
Analysis of Scheduling Algorithms for Computer Clusters 
 

I. Grudenic and N. Bogunovic 
Department of Electronics, Microelectronics, Computer and Intelligent Systems 

Faculty of electrical engineering and computing, University of Zagreb 
Unska 3, Zagreb, Croatia 

Phone: 01-6129-999 int. 548  Fax: 01-6129-653  E-mail: igor.grudenic@fer.hr 
 

 
Abstract – Most scheduling problems are hard to solve 
optimally for the reasonable size of the input. These problems 
are even harder to tackle for distributed computing 
environments. Since distributed computing is a rapidly 
evolving trend in data processing, there is increased interest 
in making this approach efficient.  
Organization of heterogeneous resources in a constantly 
changing environment makes cluster scheduling a challenging 
task. In this paper we present different scheduling algorithms 
that are most frequently employed on computer clusters.  We 
recognize different metrics and system architectures, and 
analyze various approaches to job and resource matching in 
different environments.  

 
 

I. INTRODUCTION 
 
Distributed computing is a platform that enables 

complex computations to complete within acceptable time. 
The main goal of a distributed system is to provide 
transparent and scalable resources to the users. In order for 
distributed system to perform in this manner, proper 
software must be provided that organizes heterogeneity of 
machines and user requirements. 

Schedulers, as well as resource managers, are 
responsible for monitoring and orchestrating complex 
hardware configurations. Optimal scheduling of 
heterogeneous jobs in heterogeneous environments is 
known to be NP complete problem [1]. Even more, 
scheduling in computer cluster environment is highly 
dynamic since conditions can change at high rates. 
Algorithms for such an environment must therefore be 
very fast and should quickly adapt to changes. 
Additionally, algorithms must scale well since computer 
clusters are becoming larger and more powerful and there 
is still shortage of distributed scheduling algorithms. 
Different clusters can be connected to grids and scheduling 
between administrative domains is an additional challenge. 
In the end, peer to peer systems can also be observed as a 
distributed system with specific tasks. 

Design of scheduling algorithms depends on several 
factors that include target platform, job types and 
performance metric. In this paper we analyze most utilized 
algorithms with respect to these factors, while 
concentrating on computer clusters.   

The analysis of algorithms starts with general 
architecture description in section II. Performance metrics 
are classified and presented in section III. Section IV 
contains description of scheduling algorithms with target 
domains pointed out. Conclusion is given in section V. 

 
 

II. ARCHITECTURE 
 
Job scheduling on computer clusters is generally 

preformed in a centralized manner. There is one fronted 
machine that is dedicated for job submission and 
scheduling. In some schedulers [2] job submission is 
enabled on every computation node, but the scheduling 
process is still performed at the specific cluster node. 

In order to schedule pending jobs, scheduler component 
must have up to date information on available resources 
and status of the running jobs. This information is 
provided by the resource manager component that can be 
integrated with the scheduler or implemented as a 
standalone module. Resource manager is a component 
distributed across the cluster computation units that 
monitors the state of each cluster node and makes collected 
information available to the subscribed schedulers. 

There are alternative distributed scheduling algorithms 
[3][4] that are aimed toward grid scheduling. 

 
 

III. SCHEDULER PERFORMANCE METRICS 
 

In order to measure scheduling performance some 
metrics that define desirable behavior of the computer 
cluster must be selected. Two general metric types are 
recognized: user centric metrics and resource centric 
metrics. User centric metrics favor job execution scenarios 
that maximize user experience, while the resource centric 
metrics support schedules that improve system utilization. 

Exact determination of the metrics that describe quality 
of user experience with the computer cluster is not 
possible because different users can value performance 
differently. Most common method by which clusters are 
measured for performance from the users point of view is 
average weighted response time (AWRT): 

  
 
 
 
 
Where rj and tj represent job submission and job 

completion time for the job j. Priority (weight) of the job j 
is denoted by wj. Weight can be set by the user or by the 
scheduler depending on the user credentials or other 
information. 

Since job weight is not very expressive in terms of user 
satisfaction, alternative measures such as user defined 
utility functions [5] are proposed. An example of the utility 
function provided by the user is presented in Fig. 1. 

∑
∑

∈

∈

−⋅

=

Jobsj
j

Jobsj
jjj

w

)r(tw

AWRT



Obviously, if the job is completed instantly the utility 
function has a maximum value. The utility value which 
describes user’s desire for job to be completed at specific 
moment decreases as time passes by. There can be zero 
slopes in utility function that indicate user indifference if 
the job completes anytime during that period. Indifference 
periods denote intervals during which user is not available 
to use the results provided by the completed job. Other 
user centric metrics are also used in scheduling and are 
presented with accompanying algorithms. 

Resource centric metrics include cluster utilization 
which can be expressed as percentage of resources used 
during the analyzed time frame. Cluster throughput is also 
used to denote scheduling algorithm performance. 
Makespan is sometimes used as a simplest metric which 
shows the time needed for the entire job set to complete on 
the cluster when given scheduler is employed. 

Average expansion factor (AXF) that is frequently used 
when comparing scheduling algorithms is defined as: 

 
 

 
where run time and wait time are collected from the set of 
the scheduled jobs. 

It is important to note that scheduler algorithm design is 
closely related to the targeted metric. Schedule 
optimization using expressive metrics is usually more 
computationally expensive then simple metrics 
optimization. 
 
 

 IV. SCHEDULING ALGORITHMS 
 

Scheduling algorithms are designed to meet several 
conflicting goals. Some of the goals are high system 
utilization, maximization of user satisfaction, fairness and 
scalability. Almost all the algorithms work in a repetitive 
cycle of the following actions: 
 

do forever { 

  wait for event; 

  obtain updated resource manager information; 

  update internal statistics; 

  schedule jobs; 

} 
 

Infinite loop iteration is triggered by any change in the 
resources state or by the change in the job collection. 
Change in the job collection can be caused by job 
insertion, deletion or parameter change. The resource 
manager information and internal statistics are updated 
prior to the job scheduling. It is important to note that 
duration of one loop iteration should be scaled to fit event 
occurrence rate on the given cluster. Since events on large 
systems are very frequent it is implied that scheduling 
algorithm must be very fast and should quickly adapt to 
changes. 

Different scheduling policies and mechanisms can be 
used to schedule jobs. Following subsections describe 
common techniques used to schedule jobs. Some of the 
techniques are used as standalone, while the others are 
employed together in different manners. 

Jobs submitted to the scheduling system can be either 
sequential or parallel. High occurrence rate of parallel jobs 
increases complexity in scheduling process which is 
usually accompanied by decreased cluster utilization. 
Interactive jobs allow users to interfere and guide job 
execution.  

In order to employ some cluster algorithms, job 
checkpointing must be supported for the targeted 
environment.  Job checkpointing is a sequence of 
instructions performed to store the status of the job for 
restarting. The entire memory space allocated by the 
process is saved as well as active file descriptors. There are 
issues with open sockets preservation and active pipes. 
Checkpoint support [6] is added to jobs in the link phase, 
and jobs save their own state when they receive a signal 
from the resource manager. 

Traditional straightforward scheduling algorithms are 
round robin and fairshare algorithm. These are frequently 
employed in the operating systems designed for one 
machine. Round robin algorithm favors greedy users that 
submit large number of short jobs, while fairshare 
algorithm provides equal access to hardware resources for 
all the users. Both have their limitations and are not 
entirely suitable for cluster environments. Sometimes the 
performance of advanced cluster scheduling algorithms is 
compared to traditional algorithms because they are easy to 
implement and measure on all target platforms. 

In the following subsections different algorithms, as 
well as some techniques that enable complexity reduction 
and performance improvement are presented. 
 
A. Job classes and priorities 
 

Almost all cluster scheduling systems define job classes. 
These are implemented in the form of queues into which 
users submit their jobs. Each queue can have limitations 
regarding the type of jobs it can contain. The constrains 
can include job parameters such as estimated memory 
consumption and job duration. Some users or groups of 
users may be denied to access some queues. Resources in 
the cluster such as computation nodes and software 
licenses can also be assigned to queues, effectively 
limiting the jobs in the queue to employ only the resources 
available to their respective queue. 

Job classes are introduced to enable high level 
distribution of jobs and resources and to ease the scheduler 
computational complexity. 

)(
timerun

timeruntimewait
AVGAXF

+
=

V
al

ue

Time

Zero slope – maximum value

Constant value decrease

Fig. 1. User utility function 



Scheduling process scans the queues and finds jobs 
feasible for execution. Feasible jobs are prioritized using 
configured policies and history usage. The highest priority 
jobs are scheduled to available resources. If there are no 
free resources for the highest priority jobs, reservations are 
made in order to prevent starvation of important resource 
consuming jobs. 
 
B. Backfilling algorithm 
 

Backfilling algorithm is used to fill the “holes” that are 
result of job reservations. When the reservations for high 
priority jobs are made it is possible for idle time to appear 
on some of the cluster nodes. Cluster with 2 compute 
nodes and 4 jobs is presented in Fig. 2. Job priorities are 
directly related to the job index. Job with smallest index 
has the highest priority. 

On the top of the figure job reservations are made 
without the use of the backfill algorithm. It can be 
observed that one processor is idle for two time units 
before job 3 starts the execution. This idle time can be 
used to schedule job 4 that fits into the idle time slot. 

In order for backfill algorithm to work there must be a 
significant number of parallel jobs on the cluster. 
Additionally, each user must provide job runtime estimate. 

Conservative backfilling and easy backfilling are two 
basic types of backfilling algorithm. Conservative 
backfilling performs reservations for all queued jobs and 
then allows smaller jobs to move up in the queue provided 
they do not cause delays in higher priority jobs. Easy 
backfilling creates reservation only for the highest priority 
job. The other jobs are then allowed to execute early only 
if there is no conflict with this job reservation. A 
comparison of conservative and easy backfilling [7] 
showed that relative performance depends on the given 
workload. 

An important issue that arises from application of the 
backfill algorithm is the precision of the user job runtime 
estimate. It is experimentally shown [8] that smaller error 
values in job runtime approximation can improve 
scheduling performance. Larger inaccuracies in the 
provided job runtime information lead to decrease in 

overall system utilization. 
Advance reservations can be added to the scheduling 

system in order to increase cluster availability for the 
specific jobs in the exact time. The impact of advance 
reservations to both easy and conservative backfill is 
analyzed in [9]. It is shown that the performance of both 
algorithms depends on the workload and metric type 
(system utilization, AXF or AWRT). Easy backfill is 
measured to achieve better system utilization as advance 
reservation rate increases with the upper limit of 92%. 
There was no noticeable utilization change when 
conservative backfill was employed. The increase in 
advance reservation rate is followed by higher AXF and 
AWRT values. 

 
C. Job preemption 
 

In order to immediately execute newly submitted, high 
importance job, preemption mechanism must be provided. 
This mechanism allows running jobs to be stopped in order 
to free the needed resources. Running job preemption can 
be performed manually or it can be triggered by the cluster 
policy. Job that is preempted can be only temporarily 
suspended and its execution can continue if checkpointing 
is supported by the job and the scheduler. If checkpointing 
is not available the preempted job is requeued. 

Job preemption can be used in combination with the 
backfill algorithm. When backfilled job is about to exceed 
the assigned time slot and cause the reservation of the 
higher priority job to be prolonged, the preemption 
mechanism is employed. Backfilled job is preempted and 
its execution can continue or restart in the next available 
time slot. 

 
D. Matchmaking algorithm 

 
Matchmaking algorithm [10] is designed to work in a 

highly dynamic settings where resource availability is 
changed frequently and ownership of resources is 
decentralized. It is initially targeted for workstation cycle 
stealing but can be used in dedicated cluster systems. In 
such an environment instantaneous use of available 
resource is necessary in order to achieve the best possible 
performance. 

Requestor, provider and matchmaker are three separate 
entities (Fig. 3.) participating in the matchmaking 
algorithm. The provider and requestor advertise (1) 
resources and job requests to the matchmaker in the form 
of specially designed language. The matchmaker collects 
advertisements and employs the match algorithm (2) in 

Time

Pr
oc

es
so

rs

1

2

3
4

Before backfilling

Time

Pr
oc

es
so

rs

1

2

3
4

After backfilling

Fig. 2. User utility function 

Fig. 3. Matchmaking protocol 



order to connect requestors with appropriate providers. 
Match notification (3) is sent back to both the provider and 
the requestor. Further agreement and potential job 
execution is their own responsibility. This is done using 
claiming protocol (4). It is possible for agents involved in 
the claiming protocol to refuse cooperation due to change 
in resource or job availability. 

The matchmaker operation is not affected by the result 
of the claiming phase. In the case of claim failure, the 
requestor or provider can resend advertisement to the 
matchmaker waiting for the new match to be proposed. 

The described matchmaking algorithm deals with only 
two entities and can be used only for bilateral matching 
that is shown to be limited in scenarios with several 
different resources needed for processing of the single job. 
An example of such a scenario involves a job that must 
execute on a machine with at least 512MB RAM. For the 
successful job processing a software license is needed, but 
the software license is limited to the machines on the 
specific network domain. Three resources must be 
matched to each other in this scenario: job with the 
machine, license with a job, and license with the machine. 

Gangmatching algorithm is proposed [11] to address 
these limitations. Each advertisement contains one or more 
ports. Ports define interfaces that need to connect with 
ports of other advertisements in order for matching to 
succeed. Job advertisement from the above example 
contains two ports: one for the job-machine match and the 
other for the job-license match. The goal of the 
gangmatching algorithm is to create a set of advertisements 
that connect to each other’s ports by obeying to the given 
constraints. No port should be left unconnected. 

There is a naive recursive backtracking search that 
achieves this goal and is given by the following 
pseudocode: 

gangMatch(i_adv, i_port){ 

 if(i_port>i_adv.nOfPorts) return MATCH; 

 if(i_port.bounded==true)  

   return gangMatch(i_adv,i_port+1) 

 foreach j_adv in availableResources{ 

   for j_port=1 to j_adv.nOfPorts;{ 

     if match(i_adv.ports[i_port],  

            j_adv.ports[j_port]){ 

       bound(i_adv.ports[i_port],  

           j_adv.ports[j_port]); 

       if(gangMatch(j_adv,1)==MATCH) 

         gangMatch(i_resource,i_port+1); 

       unbound(i_adv.ports[i_port],  

j_adv.ports[j_port]); 

     } 

   } 

 } 

} 

The algorithm is started with the root resource 
(advertisement) and the index of the first port of that 
resource. The first port is tested for other ports of the other 
advertisements until the match is found. Ports are bounded 
and the new resource is recursively checked for port 
matches in the same manner. If both ports are bounded 

successfully and the new resource’s ports are matched, the 
algorithm recursively repeats the step for the next 
unbounded port. When the last port of the root 
advertisement is matched, the algorithm is completed and 
the port matches are transferred to all the involved entities. 
If port match cannot be found for a specific port, the 
algorithm backtracks, unbounds the previously matched 
port and tries to find another solution. 

This straightforward algorithm can be further improved 
in order to speed up the matching. Some improvements 
include use of index trees in order to find port matches 
instantly instead of sequentially probing all the possible 
solutions. Another performance gain is obtained by smart 
picking of the root advertisement and reordering the ports 
for the sequential search depending on availability of the 
resource for the given port. 

Gangmatching algorithm is followed by hierarchical 
claiming phase in which the root entity starts claiming for 
all the matched resources, and the claiming is continued 
recursively until the root resource receives reservation 
confirmation from all its immediate children. 

 
E. Gang algorithm 

 
Previously described algorithms are designed to work 

on computer clusters with different topologies and 
architectures. In certain setups diverse algorithms can be 
used to explore the benefits of the available resources. 

Jobs that are submitted for computation can consist of a 
single thread process or can be made of multiple processes 
consisted of multiple threads. In the described algorithms 
reservation of resources for such a job is made through the 
user request and the job is responsible to use allocated 
resources as effectively as possible. 

Modern processors contain multiple cores and there are 
computer systems featuring multiple processors connected 
to the shared memory (SMP systems). These resources can 
be efficiently employed to minimize communication 
overheads among different job threads or different job 
processes. 

Gang algorithm [12] is suited for high performance 
multiprocessor systems where preemption and job 
resuming doesn’t penalize as much as in loosely coupled 
systems. Each processing elements (processor or processor 
core) time is divided into discrete timeslots. Duration of 
the timeslot is determined relative to the cost of the process 
or thread context switch on the given system. Within one 
timeslot only one thread can be executed. Threads of the 
same process are executed simultaneously on different 
processing elements, but it is a tendency to group them on 
the “close” processing elements. This group of threads is 
referred to as “gang”. For example, threads of the same 
process are grouped on the multiple cores of the same 
processor in order to access shared memory directly and to 
use processor cache efficiently. The only limitation of this 
approach lies in the resources availability on the 
processing element. The sum of all resource requirements 
of all the threads that timeshare one processing element 
should not exceed this limitation. 

There are many benefits of this approach that are typical 
for Unix time share systems. Long, resource consuming 
jobs can be executed without starving other jobs because 
of timesharing. Interactive jobs can appear to have near 



real-time performance. High system utilization is achieved 
for the variety of workloads. 

 
F. Genetic algorithm 

 
Genetic algorithms are traditionally used in different 

optimization and static scheduling algorithms. Job 
scheduling on the computer cluster is a dynamic 
scheduling problem that is highly volatile, especially on 
large clusters. Events such as job submission, job 
completion and change in resource availability occur 
frequently and the scheduling algorithm must perform the 
entire calculation cycle within two events. It is possible to 
aggregate events and perform scheduling taking into 
account the entire new event group, but this leads to 
inefficiencies in the resulting schedule. 

Classic genetic algorithm performs the following steps: 

Genetic algorithm(){ 
initialize population; 

do{ 

  selection; 

  crossover; 

  random mutation; 

}until(fitness(best) is good enough); 

return best; 

} 

An initial population is generated [13] using list 
scheduling heuristics. At first, a small percentage of jobs is 
assigned randomly to resources, which is followed by 
mapping of remasining processes to the processors that 
will finish processing them earliest. This gives reasonably 
distributed starting population. 

The provided fitness function compares theoretical 
optimal processing time to the estimate of the processing 
time. Smaller difference between the two yields to higher 
fitness value. The selection function is a classic roulette 
wheel function. Chances of an individual to be selected are 
proportional to the value of the fitness function for the 
given individual. 

The employed crossover algorithm is well known cycle 
crossover introduced with traveling salesman problem. The 
mutation randomly swaps task between the processors of 
chosen individuals. The mutation is completed by 
performing a re-balancing heuristics to the entire 
population. The re-balancing heuristics selects processor 
with the highest load and then the task assigned to this 
processor is swapped with the shorter task from another 
processor, but only if a shorter task can be found in five 
completely random guesses. The five guesses limit bounds 
on the computation time needed for the mutation to 
complete. 

All the jobs are modeled as single processor jobs with 
the assigned communication cost ci,j needed to employ task 
i on the processor j. It is experimentally deduced that this 
algorithm performs better than simple heuristics such as 
round robin, lightest load which schedules task to the 
processor with lowest current load, earliest first and others. 
The makespan is shortened by 10%-50% depending on the 
algorithm compared to. The processor efficiency is shown 

to be the best for different values of mean communication 
costs. 

This algorithm considers only the subset of unscheduled 
jobs because the computation of the schedule shouldn’t 
allow processors to become idle. The size of subset varies 
with the estimation of the occurrence of the first idle 
processor. In large systems processors become idle 
frequently which causes the scheduler to map lesser 
amount of queued jobs to the cluster resources. This 
improves execution speed of the described genetic 
algorithm but could result in suboptimal schedules. The 
impact of reduced target job subsets to the overall cluster 
performance should be measured. 

 
G. Market based approach 
 

Market based approach [14] to scheduling opposes 
traditional values in cluster scheduling. A conservative 
approach in the design of scheduling algorithms puts 
system utilization as the most import optimization factor. It 
is not necessary for an algorithm that gets a maximum out 
of given resources to provide the greatest satisfaction to 
the users. If optimal utilization causes users to wait 10% 
longer on the average, then a system with 20% lower 
utilization but shorter average wait times would be 
preferred by the users. This leads to increased investment 
in hardware resources in order to make up for the 
utilization drop. The general issue is how to obtain stable 
investment and user satisfaction ratio. This is the type of 
problem where market based techniques stand out. 

If users are made to bid and pay for the resources then 
the resource price will be a reflection of supply and 
demand on the simulated market. In times when resources 
are scarce or when the demand is high, increase in price 
will force some users to back off either because of the 
steep pricing or the indifference for the specific timeslot. 
Market based techniques are shown to be successful on 
both batch systems as well as in time-sharing systems. 
 
 

V. CONCLUSION 
 

In this paper we presented an overview of the most 
frequently used scheduling algorithms. We also addressed 
the factors that impact their performance and design. Since 
algorithms are targeted for different workloads, 
architectures and are employed under different policies, a 
direct comparison of performance cannot be made. Even 
more, performance can be measured using different 
metrics, so in some sections we noted that this can 
potentially affect the results. 

It is generally not feasible to calculate optimal solution 
for most cluster scheduling problems. On the other hand, 
there are efficient algorithms that achieve high 
performance in different metrics under different workload 
types. The main issue in modern scheduling algorithms is a 
demand for very fast response which makes complex 
algorithms not suitable for the job. 

Complexity can be introduced in the algorithm if the 
scheduling procedure can be parallelized. It could also be 
beneficial to use idle machines in timeslots that could not 
serve any better purpose. Maybe it would be performance-



wise to use small percentage of cluster resources even 
when not idling in order to improve targeted cluster metric. 

 
REFERENCES 

 
 [1] D. Bernstein, M. Rodeh and I. Gertner, “On the Complexity 

of Scheduling Problems for Parallel/Pipelined Machines“, 
IEEE Transactions on Computers, vol. 38, p. 1308, 1998. 

 [2] D. Thain, T. Tannenbaum, and Miron Livny, "Distributed 
Computing in Practice: The Condor Experience" 
Concurrency and Computation: Practice and Experience, 
vol. 17, no. 2-4, p. 323, 2005. 

 [3] M. Moore, “An accurate parallel genetic algorithm to 
schedule tasks on a cluster”, Journal of Parallel Computing, 
vol. 30, p. 567, 2004. 

 [4] W. Zhang1, H. Zhang1, H. He and M. Hu, “Multisite Task 
Scheduling on Distributed Computing Grid”, Lecture Notes 
in Computer Science, vol. 3033, p. 57, 2004. 

 [5] C. B. Lee and A. E. Snavely, “Precise and realistic utility 
functions for user-centric performance analysis of 
schedulers”, Proceedings of the 16th international 
symposium on High performance distributed computing, 
Monterey, California, USA, p. 107-116, 2007 

 [6] P. H. Hargrove and J. C. Duell, “Berkeley Lab 
Checkpoint/Restart (BLCR) for Linux Clusters”, In 
Proceedings of SciDAC 2006, 2006 

 [7] S. Srinivasan, R. Kettimuthu, V. Subramani and P. 
Sadayappan, “Characterization of backfilling strategies for 
parallel job scheduling”, In the Proceedings of the Parallel 
Processing Workshops, p.514-519, 2002. 

 [8] D. Tsafrir, and D.G. Feitelson, “The Dynamics of 
Backfilling: Solving the Mystery of Why Increased 
Inaccuracy May Help”, In the Proceedings of  IEEE 
International Symposium on Workload Characterization, p. 
131-141, 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 [9] B. Li and D. Zhao, “Performance Impact of Advance 

Reservations from the Grid on Backfill Algorithms”, In the 
Proceedings of the Sixth International Conference on Grid 
and Cooperative Computing table of contents, p. 456-461, 
2007 

[10] R. Raman, M. Livny, and Marvin Solomon, 
"Matchmaking: Distributed Resource Management for 
High Throughput Computing", In the Proceedings of the 
Seventh IEEE International Symposium on High 
Performance Distributed Computing, p. 140, 1998. 

[11] R. Raman, M. Livny, and M. Solomon, "Policy Driven 
Heterogeneous Resource Co-Allocation with 
Gangmatching", In the Proceedings of the Twelfth IEEE 
International Symposium on High-Performance Distributed 
Computing, p. 80-89, 2003 

[12] M. A. Jette , “Performance characteristics of gang 
scheduling in multiprogrammed environments”, In the 
Proceedings of the 1997 ACM/IEEE conference on 
Supercomputing, p. 1-12, 1997. 

[13] A.J. Page and T.J. Naughton, “Dynamic Task Scheduling 
using Genetic Algorithms for Heterogeneous Distributed 
Computing”, In the Proceedings of 19th IEEE International 
Symposium on Parallel and Distributed Processing, p. 189., 
2005 

[14] B.N. Chun, “Market-based cluster resource management”, 
PhD thesis, University of California, Berkley, 2001. 

 
 
 
  
 
 
 


