
Detecting code re-use potential

Mario Konecki, Tihomir Orehovački, Alen Lovrenčić
Faculty of Organization and Informatics

University of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia

{mario.konecki, tihomir.orehovacki, alen.lovrencic}@foi.hr

Abstract. Living in a dynamic world requires rapid
development of both web and desktop applications to
support such trend in IT industry. Processes are
becoming more complicated, and in turn more
demanding. There are two problems regarding
applications: development and maintenance. In this
paper we are discussing optimization of applications
code and re-usability. The main idea is to compare
certain application parts or modules and determine
the amount of overlapping content. If there is a
certain percentage of overlapping, it means that
targeted part of code can be optimized in such way
that it is programmed in one place and then re-used
as such in other places. This speeds up development
and makes maintenance easier. In this paper we will
present the process of code comparison and pre-
processing that is needed to recognize invariants of
the same code.

Keywords: development process, program code,
comparison, reusability, optimization

1 Introduction

When looking at the software development process
today we can say that there are certain efforts that
have been made in order to make this process quicker
and easier. Some of the concepts that we encounter
here are design patterns, components,
metacomponents, etc. Design patterns [4] are tested
and reliable solutions for reoccurring problems in
software engineering. They are concepts and cannot
be translated directly into code. Component [2] is a
part of larger software system and it has the ability of
providing some service to its surroundings which
means that it communicates with other components in
order to solve some problem. Components are
reusable and flexible which means that they are not
specifically designed to run in just one system.
Metacomponents [17] are descriptions that make it
possible to generate concrete components so they are
another step forward.

All of these concepts and more of them brought
developers a little bit closer to their goal which is
developing applications faster and with a larger
reliability. Along with all these concepts there are
more aspects that must be considered. One of them is

duplication of computer code, especially in
components but also in other concepts of software
development. It is of our interest to find out how
much of software code is duplicated when developing
and application in various components and other
software parts.

In order to do this we have created a concept upon
which an algorithm for computer code comparison
will be created. It is our intention to analyze results of
this comparison and determine which steps are to be
taken in order to optimize the development process.
This concept and discussion about possible solutions
is presented in the following sections of this paper.

2 Background research

When talking about code comparison the first thing
we have to look is comparison in general. Comparison
is frequently mentioned when talking about
plagiarism. In the field of education this problem is
mostly related to Higher Education [13].

First ideas about comparison came related to
student essays and papers. It was of great interest to
find out how many similarities there are. When
talking about essays and papers we can say that there
are two categories [13]:

• plagiarism – taking content from Web and
other sources and declaring it as one’s own.

• collusion – collaboration between students
when working on some assignment that was
meant to be done individually.

There are two frequently used methods for
plagiarism detection [13]:

• Turnitin – a browser-based tool that
compares uploaded files against a base of
Web content and with related student papers.

• Ferret copy detector – a standalone system
that is based on a fact that most ordinary
words appear quite rarely in texts.

In the Brown corpus of 1 million words, 40% of
the word forms occur only once [10]. This distinctive
distribution is even more distinctive on bigrams (two
consecutive words) and even more on trigrams (three
consecutive words). It was realized that trigrams are
the smallest elements by which usage it is possible to
fingerprint particular text [13]. Any article has in

average 77% of its trigrams unique [13]. So articles
can be processed by dividing text into trigrams and
comparing occurrence of this trigrams in particular
texts.

When comparing computer code the process can
be simplified or can be analyzed from more complex
point of view. The Ferret detector/comparator can be
used. Code is divided into trigrams with some
preprocessing. For example sing “==” must be treated
as one word. But also more complex algorithms can
be used.

Another aspect of interest already mentioned is
optimization of computer code and making
maintenance easier. There are several possible
algorithms that can be used here [1]:

• Text-based techniques perform little or no
transformation to the “raw” source code
before attempting to detect identical or
similar (sequences

• of) lines of code. Typically, white space and
comments are ignored.

• Token-based techniques apply a lexical
analysis (tokenization) to the source code
and, subsequently, use the tokens as a basis
for clone detection.

• AST-based techniques use parsers to first
obtain a syntactical representation of the
source code, typically an abstract syntax tree
(AST). The clone detection algorithms then
search for similar subtrees in this AST.

• PDG-based approaches go one step further in
obtaining a source code representation of
high abstraction. Program dependence
graphs (PDGs) contain information of a
semantical nature, such as control and data
flow of the program.

• Metrics-based techniques are related to
hashing algorithms. For each fragment of a
program, the values of a number of metrics
are calculated, which are subsequently used
to find similar fragments.

• Information Retrieval-based methods aim at
discovering similar high level concepts by
exploiting semantic similarities present in the
source code itself (including the comments).

There are many tools available that have different
algorithms and different usage, such as JPlag [15].

Some of the most known tools that can be found
for comparison of code or papers are [5]:

• Turnitin – comparison of uploaded papers
against the base of articles from Web.

• JPlag – finds similarities between uploaded
documents.

• EVE2 – standalone software for papers
plagiarism detection with possibility of
different strengths of comparison/detection.

• CopyCatchGold – detects similarities
between papers even when author changes

order of words, sentences or uses only a part
of the paper.

• WordCheck – checks similarity of paper with
other papers written by same or different
author based on frequency of occurring
words.

• MOSS – determines computer code
similarities.

3 Computer code comparison

In order to compare two pieces of computer code a
proper concept for this action has been developed.
This concept considers C-like languages code
comparison but the concept is applicable to all
programming languages.

The steps that are to be taken in order to perform
the comparison are:

1. divide program code into parts where one
part is one function

2. remove all declarations of variables or
functions

3. replace all variable names with a constant
name X

4. replace all function names with a constant
name Y

5. remove all input commands (lines)
6. remove all output commands (lines)
7. remove all blank lines
8. remove all blank spaces
9. if there are lines with only “(” and “)” then

read all those lines, lines between them and
form one line of format (content)

10. if there are “{” or “}” at the beginning or end
of lines then move these brackets to a new
line before or after the content between them

11. compare all lines of all computer code by
parts that are result of the first step

12. also compare the size of these parts in order
to try predicting the content of a party by its
size

Pseudo code of this process is given below:
read input files(s)
if there is more than one function per file

split all parts into smaller parts that
consists of only one function

for every small part (function) do the
following

remove all declarations of variables
or functions
replace all variable names with a
constant name X
replace all function name with a
constant name Y
remove all input commands (lines)
remove all output commands (lines)
remove all blank lines
remove all blank spaces

if there are lines with only “(” and
“)” then

read all those lines and form one
line of format (content)

if there are “{” or “}” at the
beginning or end of lines then

move these brackets to a new line
before or after the content
between them

compare all lines of all computer code by
parts (all with all comparison)
compare the size of these parts in order to
try predicting the content of a party by its
size

A flowchart diagram is also given below:

Figure 1. Flowchart part one

Figure 2. Flowchart part two

This algorithm takes n programs as an input and

then does the comparison but it also tries to learn in
step 12 where it tries to recognize over time the sizes
of programs and connecting them to some specific
code pattern.

The input for this algorithm can be various
programs or modules of the same program. In this
way one can se how much code is duplicated in an
application and then can isolate this parts and put
them in just one place. In this case one would for
example create instances of the same class rather than
several classes that are too similar and can be joined
into one.

By doing this application code is reduced and
optimized, maintenance of the code is made easier
and future development quicker.

4 String similarity/difference metric

The 11th step of out code comparison process
compares lines of code. These lines can be observed
as pure strings. There are several algorithms in
information theory and computer science that deal
with calculating so called edit distance (number of
operations required to transform one string into
another). Some of more known algorithm are:

• Hamming distance [6] which is applicable
for comparing strings of the same length and
presents the number of position for which the
strings are different.

• Levenshtein distance [11][14][9] measures
the amount of difference between two string.
It represents a minimum of operations that
are needed to transform one string into
another. Allowed operations are insertion,
deletion or substitution of a single character.

• Damerau-Levenshtein distance [3][12] is a
generalization of Levenshtein distance and it
is virtually the same algorithm but it also
allows the transposition of two characters as
an operation.

• Jaro-Winkler distance [8] is a measure of
similarity between two strings.

Some of the other algorithms that can be found
are:

• Wagner-Fischer edit distance [18]
• Ukkonen [16]
• Hirshberg [7]
• etc.

5 Conclusion and future work

Computer code comparison and optimization is a
definite need in the overall development process. In
this article we give an idea of coming just one step
closer to faster and more reliable software
development and easier maintenance.

It is our intention in our future work to develop a
prototype of this comparison algorithm and conduct a
detail case study where we would find out about
robustness and reliability of this algorithm. A more
detailed research will be conducted upon detailed
testing of the prototype. When we establish well
tested and proven model for this aspect of software
development we will research in more detail the
possibilities and areas of interest where this concept
could find its value. A more aggressive benchmark
has to be taken in order to develop a suitable and

usable algorithm that will process the analysis in a
reasonable amount of time.

We will also give an index of usability according
to the programming areas. For example we think that
web and distributed applications would greatly benefit
of this model.

References

[1] Bruntink, M., Deursen, A., Engelen, R., Tourwe,

T.: On the Use of Clone Detection for
Identifying Crosscutting Concern Code, IEEE
Transactions on Software Engineering, Vol. 31,
No. 10, 2005, pp. 804-818.

[2] Crnkovic, I., Larsson, M.: Building Reliable
Component-Based Software Systems, Artech
House, Boston, 2002.

[3] Damerau, F.J.: A technique for computer

detection and correction of spelling errors,
Communications of the ACM, 1964.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides,

J.M.; Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley,
1995.

[5] Gaither, R.: Plagiarism Detection Services,

Shapiro Undergraduate Library, University of
Michigan, 2002.

[6] Hamming, R. W.: Error Detecting and Error

Correcting Codes, Bell System Technical
Journal, Vol. 26, No. 2, 1950, pp. 147-160.

[7] Hirschberg, D. S.: A linear space algorithm for

computing maximal common subsequences,
Communications of the ACM, Vol. 18, No. 6,
1975, pp. 341-343.

[8] Jaro, M. A.: Advances in record linking

methodology as applied to the 1985 census of
Tampa Florida, Journal of the American
Statistical Society, Vol. 84, 1989, pp. 414–420.

[9] Konstantinidis, S.: Computing the Levenshtein

distance of a regular language, Information
Theory Workshop, 29 August – 1 September
2005, IEEE.

[10] Kupiec, J.: Robust part-of-speech tagging using

a hidden Markov model, Computer Speech and
Language, Vol. 6, 1992, pp. 225-242.

[11] Levenshtein, V. I.: Binary codes capable of

correcting deletions, insertions, and reversals,
Soviet Physics Doklady, Vol. 10, No. 8, 1966,
pp. 707–710.

[12] Lowrance, R., Wagner, R: An Extension of the

String-to-String Correction Problem, Journal
of the ACM, Vol. 22, No. 2, 1975, pp. 177-183.

[13] Lyon, C., Barrett, R., Malcolm, J.: Plagiarism Is

Easy, But Also Easy To Detect, Plagiary: Cross-
Disciplinary Studies in Plagiarism, Fabrication,
and Falsification, Vol. 1, No. 5, 2006, pp. 1-10

[14] Navarro, G.: A guided tour to approximate

string matching, ACM Computing Surveys, Vol.
33, No. 1, 2001, pp. 31–88.

[15] Prechelt, L., Malpohl, G., Philippsen, M.:

Finding Plagiarisms among a Set of Programs
with JPlag, Journal of Universal Computer
Science, Vol. 8, No. 11, 2002, pp. 1-44.

[16] Ukkonen, E.: Algorithms for approximate string

matching, Information and Control, Vol. 64,
1985, pp. 100-118.

[17] Villacıs, J. E.: The Component Architecture

Toolkit, Indiana University, Department of
Computer Science, 1999.

[18] Wagner, R. A., Fischer, M. J.; The String-to-

String Correction Problem, Journal of the
ACM, Vol. 21, No. 1, 1974, pp. 168-173.

