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Abstract—This paper presents the architecture and a cache database could have is the ability to group cached key
characteristics of a memory database intended to be used as apy some criterion, so multiple keys belonging to the same
cache engine for web applications. Primary goals of this dabase group can be fetched and expired together, saving
are speed and efficiency while running on SMP systems with o mnication round-trips and removing grouping logiarro
several CPU cores (four and more). A secondary goal is the - .

the application. To make the cache database more versatile,

support for simple metadata structures associated with cdwed h he d il impl imol d f hed
data that can aid in efficient use of the cache. Due to these g3, the cache daemon will implement simple metadata for cache

some data structures and algorithms normally associated wi records in the form of typed num.eric tags. _
this field of computing needed to be adapted to the new Today's pervasiveness of multi-core CPUs and servers with

environment. multiple CPU sockets has results in a significantly differe
environment than what was common when single-core single-
Index Terms—web cache, cache database, cache daemoncpy computers were dominant. Algorithms and structures tha
memory database, SMP, SMT, concurrency were efficient in the old environment are sometimes
suboptimal in the new. Thusthe cache daemon will be
optimized in its architecture and algorithms for multi-
processor servers with symmetric multi-process8igR).
We observe that, as the number of web appIications,:ina”y’ because of the many operating systems and
created in scripting languages and rapid prototypinghyironments available todaythe cache daemon will be

frameworks continues to grow, the importance of offyitten according to the POSIX specification and usable on
application cache engines is rapidly increasing [1]. Ounowyytiple platforms.

experiences in building high-performance web applicatioas _ ) )

yielded an outline of a specification for a cache engine th&t Rationale and discussion

would be best suited for dynamic web applications written in Cache databases should be fast. The primary purpose of this
an inherently stateless environment like the PHP languade #@roject was to create a cache database for use in web
frameworR. Finding no Open Source solutions that woul@pplications written in relatively slow languages and

I.  INTRODUCTION

satisfy this specification, we have created our.own frameworks such as PHP, Python and Ruby. The common way
of using cache databases in web applications is for storing
II.  SeECIFICATION results of complex calculations, both internal (such as

The basic form for an addressable database is a store of K&§P€rating HTML content) and external (such as from SQL
value pairs (a dictionary), where both the key and the vatae 4latabases). The usage of dedicated cache databases pidys off

more or less opaque binary strings. The keys are treatedtR@ cost of storing (and especially retrieving) data to (and
addresses by which the values are stored and acces&&in) the cache database is lower than the cost of performing
Because of the simplicity of this model, it can be implemdntéhe operation that generates the cached data. This cost migh
efficiently, and it's often used for fast cache databasé® Tbe in IO and memory allocation but we observe that the more
first point of our specification is thaihe cache daemon will likely cost is in CPU load. Caching often-generated data
implement key-value storage instead of generating it repeatedly (which is a common aase i

However, key-value databases can be limiting angeb applications, where the same content is presented to a
inflexible. In our experience one of the most valuable fezgu large number of users) can dramatically improve the
- application's performance.

'Because of the stateless nature of the HTTP, most languages a Though they are efficient, we have observed that pure key-
frameworks Wi_dely used to byild web applicqtions are stael with various value cache databases face a problem when the application
workarounds like HTTP cookies and server-side sessiortsiteanore-or-less . . . .
integrated into frameworks. needs to atomically retrieve or expire multiple recordsraten
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engine and can even lead to slowdowns. Thus we added tagabilities. There are two large data structures implésten
requirement for metadata in the form of typed numeric "tagsi the cache daemon.
which can be queried. Adding tags to key-value pairs would The first is a hash table of static size whose elements
enable the application to off-load group operations to tibuckets) are roots of red-black trees which contain kdyeva
cache daemon where the data is stored. pairs. These elements are protected by reader-writer locks
With the recent trend of increasing the number of CP(also called "shared-exclusive" locks). The hash table is
cores in computers, especially with multi-core CPUs [10§, wpopulated by hashing the key portion of the pair. This mixing
decided the cache daemon must be designed from the stamftoata structures ensures a very high level of concurremcy i
make use of multiprocessing capabilities. The project is &xcessing the data. Reader-writer locks per hash buclets al
explore efficient algorithms that should be employed tfwr the highly desirable behaviour that readers (clients th
achieve the best performance on servers with 4 and more Cétly read data) never block other readers, greatly inangasi
cores. Due to the read-mostly nature of its purpose, theecagerformance for usual cache usage. The intention behind the
database should never allow readers (clients that onhh fetdesign of this data structure was that, using a reasonally we
data) to block other readers. distributed hash function, high concurrency of writers aéso
Multi-platform usability is non-critical, it is an added bos be achieved (up to the number of hash buckets). An illustnati
that will make the result of the project usable for many momf the data storage organisation is presentedgniFi
users.

Ill.  ImpLEMENTATION OVERVIEW

We have implemented the cache daemon in the C ﬂ [
programming language, using only the standard or widesprea
library functions to increase its portability on POSIXdik
operating systems. POSIX Threadshread$ were used to
achieve concurrency on multi-processor hardware.

The deamon can be roughly divided into three modules:
network interface, worker threads and data storage. The ﬁ B
following sections will describe the implementation distaif
each of the modules.

A. Network interface

The network interface module is responsible for accepting
and processing commands from clients. It uses the standard
BSD "sockets" API in non-blocking mode. By default, the
daemon creates both a "Local Unix" socket and a TCP socket.
The network interface is run in the starting thread of thléig. 1. llustration of the key-value data structure usedhesprimary data

. . torage pool
process and handles all incoming data asynchronousﬁy, gep

dispatching complete requests to wo"rker threads". The second big data structure indexes the metadata tags for

The network protocol (for both "Local Unix and,TCPkey—vaIue records. It is a red-black tree of tag types (a@get
connections) is binary, designed to minimize protocol pgrs value) whose elements are again red-black trees contaiming
and the number of system calls necessary to pracesyuest. -, (also an integer value) with pointers to the key-value
B. Worker threads records to which they are attached. The purpose of this

The daemon implements a pool of worker threads whidfganizationiis to enable performing queries on the dataég
accept requests from the network code, parse them and exedig form "find all records of the given tag type” and "find all
them. The threads communicate with the network interfafgCcords of the given type and whose tag data conforms to a
using a protected (thread-safe) job queue. The number S§fIPIe numerical comparison operation (lesser than, ereat
threads is adjustable via command-line arguments. Thisriea then)". The tree of data types is protected by a readerwwrite
includes a special support for "threadless" operation, hirck 10Ck and each of the tag data trees is protected by its own
the network interface calls the protocol parser as a functig®ader-writer lock, as illustrated in Fig. 2. Again, reazieever

call in the same thread, eliminating synchronizatwerheads. Plock other readers and locking for write operations is
localised in a way that allows concurrent access for tag

C. Data storage queries.

Data storage is the most important part of the cache daemon
as it has the biggest influence on its performance and




change with every access and thus need to be exclusively
locked for every access, serializing both readers and nsrite
(much more seriously than LRU).

In order to maximize concurrency (minimize exclusive
locking) and to limit the in-memory working set used during
transactions (as discussed in [11]), we have chosen to use a
combination of data structures, specifically a hash tableé a
binary search trees, for the principal data storage streictu
Each bucket of the hash table contains one binary search tree
holding elements that hash to the bucket and a shared-

Records without metadata tags don't have any influence &fflusive locking objectthread rwlock, thus setting a hard

Fig. 2. lllustration of the tag tree structure

or connection with the tag trees. limit to the granularity of concurrency: write operatioren(
_ _ _ other operations requiring exclusive access to data)
D. Rationale and discussion exclusively lock at most one bucket (one binary tree). Read

We chose to implement both asynchronous network accegserations acquire shared locks and do not block one another
and multithreading to achieve the maximum performance f@he hash table is the principal source of writer concurrency
the cache daemon [2]. This model is a hybrid of pure multGiven an uniform distribution of the hash function and
process architectureMP) and the even-driven architecturesignificantly more hash buckets than there are worker tgea
and is sometimes calledsymmetric multi-process event-(e.g. 256 vs. 4), the probability of threads blocking on data
driven (AMPED) [3]. In it, we dedicate a thread to network IOaccess is negligibly small, which is confirmed by our
and accepting new connections. This model has been explosédulations. To increase overall performance and reduee th
in part in [13], with the difference that our focus is ortotal number of locks, the size of the hash table is deterthine
maximizing performed operations per second instead afid fixed at program start and the table itself is not pretct
network bandwidth. Our implementation tries hard to avoiely locks. The garbage collector (which is implemented rigive
unnecessary system calls, context switches and memirstead of a LRU-like mechanism) operates when the exa@usiv
reallocation [11] [12]. The implementation has avoided tmokck is already acquired (probabilistically, during write
of protocol parsing overheads by using a binary protocoperations) and operates per hash-bucket. The conseqokence
which includes data structure sizes and count fields @perating per hash-bucket is a lower flexibility and accyria
command packet headers. keeping track of the total size of allocated memory, and

Since the number of clients in the intended usage (weliemory limits are forced to become per-bucket instead of per
cache daemon) is relatively low (in the order of hundreds), ventire data pool.
have avoided explicit connection scheduling described4}-[  The metadata tags structures design was driven by the same
[16]. concerns, but also with the need to make certain query

We have opted for a thread-pool design (in which a fixedperations efficient (ranged comparison and grouping, i.e
number of worker threads perform protocol parsing and ddtss-than or greater-than). We have decided to allow the
operations) to allow the administrator to tune the number fi¢xibility of queries on both theéype and thevalue parts of
worker threads (via command line arguments) and thus theetadata tags, and thus we implemented binary trees which ar
acceptable CPU load on the server. We have also implemengdfeictive for this purpose.

a special "threadless" mode in which there are no worker
threads, but the network code makes a direct function cll in IV.  SmuLaTIONS

the protocol parser, effectively making the daemsingle  Tg ajg in understanding of the performance and behaviour
process event drive(SPED. This mode can not make use Ofyf the key-value store (the hash table containing binarycsea
multiple CPUs, but is included for comparison with the othgfees) we have created a GPSS simulation. The simulation
model. . . models the behaviour of the system with a tunable number of
As discussed in [7] and [9], the use of multi-processing anghrker threads and hash buckets. The simulated parts are: a
the relatively high standards we have set for concurrency gf generator, worker threads, lock acquisition and selea
the requests have resulted in a need for careful choice of th&rding topthread rwlocksemantics (with increased writer
structures and algorithms used for data storage. Tradltiopiority to avoid writer starvation) and the hash bucketse T
structures and algorithms used in caches, such as LRU 3k generator attempts to saturate the system. The timings
Splay trees [4], are not directly usable in high-concuryengseq in the model are approximate and thus we're only
environments. LRU and its deriyatives need to. maintain ;gerested in trends and proportions in the results. Fig.&d
global queue of objects, the maintenance of which needsgqysirate the percentage of "fast" lock acquisitionsnirthe

happen on every read access to a tracked object, Whighyjations, where "fast" is either uncontested lock asitjan
effectively serializes read operations. Splay trees gdigic



or contested where total time spent waiting on a lock is
deemed insignificant (less than 5% of average time spent
holding the lock i.e. processing the task). Graphs are guott

with the number of hash buckets on the X-axis and a
percentage of fast lock acquisitions on the Y-axis. Results
cover the timings for both shared locks and exclusive locks,
obtained during same simulations. The simulations were run
for two cases: with 64 worker threads (which could today
realistically be run on products such as the UltraSPARC T2
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from Sun Microsystems [5]) and with 8 worker threads (which o B8

can be run on readily available servers on the common x86 4 8 16 32 64 128 256
platform [6] [10]). Individual figures describe the system # of hash table buckets

behaviour with a varied ratio of reader and writesks. B NCPU=64, B NCPU=64, -4 NCPU=8, & NCPU=8,
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Fig. 5. Cache behaviour with 50% readers and 50fens

In the situation presented in Fig. 5 the abundance of
exclusive accesses (locks) in the system introduces migntf
increases in time spent waiting for hash bucket locks. Both
kinds of locks are acquired with noticeable delays and the
number of fast lock acquisitions falls approprigtel

Percentage of fast lock acquisitions

igif’ u ) The simulation results emphasise the lock contention,
(] . . . .
0% §——8 showing that equal relative performance can be achieved wit
4 s 16 32 64 128 256 the same ratio of Wgrker threads and hash table buckets, a.nd
# of hash table buckets show an optimistic picture when the number of hash buckets is
- high. From these results, we have set the default number of
NCPU=64, B NCPU=64, A NCPU=8, & NCPU=8, .
SHARED EXCLUSIVE  SHARED  EXCLUSIVE buckets used by the program to 256, as that is clearly adequat

for today's hardware. The graphs do not show the number of
tasks dropped by the worker threads due to timeouts
Predictably, Fig 3. shows how a high ratio of hash bucket§imulated by the length of the queue in the task generator).
to threads makes almost all lock acquisitions fast. Both types of simulated systems were subjected to the same
load and the length of the task queue in systems with 8 worker
threads was from 1.5 to 13 times as large as the same length in
systems with 64 worker threads. This, coupled with simdlate
inefficiencies (additional delays) when lock contentisrhigh
between worker threads can have the effect of favouring
systems with a lower number of worker threads (lock
acquisition is faster because the contention is lower, huhe

Fig. 3. Cache behaviour with 90% readers and 10féns
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30% v other hand less actual work is being done).
20% ~
0, |
10% m V. ExPeErRIMENTAL REsuLTs
0% &
4 8 16 32 64 128 256 As this is a work in progress, we have performed only
# of hash table buckets preliminary measurements of system performance and
®NCPU=64, B NCPU=64, - NCPU=8, A NCPU=8, behaviour (of the key-value data store), on a limited vgragt
SHARED EXCLUSIVE SHARED EXCLUSIVE hardware.
Fig. 4. Cache behaviour with 80% readers and 20fens To discover the impact of thread synchronization primgive

we benchmarked the program's performance on a single-CPU
Trends in the simulated system continue in Fig. 4 witbystem with Pentum M @ 1.5 GHz, running FreeBSD 7.0,
expected effects of having a larger number of exclusivedocith both the daemon and the client on the same system,
in the system. We observe that this load marks the boundagmmunicating via Unix Local sockets. As this is a single-
where having the same number of hash buckets and workd?U system, we present the results of measurements in
threads makes 90% of shared lock acquisitions fast. "threadless"” mode and with a single worker thread, to ilaist
the tradeoffs present in the chosen architecture.



We have performed a preliminary comparison of our

100000 memory cache server to an existing solution, Memcached
1.2.1, used by many existing high-performance web sites [1]
o 80000 [8], with the same data set as used for results in Table 1 and on
3 the system from the first row in the table.
& 60000
g TABLE Il
2 40000 BencHMmARK ResuLts oF Our MEeMorY CACHE SERVER
'% ComPARED TO MEMCACHED
2 20000 No. Clients Ops / sec.
©
= 0 Our cache server, 2 worker threads 10 71,100
ADD transactions Memcached, threadless 10 35,150
Null transactions GET transactions
[ Threadless B 1 Worker We attribute the differences in performance presented in

Table 2 to the inefficient text network protocol used by
Memcached and a design that doesn't scale well to multi-CPU

. . . t .
Fig. 6 shows that the best option for single-CPU systemss| Stems

the "threadless" mode (with a minimum 25% performance VI,  CoNeLUSION
edge), in which the daemon degenerates into SPED-like i . )
behaviour. The costs of managing the thread-safe queue of NiS Paper presents the design and implementation of a
tasks and the context switches involved in handing off tfgh-performance memory cache database server. In its
tasks from the network thread to the worker thread is higliéation we have designed many optimizations, includirtg da
enough to result in noticeable slowdowns. The results lead $iructures permitting highly concurrent operations, mult
to conclude that in case of "Null transactions” (which arféréaded core based on the thread-pool model and an
complete transactions, only without a payload Comman&ptlml_zed network commumcatlon model. We hz_;lve analysed
these costs are almost the same as the processing timeeq@Pd Simulated the designed structures and algorithms fediap
for processing the transactions themselves. and implemented it, and performed benchmarks of the

Another type of benchmark was performed to explore tfgsulting server program. _
limits of performance of the cache daemon in its current 1he intended usage for this server is as an external cache
implementation. These benchmarks use a mix of read dff@fabase for web applications, and preliminary analysigsof
write operations (90% reads, 10% writes) on a precomputBgformance and behaviour suggests that the current

data set of 30,000 records with size of 1 KB +/- 500 bytegpplementation of the server is sufficient for thigrpose.
with a varied number of simultaneous clients. The result of this project is a directly usable product which

will soon be implemented in our Faculty's web aggtions.

Fig. 6. Tradeoffs of multi-threading
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