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Abstract 
    The installation of indoor radio systems requires rather detailed propagation characteristics for any arbitrary 
configuration, so appropriate wave propagation model must be established. In spite of a number proposed 
solutions for prediction of the propagation characteristics in WLAN environment, it is difficult to say that we 
have completely satisfied solution. A neural network propagation model that was trained for particular 
environment was developed.  The network architecture is based on the multilayer perceptron. The neural 
network results are additionally compared with the numerical results obtained by the deterministic 3-D ray 
tracing model. The ray tracing model includes three reflected rays from the walls and other obstacles what was 
enough accurate for the given environment.  The neural network is used to absorb the knowledge about given 
environment through training with three access points. Using such obtained knowledge the network is used to 
predict signal strength at any spot of space under consideration. The various training algorithms were applied 
to the network to achieve the best convergence results and best possible network model behavior. The network 
model was trained by Scaled Conjugate Gradient (SCG), Conjugate Gradient of Fletcher-Reeves (CGF), Quasi-
Newton (QN), and Levenberg-Marquardt (LM) algorithms. The comparison of the obtained results is presented.   
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Sažetak 
   Uvođenje bežičnih komunikacijskih sustava u bilo kakav prostor zahtjeva prilično detaljno poznavanje 
propagacijskih karakteristika, tako da je nužno izraditi odgovarajući model rasprostiranja elektromagnetskog 
polja. Unatoč većem broju do sada predloženih rješenja za predviđanje propagacijskih karakteristika u bežičnim 
lokalnim mrežama (WLAN), teško je reći da postoji potpuno zadovoljavajuće rješenje. Razvijen je propagacijski 
model zasnovan na neuronskoj mreži, koja je obučena za određeni okoliš. Arhitektura mreže je zasnovana na 
višeslojnom perceptronu.Rezultati dobiveni neuronskim modelom su uspoređeni s rezultatiima postignutim 
determinističkim trodimenzionalnim modelom zasnovanim na metodi sljeđenja zrake.  Metoda sljeđenja zrake 
koristi tri reflektirane zrake od zidova, što osigurava dovoljnu točnost za zadani prostor.  Neuronska mreža je 
upotrijebljena za prikupljanje znanja vezanog za propagacijske karakteristike određenog prostora i to za tri 
priključne točke. Korištenjem tako prikupljenog znanja mreža je upotrebljena za predviđanje snage signala u 
bilo kojoj točki razmatranog prostora. Neuronska mreža je obučavana s nekoliko različitih algoritama u cilju 
postizanja najbolje konvergencije, odnosno modela s najboljim karakteristikama. Primijenjeni su algoritmi: 
Konjugirani gradijent (SCG), Konugirani gradijent Fletcher- Reeves-a, Quasi_newton (QN) i Leveberg-
Marquardt. Prikazani su postignuti  usporedni rezultati.  
 
Ključne riječi: propagacijski model zatvorenog prostora, trodimenzionalno sljeđenje zrake, bežična lokalna    
                       mreža, višeslojni perceptron, algoritam za učenje  
 
 
1. INTRODUCTION 
    Uvod 
 
    The popularity of indoor wireless communication 
systems - phones, hand-held terminals, various 
PDA devices - are constantly increasing.  These 
portable devices tend to be mobile and in principle 
can be located anywhere, while access points need 
to provide good link to the communications 
backbone of the system.  The base stations need to 
be positioned carefully so that they cover the 
building with adequate signal level. Generally 

problem can be reduced to given building, where 
we need to answer on questions like how many 
access points will be needed, on which positions 
they will be placed to cover the building with 
minimum power level.   
    Prediction of the signal strength for indoor 
propagation environments is faced with effects of 
multipath propagation, such as signal attenuation, 
reflection, diffraction, and interference, due to 
diversity of building geometrical and construction 
characteristics [1],[2],[3],[4]. The Maxwell's 
equations with the relevant boundary conditions  



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Plan of the second floor university building  
Tlocrt drugog kata sveučilišne zgrade 

 
 
enable the most accurate solving indoor 
propagation problems, but with extreme calculation 
complexity. To avoid this complexity a lot of 
empirical propagation models have been developed. 
The ray tracing model based on geometric optics is 
enough accurate when include more then one 
reflected ray, and also diffraction effects.  This 
model requires detailed information about building 
characteristics and too much computation time, so 
it can't be feasible for real buildings.   
    Artificial neural networks can be used as an 
alternative to various deterministic propagation 
prediction methods. Several authors have already 
proposed such solutions [5], [6] with different 
approaches and neural network architectures.   Very 
good input-output mapping make these networks 
useful in signal strength prediction with the same 
accuracy as other deterministic methods. Through 
the learning process the relevant network has 
possibility to absorb the knowledge about 
propagation characteristics for given indoor space, 
based on the relationship between input and output.  
The network is trained with measured data, and 
tested with different data, also obtained by 
measurement. Additionally, the adequacy of using 
neural networks in indoor propagation prediction 
problems is proved by comparison with ray tracing 
results.   
    In WLAN frequency band of 2.4GHz or 5GHz 
the diffraction influence to signal strength can be 
neglected, and the sum of directed ray and  the 
reflected rays is enough accurate to describe  
behavior of channel propagation.  Hence, main task 
is to describe main obstructions and the surfaces 
that affect the signal propagation. This description  
 

includes geometric characteristics of the 
propagation environment as well as electromagnetic 
parameters of surfaces to determine the surface 
reflection coefficients. In this paper the 3-D ray-
optical model is presented to describe the WLAN 
signal propagation in an indoor environment. Using 
the model, signal strengths are calculated in various 
points of indoor environment.  This analytical 
model is verified by neural network simulation and 
measurement. The predicted values obtained by the 
ray-tracing technique and neural network model are 
compared with measurement and it is found that 
they follow the same trend.  
The multilayer perceptron (MLP) is trained with 
different algorithms to achieve the best 
convergence results and the best possible model 
behavior in signal strength prediction. The 
comparison is made for algorithms: Scaled 
Conjugate Gradient (SCG), Conjugate Gradient of 
Fletcher-Reeves (CGF), Quasi-Newton (QN), and 
Levenberg-Marquardt (LM), and Bayesian 
regularization (BS). The models are compared 
based on the mean, root mean squared error 
(RMSE) and standard deviation.  
 
 
2. PROPAGATION MODEL  
    Model propagacije  
 
    The second floor of Dubrovnik University B 
building is chosen for simulation environment. The 
dimensions of the floor are 33x11x2.40 m3, as it is 
shown in Fig. 1 with origin of coordinate system in 
left lower corner and locations of base stations for 
neural network training purposes.  The environment  
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under consideration ends with folding door.  The 
access points are CISCO Aironet 1100 series for 
WLAN 802.11b standard. Coordinates of access 
points are shown in the Table 1. The walls are made 
of the bricks with wooden doors, while the ceiling 
and floor are made of the concrete. 
    Measurements of the received signal strength for 
the various locations of the receiver and each base 
station (Fig.1) have been made in the first step. The 
each WLAN access point was operating on the 7th 
channel at 2.437 GHz (100mW), and transmitter 
antenna gain was 8.5 dBi. The signal strength 
measurements were made by a laptop computer 
with PCMCIA wireless card positioned 1.2 m 
above the floor. The measurements were performed 
for 98 receiving points (locations) that were 1 m 
apart from each other. There were made three 
measurements for each location and mean value 
was saved with location coordinates.  These values 
will be used in the training and testing of the neural 
network, as well as for comparison with the results 
obtained by the ray tracing technique.  
 

Access 
points x y z 

AP1 0.0 4.85 2.2 
AP2 17.0 7.65 2.2 
AP3 33.0 7.65 2.2 
AP5 30.0 2.3 2.2 

 
Table 1.  The Coordinates of the access points 

Koordinate prijemnih točaka 
 

 
3. SIGNAL STRENGTH PREDICTION BY    
    RAY TRACING MODEL 
    Predviđanje snage signala modelom sljeđenja   
    zrake  
 
   The transmitter was the access point one, denoted 
by AP1 and receiving points are marked as mobile 
phones in the Fig. 1. The computation begins with 
the line of sight path (the corridor), followed with 
the receiving points in the side rooms. The 
reflection and transmission coefficients are 
calculated for each surface (wall, floor, ceiling, 
door or window). We assumed that all reflecting 
surfaces are orthogonal, what was really true in our 
case.  
   The methodology of finding the reflection or the 
transmission points is illustrated in the Fig. 2 in 
two-dimensional space. The points denoted with T 
and R are the locations of the transmitter and the 
receiver, respectively. The two reflection ray is 
considered. It is easy to realize that coordinates of 
the points S3 and S34  are (2L3 –xr, yr) and (2L3 – 
xr,2L4 – yr), respectively . According to that the 
coordinates of the points of reflection can be 
obtained as intersection of the line T-S34 with wall 

4, and intersection of the line r1-S3 with the wall 3, 
respectively. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Ray tracing methodology 
Metodologija praćenja zrake 

 
The signal strength in the arbitrary receiving point 
for the rays with one and two reflections is given as 
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d0 = length of the direct path 
di ,dk = length of the paths with one and two  
            reflections, respectively 
Ri = reflection coefficient for the path with one  
        reflection 
R1k , R2k = reflection coefficients for the paths with  
                 one and twoo reflections, respectively 
∆φi ,∆φk = phase diferences between direct and  
                  reflected paths 
 
The reflection coefficients were computed by the 
Fresnel's equation for the vertical polarization 
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where θi is the angle of incidence. The receiving 
signal strength is computed for  one direct 
component and rays with maximum 3 reflections. 
The non-uniformities of the reflected surface 
materials; such that can produce scattering were 
neglected, because their contribution to signal 
strength is insignificant in the environments such is 
the environment under consideration. Further 
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reflected rays are not taken into account because of 
the computing time. It is useful to investigate their 
contribution to total signal strength. The vertical 
polarization has been assumed. Received power 
(dBm) was calculated for 93 points that have been 
1m apart and 1.5 m above floor.  Adequate 
computer software is developed for the ray tracing 
model calculation. The geometrical and 
construction characteristics of the environment 
under consideration were included in the 
computation from the appropriate database.   
 The obtained results are saved and processed to 
compare with calculated values. The results are 
shown in the Fig. 3. It is shown the change in signal 
strength with increasing transmitter-receiver 
separation.  The differences between measured and 
calculated results are more significant in the 
proximity of the transmitter. The results show that 
reflected rays of higher order need to be taken into 
account, as well as, the influence of diffracted rays 
with more accurate model of the walls. Mean 
variation of calculated values is 3.74 dBm. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Calculated and measured signal strength 
for ray tracing model   

Usporedba izmjerenih i izračunatih vrijednosti za 
model sljeđenja zrake 

 
 
 
4. SIGNAL STRENGTH PREDICTION  BY   
    NEURAL MODEL 
    Predviđanje snage signala neuronskim  
    modelom 
       
The basic component in the neural network model 
is neuron. The network function and its position in 
the network architecture determine behavior of the 
each neuron. According to the recommendations 
from [7] we chose multilayer perceptron (MLP) for 
propagation simulation that is shown in the Fig. 4 
with two hidden layers. The input layer as inputs 
receive location coordinates of access points and 
receiving points. The network has one neuron in 

output layer for relevant signal strength value. Such 
neural network architecture can be learned applying 
a set of labeled training samples that involve 
modification of the synaptic weights of neural 
network to produce corresponding (desired) output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Neural network architecture 

Arhitektura neuronske mreže 
 

 
The training of the network is repeated for many 
input samples until the network reaches a steady 
state where there are no significant changes in the 
synaptic weights. After training phase the neural 
network is tested or simulated  with input data from 
the set of examples but different of that used in the 
training, and if the outputs are reasonable  the 
network generalizes well. 
    In this network construction the output of the 
each neuron of the kth layer is given by derivable 
nonlinear function f 
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The function f   is called activation function and it 
can be of different type. In our case we choose 
sigmoidal hyperbolic tangent function  
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The synaptic weights of the connection between the 
neuron j and neuron i are denoted as wji , while yj is 
the output of the neuron j in the (k-1)th  layer. 
Appropriate initial values of synaptic weights (also 
called free parameters) and learning algorithm are 
crucial for learning phase, after the architecture of 
the network has been determined.  As training rule 
we decided to compare several algorithms that 
update the weight and bias values producing 
minimal error between the network output and 
desired output.  During the training phase the   
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Fig. 5 Training and testing process for MLP 
Proces učenja i testiranja višeslojnog 

perceptrona 
  
 
known input-output pairs are applied to the 
network. When the network has correctly learned 
the task specification, it can be used in the test 
phase with test samples as it is shown in the Fig. 5.  
The way to make neural network training process 
more efficient some preprocessing steps need to be 
performed on the network inputs and targets (Fig. 
5).  The network inputs and targets scaling can be 
done by normalization of mean and standard 
deviation of the training set. The results of the 
normalization process are zero mean and unity 
standard deviation of the training set. The target 
data need to be in un-normalized form, so adequate 
opposite process need to be applied (Fig. 5).   
    The back propagation algorithm is usually used 
as training algorithm with multilayer perceptron 
[8].  There are several training rules for the neural 
model with the task to adjust the synaptic weights 
to optimize neural network configuration. The back 
propagation algorithm is based on the steepest 
descent gradient method applied to change the 
value of the each synaptic weight to minimize the 
output error [7].  During the training proces the 
synaptic weights are adjusted to minimize the sum 
of the squared differences between the desired  and 
actual outputs expressed like 
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where vdj is the desired output value for the jth 
output neuron, and yj is the output value obtained 
by the network for the same neuron. The changes in 
the synaptic weight value depend of the learning 
rule, but generally, for the back propagation 
algorithm the weight change between ith and jth 
neuron at any layer can be expressed as 
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where µ > 0 is the learning rate.  The minus sign is 
for gradient descent in weight space. There is 
seeking a direction for weight change to reduce the 
value of E [7].   The new value of the weight in kth 
iteration is given by 

     
   ( 1) ( ) ( )ji ji jiw k w k w k+ = + ∆           (7) 

 
The training process starts with small random 
values of the weights. This initial values need to be 
sufficiently small so that training does not start 
from a point in the error space. This error space is 
connected with location on the curve of the 
activation function (Fig. 6).  It can be seen in the 
Fig. 6 that for the argument values distant from the 
zero the value of the function is very small as well 
as the value of its first derivative. As updating of 
the weights is directly dependable of the function's 
first derivative, so the learning rate is very slow in 
this case.  The commonly used initial values of the 
weights are uniformly distributed random numbers 
in the interval from -0.5/fan_in to 0.5/fan_in, where 
fan_in is total number of neurons that are connected 
with these weights to preceding layer [8].  
It is obvious that during back propagation algorithm 
running the saturated values of the activation 
function derivative should be avoided. This can be 
done by decreasing the slope of the curves (Fig. 6). 
The slope decreasing makes the network more 
linear, what diminishes the multilayer effect. In the 
linear case one layer is enough. It is possible to find 
an optimum value for the activation function slope 
to satisfy learning rate and network mapping 
capabilities. The parameter a, as it is visible from 
(4) can be used for function slope adjusting. The 
function slope can be different from neuron to  



 
 

   

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Sigmoidal hyperbolic tangent function and it's first derivative 
           Sigmoidalna funkcija hiperbolnog tangensa i njena derivacija

 
 

 

neuron, even in the same layer. The structure of 
MLP is very complex, so it is practically impossible 
to determine function slope before the training 
starts.  For the change of the slope parameter a from 
(4) is applied the same approach as for the weight 
change and for ith neuron in any layer is given by 
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The parameter a mustn't be smaller than some 
predefined value amin to avoid linearization of the 
network mapping, so if amin > ai(k+1) then 
ai(k+1)=amin. 
    In this work we compared several training 
algorithms.  First, the absolute error between the 
measured and predicted signal strength is computed 
as 
 
                     i mi pie P P= −                       (9) 

 
where i denotes the number of the mesured sample. 
The absolute mean error is calculated by 
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where N is total number of measured samples. 
These two errors leads to the standard deviation: 
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Finally, the RMS error is obtained with absolute 
mean error and standard deviation: 
 

                2 2
eRMSE m σ= +                (12) 

For each training algorithm adequate computer 
software is developed. The algorithms  are briefly  
described hereafter. 
 
 
4.1 Scaled conjugate gradient (SCG) 
 
    The scaled conjugate gradient algorithm, 
develped by Moller, was designed to avoid the time 
consuming line search. The algorithm is rather 
complex to be explained in few lines, but basic idea 
was to combine the model-trust redgion approach 
with conjugate gradient approach [7]. 
 
 
4.2 Fletcher-Reeves conjugate gradient (CGF) 
 
    This algorithm starts with searching int the 
steepest descent direction (negative of the gradient). 
The line search is then performed to determine the 
optimal distance to move along the current search 
direction. The succeeding directions are determined 
so that it is conjugate to previous search directions. 
The norm square of the previous gradient and the 
norm square of the current gradient are used in a 
Fletcher-Reeves version of conjugate gradient to 
calculate the weights and biases [7]. 
 
 
4.3 Quasi-Newton method (QN) 
 
    This algorithm is based on Newton's method but 
it doesn't require the calculatin of second 
derivatives. They update an approximate Hessian 
Matrix at each iteration. The update is computed as 
a function of the gradient. It has more computations 
in each iteration than conjugate gradient algorithms, 
but usually converges very fast [7]. 
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4.4 Resilient propagation (RP) 
 
    The main purpose of this backpropagation 
algiorithm is to avoid harmful effects of the size of 
the partial derivative on the weight upadte. This is 
simple batch mode training algorithm with fast 
convergence and minimal storage requirements [7]. 
 
 
4.5 Levenberg-Marquardt algorithm (LM) 
 
    The best features of the Gauss-Newton method 
and the steepest-descent method are combined in  
this algorithm avoid many of their limitation. Its 
main characteristic is fast convergence [7].  
 
 
5. EXPERIMENTAL RESULTS 
    Eksperimentalni rezultati 
  
   As it is visible in the Fig. 1 base stations AP1, 
AP2, and AP3 are chosen for training and testing of 
the network. Randomly are determined 78 receiving  
locations for training purpose and 20 for network 
testing of the total number of 98 receiving locations 
for which the measurement have already been made 
(Fig. 1). This has been made for each base station 
that for training results in 78x3 pairs of receiver 
coordinates - signal strength and 20x3 such groups 
for testing. Good network generalization is shown 
in the Fig. 7, where the change in signal strength 
with increasing transmitter-receiver separation is 
shown for neural network model, ray tracing 
calculation, and measured data. The differences 
between measured, simulated and calculated results 
are more significant in the proximity of the 
transmitter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

Fig. 7 Comparison of neural network simulation, 
measurement and ray tracing for base station AP1 

and receiving points in main corridor 
Usporedba rezultata dobivenih neuronskom 

mrežom, mjerenjem i metodom sljeđenja zrake 
 

    Neural network simulation results for base 
stations AP2 and AP3 are shown in Fig. 8 and 9 
respectively. Receiving points denoted with 
numbers from 1 to 12 are located in main corridor, 
with beginning at x = 0, while the receiving points 
denoted with numbers from 13 to 20 are located in 
different rooms. We can see acceptable matching 
between neural network simulation results and 
measurement data for various testing locations of 
receiver according to the Fig. 1. The overall mean 
variation of neural results in comparison with 
measured data was 3.8 dBm.   
     Additional testing is performed for base station 
AP5, that is not been participating in the training of 
the network.  It is located at (30, 2.3) coordinates 
and results of comparison with measured data are 
shown in the Fig. 10. This is the worst case, so the 
mean variation between neural and measured data 
was little bit less than 10 dBm. In spite of this not 
encouraging result, we think that this method is still 
usable.   
     Additional testing is performed for base station 
AP5, that is not been participating in the training of 
the network.  It is located at (30, 2.3) coordinates 
and results of comparison with measured data are 
shown in the Fig. 10. This is the worst case, so the 
mean variation between neural and measured data 
was little bit less than 10 dBm. In spite of this not 
encouraging result, we think that this method is still 
usable.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Comparison of neural network simulation 
and measurement for base station AP2 

Usporedba rezultata dobivenih neuronskom 
mrežom i mjerenjem za pristupnu točku AP2 

 
 

The comparison of six chosen training algorithms 
for MLP is expressed in terms of  absolute mean 
error, root squared mean error  and standard 
deviation.  The achieved performance of the MPL 
network for mentioned training algorithms and ray-
tracing results are presented in the Table2. 
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Fig. 9 Comparison of neural network simulation 
and measurement for base station AP3 

Usporedba rezultata dobivenih neuronskom 
mrežom i mjerenjem za pristupnu točku AP3 

 
     
The worst results are obtained for CSG algorithm, 
and best test results are achieved training with BR 
algorithm. The Fig. 11 shows signal strength for 
each testing receiving point for the worst and the 
best training algorithm comparing it with measured 
data.    
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Comparison of neural network simulation 
and measurement for base station AP5 

Usporedba rezultata dobivenih neuronskom 
mrežom i mjerenjem za pristupnu točku AP5 

   
Prediction 

model 
Mean 

error [dB] 
RMSE 
[dB] 

Standard 
dev. [dB] 

MPL-SCG 6.015 7.845 5.036 
MPL-CGF 3.640 4.406 2.483 
MPL-QN 4.272 5.162 2.899 
MPL-RP 5.141 6.516 5.139 
MPL-LM 3.308 3.978 2.210 
MPL-BR 2.451 2.967 1.672 

Ray-tracing 4.474 5.237 2.722 
 

Table 2. Error statistics for signal strength 
prediction by  NN and ray-tracing models  

Statistika pogrešaka predviđanja snage signala za 
neuronske i model sljeđenja zrake 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Comparison of the worst and the best 
algorithm case 

       Usporedba najgoreg i najboljeg slučaja 
 
 
 
6. CONCLUSION 
     Zaključak 
 
    The contribution presented in this paper is that 
we incorporate a lot of propagation phenomena 
without complex and long last computations with 
practically equal accuracy as it is with more 
deterministic methods (like ray tracing method).     
    The two signal strength prediction models based 
on neural networks and ray tracing have been 
developed.  The main advantage of the neural 
model is that it doesn't require any knowledge 
about dimensional or construction characteristics of 
the building under consideration, what is unknown 
in many cases. The training algorithms include 
adaptive activation function slopes; hence the speed 
of the training process is significantly increased.  
The overall process is relatively short. In any case it 
doesn't last longer then 10 minutes.   
   It is important to emphasize that the accuracy of 
the neural network model is comparable to the 
accuracy of the other propagation models. The 
behavior of several training algorithms has been 
investigated, and according to the obtained results, 
for the multilayer perceptron the best results show 
Bayesian regularization. This training algorithm has 
the smallest RMS error (2.97 dB).  The obtained 
results for this algorithm are even better then ones 
obtained by ray tracing method. In the ray tracing 
method ideally smooth surfaces were assumed and 
some obstacles were neglected (window frames).  
The electromagnetic characteristics of the material 
of the walls and other obstacles are assumed in the 
ray tracing calculations. The more accurate values 
of the dielectric constants can be obtained by 
measurements.  
    The introduced model can be used for improving 
the performances of existing indoor wireless 
networks, and it can serve as a good tool for 
wireless network planning in general. The future 
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work need to introduce other neural network 
configurations, like Radial Basis Function networks 
(RBF). The training process is an optimization 
process, so some other optimization methods can be 
introduced in this process, like Particle Swarm 
Optimization algorithm.         
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