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Abstract. This paper investigates the use of 
evolutionary algorithms for solving resource 
constrained scheduling problem which belongs 
to the class of NP complete problems. The 
problem involves finding optimal sequence of 
activities with given resource constraints. 
Evolutionary algorithms used in this paper are 
genetic algorithms and genetic programming, 
for which adequate scheduling mechanisms 
are defined. Presented solutions are compared 
with existing heuristics or optimal results. 
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1. Introduction 

The nature of the problem of resource 
constrained scheduling allows users to employ 
diverse techniques to find solutions. Various 
authors [9][10] worked with different 
techniques to find solutions for single instances 
of these problems. The downside of these 
methods is that they need to be adapted for 
each variation of the problem and their 
performance deteriorates as number of 
activities grows [10]. 

Genetic algorithms (GA) [14] were applied 
to this problem by a number of authors [9]. 
They used different approaches in representing 
a solution to this problem and achieved 
respectable results. As a technique, genetic 
algorithms have their advantages but 
uncertainty and amount of time needed makes 
them inappropriate for dynamic environments, 
where scheduling conditions may change over 
time, and for projects with large number of 
activities.  

Genetic programming (GP) [1][12] was 
rarely used for solving these problems as this 
technique is not appropriate for finding optimal 
solutions (schedules) [5]. On the other hand, 
genetic programming is an ideal technique 
when searching for simple and quick 
algorithms that can provide solutions to the 
problem. Consequently, the algorithms 
obtained in this way may serve to produce 

schedules of a high quality in a short amount 
of time. Moreover, evolved algorithms can be 
easily applied to all problems from the 
problem domain, i.e. they are able to solve a 
problem that was not 'seen' before. 

This paper describes the use of GA and GP 
for finding the schedules for resource 
constrained projects. We present two 
approaches for solving this problem: with 
genetic algorithms, the appropriate solution 
representation allows finding single schedules 
of a very good quality. With genetic 
programming we describe a methodology to 
evolve scheduling heuristics in the form of 
priority rules that can be used to find a solution 
of an acceptable quality in a small amount of 
time. The latter approach can be used in a 
dynamic environment where the system 
parameters may change over time – i.e. the 
activities' parameters may vary, the resources 
may become unavailable, new activities may 
appear etc. The evolved heuristics can react to 
these changes during the run, thus eliminating 
the need of repeated time costly search for new 
schedules. This approach has, to the best of our 
knowledge, not been previously used for 
solving resource constrained project 
scheduling. In the next section we present the 
resource constrained project scheduling model. 
The following sections describe the 
methodology of finding the schedules with 
genetic algorithms and genetic programming. 

2. Resource Constrained Project 
Scheduling 

The resource constrained project scheduling 
problem (RCPSP) can be formulated as 
follows [10]. A project is a set of 2n +
activities that need to be processed 

{ }1, 2,..., , 1, 2J n n n= + + . Activities marked as 1 

and 2n +  are considered dummy activities 
marking source and sink (end) activities. These 
activities are not considered in resource 
allocation and have a duration of 0 time units. 
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In order for a project to complete, all activities 
from set J must be completed. 

There are a total of k resources available 
during whole duration of project. Resources 
are in the set { }1, 2,..., kΚ = . Any given 

resource is limited with its capacity kR  in each 
time period. The duration of an activity is 
denoted as jd  and the amount of resource k

used by an activity j  in each time unit is 
denoted as ,j kr .

The activities of a project are described 
with two constraints: 
• precedence constraint: an activity j  cannot 

start before all preceding activities are 
completed; 

• resource constraint: in order for activity j

to run it needs to reserve a certain capacity 
of resources. Resources are limited so that 
only a finite capacity of each resource is 
available in each time unit. 
The goal of RCPSP is usually to find a 

minimal project duration for which all resource 
constraints are met. Additionally, activities are 
generally forced to run without interruption, 
i.e. once activity is activated it cannot be 
stopped for its total duration time. 

Figure 1. A sample project 

A simple project is shown in Fig. 1. The 
project contains nine activities that have to be 
executed, where activities 1 and 9 are dummy 
activities that have duration of 0 units and do 
not require any resources for execution. The 
figures below each activity denote duration and 
capacity of resource needed. Only one resource 
(R1) is required for this project and there are 
four units of this resource available in each 
time unit. With ideal scheduling this project 
has optimal makespan of 16 time units. The 
optimal sequence of activities is shown in Fig. 
2. 
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Figure 2. Optimal sequence of activities 

3. Priority Scheduling With Genetic 
Algorithms 

In RCPSP the greatest problem with genetic 
algorithms, and evolutionary algorithms in 
general, is finding a suitable chromosome 
representation. Representing a chromosome in 
this problem as a sequence of activities is 
possible but would require a complex 
functional set. If a chromosome is coded as 
sequence of activities, standard crossover and 
mutation operators over an individual would 
often result in non-feasible solutions that do 
not satisfy the precedence constraints. A 
number of authors [1][3][7][8][13][17][17] 
have looked into this problem and found 
different solutions. Traditional research was 
concentrated on operational research [10] and 
in last years numerous new heuristics were 
proposed including genetic algorithms, tabu 
search, simulated annealing and ant systems 
[9]. Different approaches have been taken for 
solving this problem with genetic algorithms, 
including priority based encoding [13], 
sequence scheduling and rule based scheduling 
[3]. 

In this work the priority based chromosome 
representation was used for GA, i.e. a 
chromosome is a list of priority values for all 
activities in a project. The chromosomes are 
encoded as permutations of distinctive values 
so that no two activities have the same priority. 
The choice of the next activity that can book 
resources is based on their respective priority 
and resource availability. For example, the 
chromosome ( )0, 6, 5, 2, 3,1, 7, 4, 0  would, for 

the project in Fig. 1, yield the schedule in Fig 
2. (dummy activities 1 and 9 always have 
priority of 0). 

Initial population is generated randomly 
(i.e. we do not presume we already have the 
best known or any other solution).  
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3.1. Calculating Project Makespan from 
Priority Sequence 

The method for calculation of project 
makespan uses the list of priorities of project 
activities as an input parameter. With given 
priorities for each activity, the method virtually 
'runs' current project. All constraints defined in 
project network plan and resource constraints 
are taken into account. When more than one 
activity becomes available, the activity with 
higher priority will be granted all the requested 
resources. The activity with lower priority will 
then be granted resources only if resource 
constraints are not violated. The procedure for 
calculating project makespan can be described 
with the algorithm in Fig. 3. 

procedure(calculate makespan) 

for (each activity i ) { 

 priority iP  = extract from chromosome; 

}
while (there are unprocessed activities) { 

activeActivities = activities whose 
predecessors are completed; 

 sort activeActivities by iP ;

 while (there are activities in 
activeActivities and resources are 
available) { 
  assign resources to activities; 
 } 
 update projectDuration; 
}

Figure 3. Project simulation algorithm 

3.2. Test Cases 

The algorithms described in the paper were 
tested on resource constrained projects from 
PSPLIB developed by Kolisch et al [11]. The 
library for RCPSP contains 2040 projects with 
30, 60, 90 or 120 activities. The projects from 
the library also include solutions obtained by 
different methods which present either optimal, 
best known or lower bound solutions.  

3.3. Fitness Function 

Fitness function of a GA individual is 
defined simply as makespan of the project that 
was scheduled using activity priorities encoded 
in the individual. Genetic algorithm is set to 
find an individual with minimal fitness, 
meaning that chromosomes that produce lower 
makespan are considered to be better ones. 

3.4. Results 

We concluded two sets of experiments to 
evaluate genetic algorithm efficiency. In the 
first set of experiments, we ran GA on four 
randomly chosen projects from each project 
class (30, 60, 90 and 120 activities). These 
experiments served to find an adequate set of 
parameters and to show expected variations of 
GA results over multiple runs. The GA 
parameters were varied in terms of population 
size and total number of generations and 10 
runs were executed for each parameter set and 
for each selected project. Table 1 shows the set 
of parameters for which the best results were 
obtained.  

Table 1. The genetic algorithm parameters 

Parameter / 
operator Value / description 

population size 500 

selection 
Steady state, tournament 
size 3 

stopping criteria 

Maximum number of 
generations (300) or 
maximum number of 
consecutive generations 
without best solution 
improvement (50) 

crossover 
50% probability, uniform 
vector crossover  

mutation 
5% probability, swap 
mutation 

Instead of fitness value, which equals the 
project makespan, the results are expressed as 
the relative difference from the optimal (or 
best known) project makespan: 

_ GA OPT

OPT

m m
rel diff

m

−
= , (1) 

where GAm  is makespan obtained with GA 
and OPTm  is known optimal makespan. The 
results from this set of experiments in the form 
of mean relative difference and standard 
deviation (in brackets) are shown in Table 2. 

Based on those results, we chose the 
combination of 500 individuals in a population 
and maximum number of 300 generations 
(with at most 50 generations without 
improvement) as the adequate parameter setup. 
The second set of experiments served to show 
overall GA efficiency on different projects. 
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Rather than solving every test case in the test 
bed, we included random 10 projects from 
each project class and ran it with the chosen 
parameters. Each project is optimized only 
once and the results are expressed as the 
average relative difference from known 
optimum for each project group regarding the 
number of activities. The results for this set of 
experiments are shown in Table 3. 

Table 2. Results with different GA 
parameters  

Population size / Number of 
generations 

Problem 
size (no. of 
activities) 100/200 200/300 500/300 

30
3.57 % 
(σ = 0.0) 

3.57 % 
(σ = 0.0) 

3.57 % 
(σ = 0.0) 

60
8.19 % 
(σ = 1.2) 

7.34 % 
(σ = 1.1) 

6.28 % 
(σ = 0.8) 

90
9.72 % 
(σ = 1.2) 

8.17 % 
(σ = 1.1) 

7.75 % 
(σ = 0.7) 

120
13.05 % 
(σ = 1.3) 

12.47 % 
(σ = 1.4) 

10.58 % 
(σ = 0.9) 

Results in the table are comparable to those 
presented in [9]. Although genetic algorithm is 
able to find solutions with very small 
deviations from known optimal solutions, the 
described approach has disadvantages that 
prevent its commercial exploitation. Namely, 
GA cannot guarantee that a solution of an 
acceptable quality will be found in each run 
and the time for finding a solution can be 
longer than we are willing to lose, which could 
be impractical for implementation into 
commercial software. In our GA experiments, 
a single GA run lasted anywhere from several 
minutes for smallest 30-activities projects, to 9 
hours for 120-activities projects. In the 
following section we present a possible use of 
genetic programming to amend these 
problems. 

Table 3. Average GA results  

Problem size Average rel. difference 
to optimum  

30 activities 1.36 % 
60 activities 3.73 % 
90 activities 1.92 % 
120 activities 8.20 % 

4. Priority Scheduling With Genetic 
Programming 

The genetic algorithm described in the 
previous section deals with individuals that are 
lists of priority values for each activity in a 
scheduling instance. In other words, each GA 
individual can be decoded in a solution for a 
single RCPSP. For each new project the GA 
has to be restarted and the whole evolution 
process repeated to obtain a new solution, 
because the GA searches the space of solutions 
of the problem. With genetic programming, on 
the other hand, we have the ability to search 
the space of programs that provide a solution 
to the problem.  

In this work we use the priority scheduling 
paradigm with GP approach. In priority 
scheduling, real world schedulers may use a 
scheduling rule that, given current conditions 
and certain activity properties, schedules 
activities based on their priorities. The term 
'scheduling rule' in a narrow sense often 
represents only the priority function used to 
define relative importance of an activity, i.e. its 
priority. Examples of those functions include 
for instance LPT (longest processing time), 
LNS (largest number of successors) etc. The 
actual scheduling algorithm simply calls upon 
that function to determine which activity to 
start next. 

In our implementation, the task of GP is to 
find an appropriate priority function that can 
be used to calculate priorities for all activities 
in any project. The priority function evolved 
with GP will therefore be used to obtain 
schedules for every new RCPSP instance. The 
individual of a genetic program is thus 
represented with a single tree that embodies 
the priority function (an example in Fig. 4 is 
given below). The variables that appear in the 
priority function (also called GP terminals) are 
various activity properties (i.e. duration, 
resource usage etc.) that may be used to assess 
activity importance. A single GP individual 
(single priority function) is evaluated on 
several projects (the learning set), since our 
aim is to evolve a priority rule that can be used 
in new unseen problem instances. After a GP 
run is finished, the best evolved priority rule is 
then tested on the evaluation set of RCPS 
problems.  

The time complexity of scheduling with a 
priority rule is negligible compared to search 
based techniques such as GA, since the priority 
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function has a complexity of ( )1O  and it is 

called only when a new activity may be 
started. For instance, we were able to provide 
solutions for all the test cases (described 
below) within a second. That is, of course, 
possible only after a priority function has been 
obtained by GP in one or more runs. It should 
be noted that a single GP run in our 
experiments usually takes several hours, but 
this can be done beforehand and not need to be 
repeated once an adequate priority rule is 
evolved. This approach is therefore especially 
suitable for use in dynamic conditions where 
system variables may change over time. 

4.1. The Function and Terminal Set 

The most important task for creating a good 
GP program is finding a sufficient set of 
operators and terminals (variables). The 
complete set of operators and terminals used in 
our genetic program is presented in Table 4. 

Table 4. The operator and terminal set  

Operator 
name 

Definition 

ADD, 
SUB, 
MUL 

binary addition, subtraction and 
multiplication operators 

DIV protected division: 

( ) 1, if 0.000001
,

, otherwise

b
DIV a b

a b

<
=

Terminal 
name 

Definition 

D Activity duration (in time units) 
RR Total number of resources 

required for activity completion 
RRT Total number of resources times 

quantity required from each 
resource 

ARU Average resource usage  
SC Total number of activities that 

succeed current activity 
PC Total number of activities that 

precede current activity 

As shown in the above table, all terminals 
are attributes of an activity. The terminal D
represents the duration of the activity and is 
expressed as an integer number of time units. 
The terminal RR  is a total number of resources 
required to run the activity (there are at most 

four different resources available in each test 
case in the test bed). Each activity (except for 
source and sink activity) must require at least 
one of four available resources and activities 
may require different quantities of different 
resources. The quantity of the requested 
resource cannot be changed during activity 
runtime. The terminal RRT  (requested 
resources total) is defined as 

0

k

i
i

RRT D Q
=

= (2) 

and ARU  (average resource usage) as 

RRT
ARU

RR
= (3) 

where iQ  is the quantity of resource i

required by current activity in each time unit. 

4.2. Fitness Function 

Using the operators and variables defined 
above, the GP population may include any 
syntactically valid combination of those as 
individuals. Additionally, standard GP tree 
crossover and mutation operators, as well as 
tree creation algorithms, will always maintain 
the syntactic correctness. An example of a GP 
individual in this problem is shown in Fig. 4. 

Figure 4. An example GP individual 

The above individual represents the priority 
function ( )D RR SC SC⋅ +  which, when used 

as a priority value (for activity comparison), 
reduces to D RR⋅ . This rule will therefore 
favor activities that last longer and require a 
larger number of different resources. The 
fitness of this individual is determined as its 
performance over a number of learning test 
cases (as opposed to GA individual fitness 
which can only be evaluated against a single 
test case). 

In the process of evaluation, an individual 
in GP population is used to calculate the 

MUL

DIV

D

RR

SC SC

ADD
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priorities for those activities that at a given 
moment compete for resource usage. When the 
priority is obtained, it is used in the same way 
as in the scheduling process with priorities 
decoded from a GA individual: the project 
makespan is determined using the simulation 
algorithm described in the previous section. 
The same individual is applied to generate 
schedules of all the projects in the learning set 
of test cases. The fitness value is then defined 
as the average relative difference from optimal 
(or best known) makespan value for all the test 
cases: 

,

,

1 i i OPT
GP i

i OPT

m m
fitness

t m

−
= (4) 

where i  is the test case index, ,i OPTm  is the 

optimal value, im  is makespan obtained from 
an individual and t  is the total number of test 
cases. In our experiments the optimal or lower 
bound solution was always available, but in the 
case where they are not known, we may define 
the fitness function as the sum (or average) of 
total makespan values for all the test cases. 

When GP is evolving on the training set, 
the fitness is evaluated as described in the 
algorithm in Fig. 5 which makes use of the 
makespan calculating procedure defined in the 
previous section. 

procedure(evaluate GP individual)

for (each project iP  in training set TS ) { 

for (each activity j  in project iP ) { 

  calculate priority using current GP 
individual;
 } 

im  = procedure(calculate makespan); 

 update individual fitness; 
}

Figure 5. Priority function evaluation 

4.3. Test Cases 

Genetic programming was tested on the 
same test data as genetic algorithms [11]. In 
our experiments we used two sets of projects. 
The first set (learning set) consisted of 10% of 
projects (204) randomly selected from 
database containing an equal combination of 
projects with 30, 60, 90 and 120 activities. The 
second set (evaluation set) contained all the 
other projects (1836 instances) from the 
database. The GP was run on the learning set 
and results shown here were then obtained by 

testing the best evolved priority function on the 
evaluation set. 

4.4. Results 

As with genetic algorithm, we 
experimented with a limited number of 
combinations of parameters for genetic 
programming. Specifically, we varied the size 
of the population and maximum depth of trees. 
All the other parameters of the evolution 
process were constant and they are presented 
in Table 5. 

Table 5. The GP parameters 

Parameter / 
operator 

Value / description 

selection steady-state, tournament of 
size 3 

stopping 
criteria 

maximum number of 
generations (80) or 
maximum number of 
consecutive generations 
without best individual 
improvement (30) 

crossover 85% probability, standard 
crossover 

mutation standard, swap and shrink 
mutation, 3% probability for 
each 

reproduction 5% probability 
initialization ramped half-and-half, max. 

depth of 5  

The results achieved with different 
population sizes and tree depths are shown in 
Table 6, where for each combination of those 
parameters 15 GP runs were conducted. The 
values in the table represent mean fitness value 
(which is the difference from the optimal or 
best known solution) and standard deviation 
obtained on the evaluation set of test cases. It 
can be seen from the table that parameter 
changes did not have a substantial effect on the 
quality of evolved priority functions. 
Nevertheless, the combination with population 
size of 10000 and tree depth of 9 achieved 
slightly better results than the other 
combinations. 

Mean fitness values obtained with GP 
evolved priority rule are in most cases worse 
than those obtained by running a GA on every 
project in the evaluation set. This is not 
surprising, as GA solves each test case 
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separately, but the time that GA would need to 
solve all the evaluation test cases could easily 
reach several weeks on a single computer, 
whereas with a (previously evolved) priority 
rule the schedules can be generated in less than 
a second. 

Table 6. Average GP results 

Population 
size 

Tree 
depth 

Mean (std. 
deviation) 

2000 9 13.54 % (0.06) 
5000 15 13.50 % (0.24) 
10000 9 13.37 % (0.11) 

It is interesting to see how a single evolved 
priority function behaves on different problems 
regarding its efficiency. The distribution of 
relative makespan differences on all the 
problems in evaluation set for a single GP 
priority rule is shown in Fig. 6. 

Figure 6. The distribution of makespan 
deviations from optimal value for a single 

GP priority function 

4.5. Discussion 

The distribution in Fig. 6 shows that GP 
priority rules can cope successfully with a 
majority of RCPS problems. There is still a 
number of projects in which the obtained rule 
was not of a great quality, but this phenomena 
is always present when using any other human 
made scheduling heuristic (on a general set of 
independent test cases, no single heuristic can 
exert better performance than any other 
heuristic on all the problem instances [15]).  

We have to state that the proposed GP 
approach is not suitable in a situation where 
only the optimal or a near-optimal solution is 
allowed and there is ample time for schedule 
generation and we are certain that the system 
parameters will not change during system 

execution. If that is the case, we are probably 
better off with an algorithm that searches the 
space of schedules (such as GA, branch and 
bound etc.) and may use as much time as 
possible. However, if any of the previous 
assumptions do not hold, e.g. in on-line 
scheduling systems [16] or in computer cluster 
environment [3], the GP approach may offer a 
quick solution of an acceptable quality. 

The described method of evolving priority 
functions with GP may be especially useful in 
specific user-defined scheduling environments 
where there are no suitable heuristics, or the 
existing ones are not directly applicable [6]. 
Furthermore, if one needs to obtain schedules 
with another scheduling criteria, the only 
adaptation we need to make is to define a 
different fitness function for the GP system.  

It should be noted that the GP trees in our 
implementation usually include a number of 
introns – the parts of the priority function that 
do not contribute to the resulting function 
value (such as the division of two identical 
terminals, which always equals one). The 
greatest problem with GP priority functions in 
our view, however, is not their oversizing, but 
the possible inclusion of parts that in the 
majority of test cases do not contribute 
significally to the calculation of priority, but 
may be the cause of results of a lower quality 
obtained in some (previously unseen) problem 
instances. This phenomenon, as well as the 
ever present danger of overfitting the heuristics 
to the learning set of problems, is the main 
issue we still need to clarify. 

5. Conclusion 

In this work we have presented two 
approaches for finding schedules of RCPSP. 
The goal was to find a solving methodology 
that could be easily applied to real word 
problems. Besides finding a method that can 
produce accurate results, we wanted to find a 
method that is quick and whose quality is 
acceptable in each run. The two presented 
methods, GA and GP, share the same idea of 
evolution but they operate on a different 
principle. Although results achieved with GA 
are comparable with solutions found with other 
heuristics, this technique tends to be slow and 
unpredictable for implementation into 
commercial software for finding schedules. GP 
approach shares the same advantages as GA, 
but a given GP priority rule, evolved in the 
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form of a priority function, could be easily 
implemented into a commercial software 
product (or even used by practitioners in the 
field without additional software, as some 
human made heuristics are). 

Furthermore, the scheduling rule obtained 
with GP can be applied in a dynamic 
environment where the project parameters and 
characteristics are allowed to change during 
the project execution. In that kind of situation 
it is not practical to employ a search based 
procedure, such as genetic algorithm, because 
it may take more time that we are willing to 
lose and it has to be adapted to take into 
account the fact that the part of the project is 
already underway and additional 
synchronization constraints must be defined. 
On the other hand, GP evolved scheduling rule 
can give the solution in the form of the next 
state of the system practically instantaneously. 

Future work includes applying this method 
to different resource constrained libraries, 
larger projects and multimode RCPSP. 
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