
Evolutionary Algorithms for the Resource Constrained Scheduling Problem

Toni Frankola, Marin Golub, Domagoj Jakobovic
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, Zagreb, Croatia
domagoj.jakobovic@fer.hr

Abstract. This paper investigates the use of
evolutionary algorithms for solving resource
constrained scheduling problem which belongs
to the class of NP complete problems. The
problem involves finding optimal sequence of
activities with given resource constraints.
Evolutionary algorithms used in this paper are
genetic algorithms and genetic programming,
for which adequate scheduling mechanisms
are defined. Presented solutions are compared
with existing heuristics or optimal results.

Keywords. resource constrained scheduling,
priority scheduling, genetic programming

1. Introduction

The nature of the problem of resource
constrained scheduling allows users to employ
diverse techniques to find solutions. Various
authors [9][10] worked with different
techniques to find solutions for single instances
of these problems. The downside of these
methods is that they need to be adapted for
each variation of the problem and their
performance deteriorates as number of
activities grows [10].

Genetic algorithms (GA) [14] were applied
to this problem by a number of authors [9].
They used different approaches in representing
a solution to this problem and achieved
respectable results. As a technique, genetic
algorithms have their advantages but
uncertainty and amount of time needed makes
them inappropriate for dynamic environments,
where scheduling conditions may change over
time, and for projects with large number of
activities.

Genetic programming (GP) [1][12] was
rarely used for solving these problems as this
technique is not appropriate for finding optimal
solutions (schedules) [5]. On the other hand,
genetic programming is an ideal technique
when searching for simple and quick
algorithms that can provide solutions to the
problem. Consequently, the algorithms
obtained in this way may serve to produce

schedules of a high quality in a short amount
of time. Moreover, evolved algorithms can be
easily applied to all problems from the
problem domain, i.e. they are able to solve a
problem that was not 'seen' before.

This paper describes the use of GA and GP
for finding the schedules for resource
constrained projects. We present two
approaches for solving this problem: with
genetic algorithms, the appropriate solution
representation allows finding single schedules
of a very good quality. With genetic
programming we describe a methodology to
evolve scheduling heuristics in the form of
priority rules that can be used to find a solution
of an acceptable quality in a small amount of
time. The latter approach can be used in a
dynamic environment where the system
parameters may change over time – i.e. the
activities' parameters may vary, the resources
may become unavailable, new activities may
appear etc. The evolved heuristics can react to
these changes during the run, thus eliminating
the need of repeated time costly search for new
schedules. This approach has, to the best of our
knowledge, not been previously used for
solving resource constrained project
scheduling. In the next section we present the
resource constrained project scheduling model.
The following sections describe the
methodology of finding the schedules with
genetic algorithms and genetic programming.

2. Resource Constrained Project
Scheduling

The resource constrained project scheduling
problem (RCPSP) can be formulated as
follows [10]. A project is a set of 2n +
activities that need to be processed

{ }1, 2,..., , 1, 2J n n n= + + . Activities marked as 1

and 2n + are considered dummy activities
marking source and sink (end) activities. These
activities are not considered in resource
allocation and have a duration of 0 time units.

715
Proceedings of the ITI 2008 30th Int. Conf. on Information Technology Interfaces, June 23-26, 2008, Cavtat, Croatia

In order for a project to complete, all activities
from set J must be completed.

There are a total of k resources available
during whole duration of project. Resources
are in the set { }1, 2,..., kΚ = . Any given

resource is limited with its capacity kR in each
time period. The duration of an activity is
denoted as jd and the amount of resource k

used by an activity j in each time unit is
denoted as ,j kr .

The activities of a project are described
with two constraints:
• precedence constraint: an activity j cannot

start before all preceding activities are
completed;

• resource constraint: in order for activity j

to run it needs to reserve a certain capacity
of resources. Resources are limited so that
only a finite capacity of each resource is
available in each time unit.
The goal of RCPSP is usually to find a

minimal project duration for which all resource
constraints are met. Additionally, activities are
generally forced to run without interruption,
i.e. once activity is activated it cannot be
stopped for its total duration time.

Figure 1. A sample project

A simple project is shown in Fig. 1. The
project contains nine activities that have to be
executed, where activities 1 and 9 are dummy
activities that have duration of 0 units and do
not require any resources for execution. The
figures below each activity denote duration and
capacity of resource needed. Only one resource
(R1) is required for this project and there are
four units of this resource available in each
time unit. With ideal scheduling this project
has optimal makespan of 16 time units. The
optimal sequence of activities is shown in Fig.
2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 2

8

3

4

5 6

t

R1

1

2

3

4

Figure 2. Optimal sequence of activities

3. Priority Scheduling With Genetic
Algorithms

In RCPSP the greatest problem with genetic
algorithms, and evolutionary algorithms in
general, is finding a suitable chromosome
representation. Representing a chromosome in
this problem as a sequence of activities is
possible but would require a complex
functional set. If a chromosome is coded as
sequence of activities, standard crossover and
mutation operators over an individual would
often result in non-feasible solutions that do
not satisfy the precedence constraints. A
number of authors [1][3][7][8][13][17][17]
have looked into this problem and found
different solutions. Traditional research was
concentrated on operational research [10] and
in last years numerous new heuristics were
proposed including genetic algorithms, tabu
search, simulated annealing and ant systems
[9]. Different approaches have been taken for
solving this problem with genetic algorithms,
including priority based encoding [13],
sequence scheduling and rule based scheduling
[3].

In this work the priority based chromosome
representation was used for GA, i.e. a
chromosome is a list of priority values for all
activities in a project. The chromosomes are
encoded as permutations of distinctive values
so that no two activities have the same priority.
The choice of the next activity that can book
resources is based on their respective priority
and resource availability. For example, the
chromosome ()0, 6, 5, 2, 3,1, 7, 4, 0 would, for

the project in Fig. 1, yield the schedule in Fig
2. (dummy activities 1 and 9 always have
priority of 0).

Initial population is generated randomly
(i.e. we do not presume we already have the
best known or any other solution).

716

3.1. Calculating Project Makespan from
Priority Sequence

The method for calculation of project
makespan uses the list of priorities of project
activities as an input parameter. With given
priorities for each activity, the method virtually
'runs' current project. All constraints defined in
project network plan and resource constraints
are taken into account. When more than one
activity becomes available, the activity with
higher priority will be granted all the requested
resources. The activity with lower priority will
then be granted resources only if resource
constraints are not violated. The procedure for
calculating project makespan can be described
with the algorithm in Fig. 3.

procedure(calculate makespan)

for (each activity i) {

 priority iP = extract from chromosome;

}
while (there are unprocessed activities) {

activeActivities = activities whose
predecessors are completed;

 sort activeActivities by iP ;

 while (there are activities in
activeActivities and resources are
available) {
 assign resources to activities;
 }
 update projectDuration;
}

Figure 3. Project simulation algorithm

3.2. Test Cases

The algorithms described in the paper were
tested on resource constrained projects from
PSPLIB developed by Kolisch et al [11]. The
library for RCPSP contains 2040 projects with
30, 60, 90 or 120 activities. The projects from
the library also include solutions obtained by
different methods which present either optimal,
best known or lower bound solutions.

3.3. Fitness Function

Fitness function of a GA individual is
defined simply as makespan of the project that
was scheduled using activity priorities encoded
in the individual. Genetic algorithm is set to
find an individual with minimal fitness,
meaning that chromosomes that produce lower
makespan are considered to be better ones.

3.4. Results

We concluded two sets of experiments to
evaluate genetic algorithm efficiency. In the
first set of experiments, we ran GA on four
randomly chosen projects from each project
class (30, 60, 90 and 120 activities). These
experiments served to find an adequate set of
parameters and to show expected variations of
GA results over multiple runs. The GA
parameters were varied in terms of population
size and total number of generations and 10
runs were executed for each parameter set and
for each selected project. Table 1 shows the set
of parameters for which the best results were
obtained.

Table 1. The genetic algorithm parameters

Parameter /
operator Value / description

population size 500

selection
Steady state, tournament
size 3

stopping criteria

Maximum number of
generations (300) or
maximum number of
consecutive generations
without best solution
improvement (50)

crossover
50% probability, uniform
vector crossover

mutation
5% probability, swap
mutation

Instead of fitness value, which equals the
project makespan, the results are expressed as
the relative difference from the optimal (or
best known) project makespan:

_ GA OPT

OPT

m m
rel diff

m

−
= , (1)

where GAm is makespan obtained with GA
and OPTm is known optimal makespan. The
results from this set of experiments in the form
of mean relative difference and standard
deviation (in brackets) are shown in Table 2.

Based on those results, we chose the
combination of 500 individuals in a population
and maximum number of 300 generations
(with at most 50 generations without
improvement) as the adequate parameter setup.
The second set of experiments served to show
overall GA efficiency on different projects.

717

Rather than solving every test case in the test
bed, we included random 10 projects from
each project class and ran it with the chosen
parameters. Each project is optimized only
once and the results are expressed as the
average relative difference from known
optimum for each project group regarding the
number of activities. The results for this set of
experiments are shown in Table 3.

Table 2. Results with different GA
parameters

Population size / Number of
generations

Problem
size (no. of
activities) 100/200 200/300 500/300

30
3.57 %
(σ = 0.0)

3.57 %
(σ = 0.0)

3.57 %
(σ = 0.0)

60
8.19 %
(σ = 1.2)

7.34 %
(σ = 1.1)

6.28 %
(σ = 0.8)

90
9.72 %
(σ = 1.2)

8.17 %
(σ = 1.1)

7.75 %
(σ = 0.7)

120
13.05 %
(σ = 1.3)

12.47 %
(σ = 1.4)

10.58 %
(σ = 0.9)

Results in the table are comparable to those
presented in [9]. Although genetic algorithm is
able to find solutions with very small
deviations from known optimal solutions, the
described approach has disadvantages that
prevent its commercial exploitation. Namely,
GA cannot guarantee that a solution of an
acceptable quality will be found in each run
and the time for finding a solution can be
longer than we are willing to lose, which could
be impractical for implementation into
commercial software. In our GA experiments,
a single GA run lasted anywhere from several
minutes for smallest 30-activities projects, to 9
hours for 120-activities projects. In the
following section we present a possible use of
genetic programming to amend these
problems.

Table 3. Average GA results

Problem size Average rel. difference
to optimum

30 activities 1.36 %
60 activities 3.73 %
90 activities 1.92 %
120 activities 8.20 %

4. Priority Scheduling With Genetic
Programming

The genetic algorithm described in the
previous section deals with individuals that are
lists of priority values for each activity in a
scheduling instance. In other words, each GA
individual can be decoded in a solution for a
single RCPSP. For each new project the GA
has to be restarted and the whole evolution
process repeated to obtain a new solution,
because the GA searches the space of solutions
of the problem. With genetic programming, on
the other hand, we have the ability to search
the space of programs that provide a solution
to the problem.

In this work we use the priority scheduling
paradigm with GP approach. In priority
scheduling, real world schedulers may use a
scheduling rule that, given current conditions
and certain activity properties, schedules
activities based on their priorities. The term
'scheduling rule' in a narrow sense often
represents only the priority function used to
define relative importance of an activity, i.e. its
priority. Examples of those functions include
for instance LPT (longest processing time),
LNS (largest number of successors) etc. The
actual scheduling algorithm simply calls upon
that function to determine which activity to
start next.

In our implementation, the task of GP is to
find an appropriate priority function that can
be used to calculate priorities for all activities
in any project. The priority function evolved
with GP will therefore be used to obtain
schedules for every new RCPSP instance. The
individual of a genetic program is thus
represented with a single tree that embodies
the priority function (an example in Fig. 4 is
given below). The variables that appear in the
priority function (also called GP terminals) are
various activity properties (i.e. duration,
resource usage etc.) that may be used to assess
activity importance. A single GP individual
(single priority function) is evaluated on
several projects (the learning set), since our
aim is to evolve a priority rule that can be used
in new unseen problem instances. After a GP
run is finished, the best evolved priority rule is
then tested on the evaluation set of RCPS
problems.

The time complexity of scheduling with a
priority rule is negligible compared to search
based techniques such as GA, since the priority

718

function has a complexity of ()1O and it is

called only when a new activity may be
started. For instance, we were able to provide
solutions for all the test cases (described
below) within a second. That is, of course,
possible only after a priority function has been
obtained by GP in one or more runs. It should
be noted that a single GP run in our
experiments usually takes several hours, but
this can be done beforehand and not need to be
repeated once an adequate priority rule is
evolved. This approach is therefore especially
suitable for use in dynamic conditions where
system variables may change over time.

4.1. The Function and Terminal Set

The most important task for creating a good
GP program is finding a sufficient set of
operators and terminals (variables). The
complete set of operators and terminals used in
our genetic program is presented in Table 4.

Table 4. The operator and terminal set

Operator
name

Definition

ADD,
SUB,
MUL

binary addition, subtraction and
multiplication operators

DIV protected division:

() 1, if 0.000001
,

, otherwise

b
DIV a b

a b

<
=

Terminal
name

Definition

D Activity duration (in time units)
RR Total number of resources

required for activity completion
RRT Total number of resources times

quantity required from each
resource

ARU Average resource usage
SC Total number of activities that

succeed current activity
PC Total number of activities that

precede current activity

As shown in the above table, all terminals
are attributes of an activity. The terminal D
represents the duration of the activity and is
expressed as an integer number of time units.
The terminal RR is a total number of resources
required to run the activity (there are at most

four different resources available in each test
case in the test bed). Each activity (except for
source and sink activity) must require at least
one of four available resources and activities
may require different quantities of different
resources. The quantity of the requested
resource cannot be changed during activity
runtime. The terminal RRT (requested
resources total) is defined as

0

k

i
i

RRT D Q
=

= (2)

and ARU (average resource usage) as

RRT
ARU

RR
= (3)

where iQ is the quantity of resource i

required by current activity in each time unit.

4.2. Fitness Function

Using the operators and variables defined
above, the GP population may include any
syntactically valid combination of those as
individuals. Additionally, standard GP tree
crossover and mutation operators, as well as
tree creation algorithms, will always maintain
the syntactic correctness. An example of a GP
individual in this problem is shown in Fig. 4.

Figure 4. An example GP individual

The above individual represents the priority
function ()D RR SC SC⋅ + which, when used

as a priority value (for activity comparison),
reduces to D RR⋅ . This rule will therefore
favor activities that last longer and require a
larger number of different resources. The
fitness of this individual is determined as its
performance over a number of learning test
cases (as opposed to GA individual fitness
which can only be evaluated against a single
test case).

In the process of evaluation, an individual
in GP population is used to calculate the

MUL

DIV

D

RR

SC SC

ADD

719

priorities for those activities that at a given
moment compete for resource usage. When the
priority is obtained, it is used in the same way
as in the scheduling process with priorities
decoded from a GA individual: the project
makespan is determined using the simulation
algorithm described in the previous section.
The same individual is applied to generate
schedules of all the projects in the learning set
of test cases. The fitness value is then defined
as the average relative difference from optimal
(or best known) makespan value for all the test
cases:

,

,

1 i i OPT
GP i

i OPT

m m
fitness

t m

−
= (4)

where i is the test case index, ,i OPTm is the

optimal value, im is makespan obtained from
an individual and t is the total number of test
cases. In our experiments the optimal or lower
bound solution was always available, but in the
case where they are not known, we may define
the fitness function as the sum (or average) of
total makespan values for all the test cases.

When GP is evolving on the training set,
the fitness is evaluated as described in the
algorithm in Fig. 5 which makes use of the
makespan calculating procedure defined in the
previous section.

procedure(evaluate GP individual)

for (each project iP in training set TS) {

for (each activity j in project iP) {

 calculate priority using current GP
individual;
 }

im = procedure(calculate makespan);

 update individual fitness;
}

Figure 5. Priority function evaluation

4.3. Test Cases

Genetic programming was tested on the
same test data as genetic algorithms [11]. In
our experiments we used two sets of projects.
The first set (learning set) consisted of 10% of
projects (204) randomly selected from
database containing an equal combination of
projects with 30, 60, 90 and 120 activities. The
second set (evaluation set) contained all the
other projects (1836 instances) from the
database. The GP was run on the learning set
and results shown here were then obtained by

testing the best evolved priority function on the
evaluation set.

4.4. Results

As with genetic algorithm, we
experimented with a limited number of
combinations of parameters for genetic
programming. Specifically, we varied the size
of the population and maximum depth of trees.
All the other parameters of the evolution
process were constant and they are presented
in Table 5.

Table 5. The GP parameters

Parameter /
operator

Value / description

selection steady-state, tournament of
size 3

stopping
criteria

maximum number of
generations (80) or
maximum number of
consecutive generations
without best individual
improvement (30)

crossover 85% probability, standard
crossover

mutation standard, swap and shrink
mutation, 3% probability for
each

reproduction 5% probability
initialization ramped half-and-half, max.

depth of 5

The results achieved with different
population sizes and tree depths are shown in
Table 6, where for each combination of those
parameters 15 GP runs were conducted. The
values in the table represent mean fitness value
(which is the difference from the optimal or
best known solution) and standard deviation
obtained on the evaluation set of test cases. It
can be seen from the table that parameter
changes did not have a substantial effect on the
quality of evolved priority functions.
Nevertheless, the combination with population
size of 10000 and tree depth of 9 achieved
slightly better results than the other
combinations.

Mean fitness values obtained with GP
evolved priority rule are in most cases worse
than those obtained by running a GA on every
project in the evaluation set. This is not
surprising, as GA solves each test case

720

separately, but the time that GA would need to
solve all the evaluation test cases could easily
reach several weeks on a single computer,
whereas with a (previously evolved) priority
rule the schedules can be generated in less than
a second.

Table 6. Average GP results

Population
size

Tree
depth

Mean (std.
deviation)

2000 9 13.54 % (0.06)
5000 15 13.50 % (0.24)
10000 9 13.37 % (0.11)

It is interesting to see how a single evolved
priority function behaves on different problems
regarding its efficiency. The distribution of
relative makespan differences on all the
problems in evaluation set for a single GP
priority rule is shown in Fig. 6.

Figure 6. The distribution of makespan
deviations from optimal value for a single

GP priority function

4.5. Discussion

The distribution in Fig. 6 shows that GP
priority rules can cope successfully with a
majority of RCPS problems. There is still a
number of projects in which the obtained rule
was not of a great quality, but this phenomena
is always present when using any other human
made scheduling heuristic (on a general set of
independent test cases, no single heuristic can
exert better performance than any other
heuristic on all the problem instances [15]).

We have to state that the proposed GP
approach is not suitable in a situation where
only the optimal or a near-optimal solution is
allowed and there is ample time for schedule
generation and we are certain that the system
parameters will not change during system

execution. If that is the case, we are probably
better off with an algorithm that searches the
space of schedules (such as GA, branch and
bound etc.) and may use as much time as
possible. However, if any of the previous
assumptions do not hold, e.g. in on-line
scheduling systems [16] or in computer cluster
environment [3], the GP approach may offer a
quick solution of an acceptable quality.

The described method of evolving priority
functions with GP may be especially useful in
specific user-defined scheduling environments
where there are no suitable heuristics, or the
existing ones are not directly applicable [6].
Furthermore, if one needs to obtain schedules
with another scheduling criteria, the only
adaptation we need to make is to define a
different fitness function for the GP system.

It should be noted that the GP trees in our
implementation usually include a number of
introns – the parts of the priority function that
do not contribute to the resulting function
value (such as the division of two identical
terminals, which always equals one). The
greatest problem with GP priority functions in
our view, however, is not their oversizing, but
the possible inclusion of parts that in the
majority of test cases do not contribute
significally to the calculation of priority, but
may be the cause of results of a lower quality
obtained in some (previously unseen) problem
instances. This phenomenon, as well as the
ever present danger of overfitting the heuristics
to the learning set of problems, is the main
issue we still need to clarify.

5. Conclusion

In this work we have presented two
approaches for finding schedules of RCPSP.
The goal was to find a solving methodology
that could be easily applied to real word
problems. Besides finding a method that can
produce accurate results, we wanted to find a
method that is quick and whose quality is
acceptable in each run. The two presented
methods, GA and GP, share the same idea of
evolution but they operate on a different
principle. Although results achieved with GA
are comparable with solutions found with other
heuristics, this technique tends to be slow and
unpredictable for implementation into
commercial software for finding schedules. GP
approach shares the same advantages as GA,
but a given GP priority rule, evolved in the

721

form of a priority function, could be easily
implemented into a commercial software
product (or even used by practitioners in the
field without additional software, as some
human made heuristics are).

Furthermore, the scheduling rule obtained
with GP can be applied in a dynamic
environment where the project parameters and
characteristics are allowed to change during
the project execution. In that kind of situation
it is not practical to employ a search based
procedure, such as genetic algorithm, because
it may take more time that we are willing to
lose and it has to be adapted to take into
account the fact that the part of the project is
already underway and additional
synchronization constraints must be defined.
On the other hand, GP evolved scheduling rule
can give the solution in the form of the next
state of the system practically instantaneously.

Future work includes applying this method
to different resource constrained libraries,
larger projects and multimode RCPSP.

6. References

[1] Banzhaf W. et al. Genetic Programming –
An Introduction. San Francisco: Morgan
Kaufmann Publishers; 1998.

[2] Bartschi Wall M. A Genetic Algorithm for
Resource-Constrained Scheduling. PhD
thesis. Massachusetts Institute of
Technology; 1996.

[3] Grudenic I, Bogunovic N. Analysis of
Scheduling Algorithms for Computer
Clusters. In: Proc. 31th Int'l Convention
MIPRO 2008; Opatija, Croatia (to appear)

[4] Hartmann S. A competitive genetic
algorithm for resource-constrained project
scheduling. Naval Research Logistics;
1998.

[5] Jakobovi D, Budin L. Dynamic
Scheduling with Genetic Programming.
Lecture Notes in Computer Science 2006;
3905:73-85.

[6] Jakobovic D, Jelenkovic L, Budin L.
Genetic Programming Heuristics for
Multiple Machine Scheduling. Lecture
Notes in Computer Science 2007;
4445:321-330

[7] Kamaraien O, Ek V, Nieminen K, Ruuth
S. Large scale generalized resource
constrained scheduling problems: A
genetic algorithm approach. IC-Parc,
Imperial College, London; 2003.

[8] Kim J. A framework for integration model
of resource-constrained scheduling using
genetic algorithms. In: Proceedings of the
37th conference on Winter simulation;
2005; Orlando, Florida. Orlando: Winter
Simulation Conference; 2005. p. 2119 -
2126

[9] Kolisch R, Hartmann S. Experimental
investigation of heuristics for resource-
constrained project scheduling: An update.
European Journal of Operational Research
2006; 174(1):23-37.

[10] Kolisch R, Hartmann S. Heuristic
algorithms for solving the resource-
constrained project scheduling problem:
Classification and computational analysis.
In J.Weglarz, editor. Project scheduling:
Recent models, algorithms and
applications, pp 147–178. Kluwer
Academic Publishers; 1999.

[11] Kolisch R, Spracher, A. PSPLIB — A
project scheduling problem library.
European Journal of Operational Research
1997; 96(1):205–216

[12] Koza J. Genetic Programming.
Cambridge: MIT Press; 1992.

[13] Mendes J, Gonçalves J, Resende M. A
Random Key Based Genetic Algorithm for
the Resource Constrained Project
Scheduling Problem. AT&T Labs
Research Technical Report TD-6DUK2C;
2003.

[14] Michalewicz Z. Genetic Algorithms +
Data Structures = Evolution Programs.
New York: Springer-Verlag; 1994.

[15] Morton TE, Pentico DW. Heuristic
Scheduling Systems. John Wiley & Sons,
Inc; 1993.

[16] Pinedo M. Offline deterministic
scheduling, stochastic scheduling, and
online deterministic scheduling: A
comparative overview. In: Leung JYT.
editor. Handbook of Scheduling. Chapman
& Hall/CRC; 2004.

[17] Sriprasert E, Dawood N. Genetic
algorithms for multi-constraint scheduling:
An application for the construction
industry. Centre for Construction
Innovation Research, University of
Teeside; 2003.

722

