits of performance of the cache daemon in its current
implementation. These benchmarks use a mix of read and
write operations (90% reads, 10% writes) on a precomputed
data set of 30,000 records with size of 1 KB +/- 500 bytes,
with a varied number of simultaneous clients.

TABLE I
BENCHMARK RESULTS OF THE MEMORY CACHE SERVER ON 

VARIOUS SYSTEMS AND LOADS

System No. clients Ops / sec.

AMD Athlon 64 @ 1.8 GHz (32-bit),  
2 core, FreeBSD 7.0,

2 worker threads, Local Sockets

10 71,100

40 72,250

Intel Core 2 Duo @ 1.8 GHz (32-bit), 
2 core, Linux 2.6.22, 2 worker threads,

Local Sockets

10 75,000

40 79,700

Two Intel Xeon 5320, 1.9 GHz (32-bit), 
4 core systems, FreeBSD 7.0, 4 worker
threads, Remote TCP (gigabit Ethernet)

10 95,150

40 113,650

The results presented in Table 1 are promising and adequate
for many "real-world" purposes, however we believe that there
is room for improvement and that testing on faster hardware
with more CPU cores may yield information about possible
areas of improvement in performance and scalability (whichis
on our future research agenda).

We have performed a preliminary comparison of our
memory cache server to an existing solution, Memcached
1.2.1, used by many existing high-performance web sites [1]
[8], with the same data set as used for results in Table 1 and on
the system from the first row in the table.

TABLE II
BENCHMARK RESULTS OF OUR MEMORY CACHE SERVER 

COMPARED TO MEMCACHED

No. Clients Ops / sec.

Our cache server, 2 worker threads 10 71,100

Memcached, threadless 10 35,150

We attribute the differences in performance presented in
Table 2 to the inefficient text network protocol used by
Memcached and a design that doesn't scale well to multi-CPU
systems.

VI.    CONCLUSION

This paper presents the design and implementation of a
high-performance memory cache database server. In its
creation we have designed many optimizations, including data
structures permitting highly concurrent operations, multi-
threaded core based on the thread-pool model and an
optimized network communication model. We have analysed
and simulated the designed structures and algorithms, adapted
and implemented it, and performed benchmarks of the
resulting server program.

The intended usage for this server is as an external cache
database for web applications, and preliminary analysis ofits
performance and behaviour suggests that the current
implementation of the server is sufficient for this purpose. 

The result of this project is a directly usable product which
will soon be implemented in our Faculty's web applications.
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