
84

Determination of optimal security settings for LMS Moodle

Zlatko Stapić, Tihomir Orehovački, Mario Đanić
Faculty of Organization and Informatics

University of Zagreb
Address: Pavlinska 2, 42 000 Varaždin, Croatia

Phone: +385 42 390 800 Fax: +385 42 213 413

 E-mail: {zlatko.stapic | tihomir.orehovacki | mario.djanic}@foi.hr

Abstract - E-learning usage at high-education institutions

represents prerequisite of new, modern and quality education.

Implementation of suitable learning management system

(LMS) is only a first step in realizing this need. Through the

last few years LMS Moodle imposed itself as the best solution,

and is becoming one of the most common used systems in

Croatia. Although it is developed by the „open source“ model

that allows quicker and more effective reaction to security

bugs inside the LMS itself, vulnerability of the mentioned

system greatly depends on the security measures configured

on the server. In this paper, we will present a summary of

most common security flaws and suggest optimal settings of

Moodle LMS and the server itself. Our claims will be

supplemented by the results of stress tests and security

analysis in order to determine the optimal settings.

I. INTRODUCTION

Trying to explain new and popular way of learning
which is computer-enhanced we often use term e-learning.
One of many definitions used to describe e-learning
associates process of education which includes information
and communication technologies (ICT) along with process
of continuous quality improvement in education and in its
results as well. Depending on the ICT usage intensity, we
can define few different e-learning forms. Basically, ICT
can be used along with traditional face-to-face education,
but its use can also create hybrid (mixed) mode or even full
online mode [11].

In this paper last two e-learning modes will be taken into
consideration because their implementation includes
creation of Virtual Learning Environments (VLE) in which
all aspects of a course can be handled through a consistent
user interface. Such e-learning systems which provide VLE
are sometimes called Learning Management System (LMS),
Course Management System (CMS), Learning Content
Management System (LCMS), Managed Learning
Environment (MLE), Learning Support System (LSS) or
Learning Platform (LP) [17].

The first learning management system or better computer
assisted instruction system was introduced in 1960 by
University of Illinois and was called Plato (later described
as Programmed Logic for Automated Teaching Operations).
This system pioneered LMS key concepts such as online
forums and message boards, online testing, email, chat
rooms, picture languages, instant messaging, remote screen
sharing, and multiplayer online games. After this pioneer,
which was turned off in 2006 [23], hundreds of similar
systems were introduced. Major milestone happened in
1997 when WebCT 1.0 was released and Blackboard was
founded because these two LMSs attracted millions of

users [3][5][17]. Nowadays, there are more than 150
different systems providing e-learning services, but after
WebCT and Blackboard second milestone was LMS
Moodle, which was introduced in 1998 and finally released
in 2001 [3][6]. Moodle, as Modular Object-Oriented
Dynamic Learning Environment, soon imposed itself as
best solution and is becoming one of the most common
used learning management systems [6].

Data obtained from official Moodle statistics sites
confirms the mentioned fact. In February 2008, there was
more than 38 000 registered sites with more than 16.61
millions of users [7]. After taking into consideration that
not all Moodle sites or users are registered, these numbers
could be several times bigger.

As every LMS, Moodle has an ability of tracking the
learners' progress, which can be monitored by both teachers
and learners. This fact implicitly includes both security and
privacy threats and makes Moodle vulnerable system.
Having all mentioned Moodle sites online, it becomes
crucial to recommend necessary security and privacy
protection mechanisms which should be implemented in
order to minimize security and privacy vulnerabilities.

Subsequently, this paper will be divided into three main
parts (not including introduction and conclusion). After
introducing the problem, we will focus on security and
privacy vulnerabilities. These vulnerabilities and threats
will be discussed from the LMS point of view, and
additionally these threats will be grouped into four main
groups according to their LMS related type. After having
all threats and vulnerabilities introduced, focus will be
transmitted on Moodle modules architecture in order to
emphasise its possible weak and for security and privacy
interesting points. Finally, in the last chapter, several
possible and different security settings will be presented,
along with test results on each. Aim of these analyses is
discussion on final recommendations of optimal security
settings which should be implemented on server and client
side in order to maintain maximal security and privacy.
These final recommendations will not take into
consideration security and privacy about mentioned
Moodle modules and their development, but will be related
only on server and client desirable settings.

II. LMS SECURITY VULNERABILITIES

Learning management systems are client/server web
applications that, among rest, manage user requests coming
from clients such as web browsers [24]. To handle the user
requests, they often require accessing security-critical
resources (e.g. databases and files) at the server end. In this

85

section we present description of the most critical security
flaws [8][9] that are classified into four categories:
authentication, availability, confidentiality and integrity
attacks. Table 1 displays a summary of classified attack
methods and vulnerabilities independent of the specific
LMS implementation. Model used to group attack methods
and security vulnerabilities is widely accepted AICA
(Availability, Integrity, Confidentiality and Authentication)
threat modeling approach.

TABLE I

ATTACK METHODS AND SECURITY VULNERABILITIES

Authentication attacks

1. Broken authentication and session management

2. Insecure communication

Availability attacks

1. Denial of service

Confidentiality attacks

1. Insecure cryptographic storage

2. Insecure direct object reference

3. Information leakage and improper error handling

Integrity attacks

1. Buffer overflow

2. Cross Site Request Forgery

3. Cross Site Scripting

4. Injection flaws

5. Failure to restrict URL access

6. Malicious file execution

A. Authentication attacks

Authentication attack occurs when an attacker steals
password and thus identity of legitimate end-user with an
aim of free access to paid e-learning services. When a LMS
authentication has been broken, an attacker has an
opportunity to perform availability, confidentiality or
integrity type of attack. Today’s most critical
authentication vulnerabilities are:

1) Broken authentication and session management:
vulnerability which occurs because account credential
management functions (e.g. remember my password, forgot
my password, change my password, etc.) and session
tokens are not often properly protected. An attacker can
compromise passwords or authentication token to assume
other user identity. Furthermore, attacker can intercept and
steal authenticated session of a legitimate user.

2) Insecure communications: vulnerability which appears
during transmits of sensitive information (e.g. session
tokens) without proper encryption. Attacker can misuse
this flaw to impersonate user and access unprotected
conversations.

B. Availability attacks

The main goal of availability attacks is to make e-
learning services and data unavailable to authorized end-

users. Most popular form of availability attack is denial of
service (DoS) attack which aims to misuse finite bandwidth
and connectivity resources of LMS system. DoS attacks are
usually malicious but they can also be result of users’
incautious behaviour. There are two general types of DoS
attack: logic and flooding attacks. Logic attacks (e.g. ping)
exploit existing LMS flaws to crash remote server or
significantly decrease its performance [19]. Flooding
attacks overloads LMS with a high number of requests to
disable legitimate users from accessing e-learning
resources. DoS attacks present threat to LMS systems
because one request can be replicated to many participants.

C. Confidentiality attacks

Confidentiality attacks are passive kind of attacks which
allows unauthorized access to confidential resources and
data. The main intention of attacker is not data
modification but data access and dissemination. The most
frequently confidentiality flaws are:

1) Insecure cryptographic storage: flaw which is based on
a fact that sensitive information does not have appropriate
encryption. LMS systems rarely use cryptographic
functions properly to protect data and credentials or use
weak encryption algorithms. In both situations, valuable
data is relatively easy to access by attacker who can
conduct identity theft and similar crimes.

2) Insecure direct object reference: this vulnerability
usually occurs when LMS uses object references directly in
web interfaces without authorization checks being
implemented. Mentioned object references can be files,
database records and primary keys and are contained either
by URL or form parameters. An attacker can misuse direct
object references in order to access other objects without
authorization.

3) Information leakage and improper error handling:
refers to unintentional disclosure of sensitive data and
unneeded information through error messages. LMS can
leak sensitive information about its logic, configuration and
other internal details (e.g. SQL syntax, source code, etc.).
On the other hand, error messages that LMS generate may
display too much information which can be useful to
attackers in privacy violation or conducting even more
serious attacks.

D. Integrity attacks

This group includes attacks which attempt to create new
data or modify and even delete existing e-learning data.
Most popular of them are:

1) Buffer overflow attack: occurs when a LMS component
(e.g. libraries, drivers, server components) tries to store data
into an available buffer without validating its size. By
inserting larger values than expected (e.g. 800 characters in
a limited length field), attackers can cause their malicious
code to be executed. There are two ways how attacker can
take control over application [15]: by injecting attack code
or by using code which is already in LMS address space.

86

2) Cross Site Request Forgery (XSRF/CSRF): client side

attack which exploits trust that a LMS has for the user

[18]. When a user is logged into LMS, attacker can trick

his browser into making a request to one of LMS task

URLs which will cause a change on the server. While

request comes with the user’s cookies, server will perform

it as it is original. Attacker could use this vulnerability to

do anything what authenticated user can do.

3) Cross Site Scripting (XSS): refers to hacking technique
which allows an attacker to supply vulnerable dynamic web
page with malicious script and execute script in victim’s
browser in order to gather data from a user. There are three
general types of XSS: persistent, non-persistent and DOM-
based. In our case, the most important meaning have
persistent (stored) attacks [22], in which malicious data are
persistently stored on the target back end system (e.g. in
database) and displayed to the user in a unfiltered form.
This is extremely dangerous in LMS because users could
see inputs of all other participants.

4) Injection flaws: may occur when data provided by user
(e.g. in form fields) is sent to content checking routines as
part of a command or query [20]. In such attacks,
interpreter fail to detect or respond to character sequences
that may be interpreted incorrectly, which then results in
execution of malicious code by LMS. Finally, attacker
could be able to create, update, read or delete all data
available to LMS.

5) Malicious file execution: attack which is based on a fact
that LMS fails to control or prohibit execution of uploaded
files. Malicious code is usually uploaded via upload feature
(e.g. homework or image). This kind of vulnerability can be
found in many web applications, especially in those which
are PHP based.

6) Failure to restrict URL access: some LMS resources are
restricted to a small subset of privileged users (e.g.
administrators). This weakness allows an attacker to
retrieve URLs by guessing the address and perform
unauthorized operations on unprotected LMS data.

III. MOODLE ARCHITECTURE

In previous chapter all LMS-relevant security threats and
vulnerabilities were enumerated and grouped according to
their type. As stated before, great majority of these
vulnerabilities depends on system architecture as much as
on system implementation and server settings. This chapter
will bring into focus Moodle architecture in order to
indicate weak and discussion worth points which could be
possible threats and vulnerabilities.

Covering many collaborative and learning fields, Moodle
is composed from independent modules; plug-ins. In order
to ensure better understanding of a whole Moodle
architecture, these modules will be presented in groups
according to their purpose or use. From this perspective,
there are six groups of modules as follows [2]:

1) Communication modules

2) Productivity modules

3) Student involvement modules

4) Administration modules

5) Course delivery modules

6) Curriculum design modules

1) Communication modules and tools: are backbones of all
intra and extra communication features. These modules
include discussion forums, file exchange, internal and
external email and real time chat. Among other
possibilities, while using discussion forums, users can
include in their post different attachments, images and
direct URLs. This feature, as well as file exchange feature
which allows assignment submission, should be taken into
consideration and observed as possible week point for a
few threats. Due to possible insecure communication
intruder could come into possession of any data that is sent
in any private communication channel. Furthermore,
insecure direct object reference could allow intruder to
come into possession of any document he is not authorized
for. Finally, almost all previously stated integrity attacks
should also be taken into consideration.

2) Productivity modules: include help module, search
module, calendar module, progress and review modules.
Although these modules seem not to be threats, one issue
must to be annotated. Information leakage must be strictly
prohibited, because otherwise anybody could see important
data, or search results he is not authorized for. For example
student could see (accidentally or with purpose) grades of
his colleagues. As well as information leakage, insecure
direct object reference could also cause problems.

3) Student involvement modules: include groupwork
module and workshop module, along with self-assessment
and student portfolio module. After performing any
previously mentioned illegal action intruder could either
come into possession of others’ data or change student or
group-relevant data on server. Additionally, any system-
side (also previously mentioned) threat should also be
carefully taken care of.

4) Administration modules: should probably be most
carefully considered and paid attention to, because gaining
access into these modules results in having access in all
other modules. The well known authentication, course and
user authorization, registration integration and any other
hosted services module goes into this group. The
authentication modules allow Moodle to use LDAP, IMAP,
POP3, NNTP and other databases as sources for user
information. Discovering and fixing all security-related
bugs in these modules becomes crucial in any LMS
development. Intruders mostly attack modules in this
group, often using any known method and vulnerability.
All encountered threats should be taken into consideration
in implementation of authentication and other related
modules.

5) Course delivery modules: are probably second most
vulnerable group of modules and are usually only

87

authorized by administrators and teacher for use.
Representative modules in this group are course
management module, helpdesk module, online grading
tools, students tracking module and finally automated and
testing modules. Beside omni-present authentication
attack threats, discussing course delivery modules, we will
focus on integrity attacks while these have the purpose of
unauthorized data change. Course management module and
online grading module should be considered to be security
safe on possible integrity attacks in particular.

6) Curriculum design modules: finally form last group of
modules, used in curriculum creation. Course templates
and customization modules are main representatives. As
last group of modules presented, they also have least
negative impact as result of possible attacks. Data changes
reflect on curriculum design are easily recognized and
attackers usually do not have any particular interest in
compromising these modules, while they work is usually
accepted as more or less harmful or malign joke.

All mentioned modules form second layer in multi-tier
Moodle architecture. Security and privacy threats typical at
data-base layer or client-side layer will not be presented in
this chapter. These security and privacy threats are well
known and should be considered in any LMS
implementation and development. Although Moodle has
XMLDB as its database abstraction layer, which lets
Moodle to interact with and access the database [6], usual
and previously stated precautions actions.

Finally, encountered groups of modules, as can be seen
in above security discussion, do not have same level of
importance from the security and privacy point of view.
Also, previously mentioned groups of attacks do not have
same level of possible destruction if associated attack
happens. Subsequently, the worst case could be
authentication attack performed on any administrative
module. From the privacy point of view, authentication
attacks persist, but worst case scenario includes also
confidentiality attacks performed on student personal data
and private achievements.

IV. RECOMENDED SETTINGS

Following focus on Moodle’s security and performance, a
set of concise advices and recommendations will be
presented in this part of paper to assist in building a stable
environment for everyone to use. The software platform is
based on Ubuntu Linux 8.04 and LAMP (Linux, Apache,
MySQL and PHP), supporting Moodle installation.

Steps needed to achieve optimal configuration settings
include detailed analysis of needs, selection of suitable
hardware platform, performance tests execution, and
following inspection of its results, implementation of
necessary optimizations.

A. Hardware upgrades

Thinking raw strength, upgrading hardware is probably
the easiest way to improve Moodle's installation
performance. By using more RAM swap usage will be
brought to minimum, bringing better performance and
reduction of disk-activity as final result.

If system starts swapping, it is a sign that it needs more
RAM. Suggestion is to first think of RAM upgrades, since
it will almost certainly be the biggest bottleneck in the
overall environment.

After that performance will be upgraded using better and
faster hard disks, hopefully 4 SCSI disks forming RAID10
array, for data redundancy and performance. Although a
processor shouldn't be such a problem, in cases with lots of
users and SSL, it is advisable to upgrade it as well. Finally,
utilization of multiple web servers with load balancing
techniques will also improve performance [16].

B. Performance optimizations

Results of various optimizations and hardware upgrades

can be shown by doing various stress tests, and this article
will present results collected by running Apache ab, tool
built for benchmarking Apache Hypertext Transfer Protocol
(HTTP) server [1]. Some tests that could also be done
manually, but are outside of this article’s scope, include
FireBug and Yslow Firefox extensions, which in
conjunction will create a performance report, based on the
rules for high performance web sites [4][12][13]. Inspecting
the report will give us a better insight into what's
happening, and how we can improve our implementation.
General set of advices for performance improvements
involve, but are not limited to, tuning PHP settings by
turning off features that are not used, taking benefit from
one of various PHP Accelerators, and optimizing Apache
settings for specific environment Moodle is setup at.

Still on the topic of performance measuring and
optimizations, we are going to look at database. As
mentioned earlier, database being used is MySQL. Moodle
contains a script which will display some key database
performance statistics from the ADOdb performance
monitor [10]. It can usually be reached on by pointing your
browser to dbperformance.php, with path relative to
Moodle installation.

Data collected that way can be used as a guide for tuning
and improving performance. Although not mentioned here,
one of the other ways to improve would be a switch to
better-performance database. Possible optimization settings
in Moodle for improving performance include caching as
much as possible, reducing logs life-span, and other
optimizations techniques available in Moodle's admin
interface.

TABLE 2

RESULTS OF PERFORMANCE TESTS

Performance tests
First

configuration

Second

configuration

RAM 256 768

Server Software Apache/2.2.4 Apache/2.2.4

Concurrency Level 10 100

Time taken for tests 30.602456 s 30.223306 s

Complete requests 46 51

Requests per second 1.50 [#/s] 1.69 [#/s]

Transfer rate 13.17 [Kb/s] 14.53 [Kb/s]

Optimizations No Yes

88

The results given in Table 2 show a clear benefit of
optimizations and hardware upgrades. For consistency,
both configurations were installed as Virtual Machines,
with equal software platforms leaving no room for
speculations about the reliability of results. The optimized
and hardware upgraded configuration shows high
concurrency, and can serve more requests then the initial
configuration, which serves less requests even with
concurrency of ten times lower then the second one.

C. Security

1) Preventing DoS attacks: availability attacks may occur at
multiple points, ranging from server, router or entire
network, focus will be on web server, and it's configuration
to prevent possible availability attacks. Two attacks of such
kind are known, simple DoS and distributed DoS. If you
are facing the second, there is little to do, however with
proper preparations its effect can be minimized. On the
other hand, DoS can most of the time be completely
eliminated. One of the steps that have to be done in order
to stop it is surely setting MaxClients directive to desired
maximum, causing a host-to-host attack to abort long
before memory is exhausted. Generally, it is also
recommend to install and setup mod_evasive apache2
module, an evasive maneuvers module for Apache to
provide evasive action in the event of an HTTP DoS, DDoS
attack or brute force attack. It is also designed to be a
detection and network management tool, and can be easily
configured to talk to various services, reporting abuses via
email and syslog facilities.

2) Dealing with insecure cryptographic storage: most of
the web application, including Moodle uses hashing
algorithms to prevent others from discovering users’
passwords, even if they get a hold of the database.
However, this approach, while in theory and following
mathematics is a really good one, is crackable by using a
method called Rainbow Tables, a set of hash-plain pairs,
which can be searched with great efficiency, and password
can be broken [14]. Suggested way to fix the above
mentioned problem would be to use the bcrypt library [21],
utilizing optimized Blowfish encryption, which uses the
idea of adaptive hashing. The advantage over other
algorithms and libraries used for cryptographic storage is
that you are able to configure its setup time, and this is
where adaptive hashing shows its advantages. As computers
get faster, the same block of code continues to produce
passwords that are hard to crack.

3) Preventing buffer overflows: in most cases, buffer
overflow problems can be avoided by either careful
programming in languages which do not provide in-built
buffer overflow protection (like C or C++), or by using
more modern languages and their variations, like the C-
language variants, Cyclone which uses method of attaching
size information to arrays.

4) Information leakage and improper error handling:
problem often found with web applications, especially
those early in development whose publishing before they

are really ready for public has become a big trend in
today's Web 2.0 era, often come out without proper testing,
and without disabling usual development parameters, one
of the important one in this case being the so called
development mode or debug mode which shows all errors
and parameters passed to the applications, including, but
not limited database connection options, its name,
username and password. That allows random users of site
to gain access to the database itself, and do malicious
actions over it. Also debug messages could be analyzed to
exploit potential security problems in web application.
Suggested way to prevent this is an automated production
deployment strategy, which would warn of any existing
development settings, and advise you to switch to
production mode. Also, it is very important to perform code
audit before release in production, to avoid problems later.

5) Dealing with insecure communications: generally, this
problem can be avoided by protecting parts of LMS site,
especially those that are information-critical by SSL
certificate. It can be either self-generated, or bought from
one of the SSL vendors. It is also important to note that
SSL causes increased load on the server itself, however it is
crucial to protect user’s privacy with this type of
encryption.

6) Malicious file execution prevention: files are usually
uploaded to /tmp directory, which is writable by anyone, so
it could be a potential exploit. To prevent such problems, it
is advisable to modify filesystem, putting /tmp on separate
partition, and mounting in with noexec and nosuid
properties, which would prevent problems caused by
malicious file execution.

7) Miscellaneous advices: entire Moodle environment
should be backed up regularly, and the easiest way to do it,
is via scheduled cron db dump and scp'ing it to a secure
location. When reported, security bugs get highest priority,
so make to subscribe to relevant software and security
mailing lists gaining a head-start in preventing security
problems before users become aware of the potential
exploits. Ubuntu distribution uses apt as it's frontend to
dpkg, and it can be elevated to do upgrade simulation,
sending us mail with upgrades that are available to our
system. Although rootkits presence often shows the need of
system reinstallation because it has been compromised, it is
good to know when and if that happens by doing regular
scans with rkhunter and chrootkit, all of which can be
scheduled via cron. General advice is to keep your settings
as paranoid as possible, while not causing troubles for the
users, and includes strict iptables rules by only opening
required ports, and those should be set to irregular value,
especially the ssh port which should utilize ssh-keys based
authentication, instead of password-based one. Passwords
users generally choose are weak, and can be easily broken
by social engineering or some other methods, and therefore
it is advisable to enforce proper passwords policy, which
can be configured in Moodle's admin interface.

V. CONCLUSION

Security settings depend on various software and
hardware configuration factors. All these factors should be

89

taken into consideration in order to determine optimal
security and privacy settings. In the domain of learning
management systems, and with case study of Moodle, we
identified four major groups of attacks. Most critical
security flaws are classified in group of authentication,
availability, confidentiality or integrity attacks. Short
description on each of twelve security flaws is given from
the LMS perspective, while recognition of different and
possible vulnerabilities is first step in dealing with them.

Moodle architecture is divided into six different groups
of modules. Communication, productivity, student
involvement, administration, course delivery and
curriculum design modules are recognized. Previously
grouped security flaws are also discussed but in scope of
particular module and with the purpose of critical spots
determination. Finally, we tried to present set of concise
advices regarding system hardware upgrades, performance
optimizations or previously mentioned security. Given
advices on DoS attacks prevention, securing cryptographic
storage, buffers overflow prevention, information leakage,
improper error handling, securing communications and
malicious file execution prevention should be entry points
into security and privacy safe learning management system
implementation.

REFERENCES

 [1] *** Apache [Online], “ab – Apache HTTP server

benchmarking tool”, Apache Software Foundation, 2008,

Retrieved February 12 2008, URL: http://httpd.apache.org

/docs/2.0/programs/ab.html

 [2] *** EduTools [Online], “ArchiveCMS: Product

Comparison System”, 2008, Retrieved January 10 2008,

URL: http://www.edutools.info/compare.jsp?pj=8&i=358

 [3] *** Elearning India [Online], “Learning Management

Systems”, 2008, Retrieved January 24 2008, URL:

http://elearning-india.com/content/blogcategory/19/38/

 [4] *** Firebug [Online], “Firebug – Web development

evolved”, Parakey Inc., 2008, Retrieved February 10 2008,

URL: http://www.getfirebug.com/

 [5] *** Learning Circuits [Online], “Field Guide to Learning

Management Systems”, 2005, Retrieved December 30

2007, URL: , http://www.learningcircuits.org/

 [6] *** Moodle [Online], “Moodle Official Site”, Moodle.org,

Retrieved December 20 2007, URL: http://moodle.org/

 [7] *** Moodle [Online], “Moodle Official Statistics”,

Moodle.org, Retrieved February 11 2008, URL:

http://moodle.org/stats/

 [8] *** OWASP Top Ten Project [Online Report], Open Web

Application Security Project - the open application security

community, 2004, Retrieved January 25 2008, URL:

http://www.owasp.org/index.php/Top_10_2004

 [9] *** OWASP Top Ten Project [Online Report], Open Web

Application Security Project - the open application security

community, 2007, Retrieved January 25 2008, URL:

http://www.owasp.org/index.php/Top_10_2007

[10] *** PHPLens [Online], “Adodb perfromance monitoring

library”, Retrieved February 15 2008, URL:

http://phplens.com/lens/adodb/docs-perf.htm

[11] *** University of Zagreb [Online], “E-Learning Strategy

2007–2010”, Strategy Development Comity, Zagreb, 2007,

Retrieved February 14 2008, URL: http://rektorat.unizg.hr

/fileadmin/rektorat/dokumenti/eucenje_strategija/University

_of_Zagreb-E-learning_strategy.pdf

[12] *** Yahoo! [Online], “Exceptional performance”,

Yahoo.com, 2008, Retrieved February 1 2008, URL:

http://developer.yahoo.com/performance/

[13] *** Yahoo! [Online], “Yslow for Firebug”, Yahoo.com,

2008, Retrieved February 1 2008, URL:

http://developer.yahoo.com/yslow/

[14] A. Biryukov, Some Thoughts on Time-Memory-Data

Tradeoffs, Cryptology ePrint Archive, Report 2005/207,

2005, URL: http://eprint.iacr.org/2005/207

[15] C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole, “Buffer

overflows: attacks and defenses for the vulnerability of the

decade”, Foundations of Intrusion Tolerant Systems, p.

227 - 237, 2003.

[16] A. Iyengar, E. Nahum, A. Sheikh, R. Tewari, “Enhancing

Web Performance”, Proceedings of the IFIP 17th World

Computer Congress - TC6 Stream on Communication

Systems, Vol. 220, p. 95–126., 2002.

[17] M. Jenkins, T. Browne and R. Walker, “VLE Surveys: A

longitudinal perspective between March 2001, March 2003

and March 2005 for higher education in the United

Kingdom”, UCISA, 2005, URL: http://www.ucisa.ac.uk

/groups/tlig/vle/vle_survey_2005.pdf

[18] N. Jovanovic, E. Kirda, C. Kruegel, “Preventing Cross Site

Request Forgery Attacks”, IEEE Securecomm and

Workshops, p. 1 – 10, 2006.

[19] D. Moore, C. Shannon, D. Brown, G. M. Voelker, S.

Savage, “Inferring Internet Denial-of-Service Activity”,

ACM Transactions on Computer Systems (TOCS), Vol. 24,

No. 2, p. 115 – 139, 2006.

[20] G. Ollmann, “Writing secure code”, Network Security, Vol.

2007, No. 5, p. 16 – 20, 2007.

[21] N. Provos, D. Mazieres, “A Future-Adaptable Password

Scheme”, Proceedings of the 1999 USENIX Annual

Technical Conference, June 6-11, 1999, Monterey,

California, USA, 1999.

[22] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,

G. Vigna, “Cross-Site Scripting Prevention with Dynamic

Data Tainting and Static Analysis”, Proceedings of the

Network and Distributed System Security Symposium,

2007.

[23] D. R. Woolley, “Plato: The Emergence of Online

Community“, Thinkofit, 1994, URL: http://thinkofit.com

/plato/dwplato.htm

[24] W. Xu, S. Bhatkar, R. Sekar, “Practical dynamic taint

analysis for countering input validation attacks on web

applications”, Technical Report SECLAB-05-04,

Department of Computer Science, Stony Brook University,

2005.

