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Abstract The behavior of the 1D Holstein polaron is described, with emphasis on lattice coarsening ef-
fects, by distinguishing between adiabatic and nonadiabatic contributions to the local correlations and
dispersion properties. The original and unifying systematization of the crossovers between the different
polaron behaviors, usually considered in the literature, is obtained in terms of quantum to classical, weak
coupling to strong coupling, adiabatic to nonadiabatic, itinerant to self-trapped polarons and large to
small polarons. It is argued that the relationship between various aspects of polaron states can be specified
by five regimes: the weak-coupling regime, the regime of large adiabatic polarons, the regime of small
adiabatic polarons, the regime of small nonadiabatic (Lang-Firsov) polarons, and the transitory regime of
small pinned polarons for which the adiabatic and nonadiabatic contributions are inextricably mixed in the
polaron dispersion properties. The crossovers between these five regimes are positioned in the parameter
space of the Holstein Hamiltonian.

PACS. 71.38.-k Polarons and electron-phonon interactions – 71.38.Fp Large or Frohlich polarons –
71.38.Ht Self-trapped or small polarons

1 Introduction

Recent years have witnessed a constant growth of atten-
tion for polaron-related physics. These investigations are
motivated by many examples of experimental evidence
of polaron formation, found for broad classes of com-
pounds like quasi-1D conductors (MX-chains, conduct-
ing polymers), ionic crystals, transition-metal oxides, and
fullerenes. Furthermore, significant isotope effects in the
behavior of charge carriers are observed for magnetore-
sistive manganites [1–3] and high-temperature supercon-
ducting cuprates [4–6], which indicates the presence of
polaronic effects involving spatially localized correlations
between the charge carriers and the lattice deformation
field. Although the polaronic correlations alone are usu-
ally not believed to be sufficient to account for colossal
magnetoresistance [7] or for the high-Tc superconductiv-
ity [6,8,9], their investigations are nevertheless of particu-
lar interest in this context.

Depending on the model parameters, the polaron con-
cept itself involves very different types of behavior, which
complicates the analysis of experimental results. As one
would expect, the polaronic features are the most promi-
nent for strong electron-phonon couplings. In particular,
in this limit, the polaron theory predicts a broad contri-
bution to the mid-infrared optical conductivity, accompa-
nied by a strong suppression of the Drude peak [10,11].
Such behavior is indeed observed for various compounds.
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For example, the formation of small and large polarons
has been reported [12] for La1−xCaxMnO3 (LCMO)
and La1−xSrxMnO3 (LSMO), respectively. Large polarons
have been invoked for Nb doped SrTiO3 [13]. The simul-
taneous presence of large and small polarons has been
argued for some oxides like Pr2NiO4.22 [14]. The pola-
ronic nature of the charge carriers has also been reported
for slight doping from optical measurements of the high-
Tc cuprate Nd2−xCexCuO4−y (NCCO) [15]. Strong ionic
couplings do occur in ionocovalent materials such as high-
Tc superconductors [16].

In the context of ARPES measurements, small po-
larons have been invoked to account for the quasi-particle
peak with very narrow dispersion near the Fermi level
and the broad peak that roughly follows the free-electron
band [17,18], observed in the undoped cuprates [19].
Small polaron behavior involving very strong couplings
has been found for the undoped Ca2CuO2Cl2 cuprate [20],
the quasi-one-dimensional conductor (TaSe4)2 [21] and
molybdenum bronze [22]. In the context of neutron and
X-ray measurements, the observed diffuse scattering can
be related to the polarons involving local lattice distor-
tions that are slow on the time scale of typical phonon
vibrations, as suggested for colossal magnetoresistive
manganites [23,24]. In the case of conducting polymers,
the lattice deformation and the softening of local phonon
modes associated with the solitons and, possibly, polarons
has been deduced from the doping-induced infrared-active
lattice modes in photoinduced absorption spectra [25,26].
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Recently [27], using the femtosecond optical spectroscopy
the internal dynamics of the polarons in GaAs, charac-
terized by weak electron-phonon interaction, was investi-
gated. This technique seems promising for studies of po-
larons in other compounds too.

On the theoretical side, many ongoing investigations
are focused on the Holstein polaron problem [28–37]. Al-
though described by only two independent parameters,
which necessarily simplifies the behavior in comparison
with real systems, the Holstein model contains the essen-
tial physics governing the polaron formation in the pres-
ence of short-ranged ionic coupling between the electron
and optical phonons. In particular, it uses the band pic-
ture for the electron, while the discrete lattice deforma-
tion field is treated quantum mechanically. As a result,
one finds that the Holstein polaron exhibits fundamen-
tally different behaviors, ranging from quantum to classi-
cal [38,39], from weak coupling to strong coupling [40–44],
from adiabatic to nonadiabatic [40–43], from itinerant to
self-trapped polarons [42,45], and from large to small po-
larons [42,45,46]. The present work provides a unifying
description of all these aspects of polaron physics within
the corresponding phase diagram. In order to improve the
understanding of the interrelation among various param-
eter regimes and to situate the crossovers between them,
many known results are reviewed and supplemented with
additional details. In this way the applicability of various
approximations to particular regimes is fully clarified. The
key elements of the formation of the Holstein polaron are
identified, resulting in an original and comprehensive in-
terpretation of the low-frequency polaron dynamics. The
features of the polaron band structure are explained so in
detail.

Two perturbative approaches are commonly applied
in the context of the Holstein polaron problem. The first
involves the expansion around the atomic limit, while
the second treats the electron-phonon coupling g as a
perturbation in the theory, which is translationally in-
variant from the outset. Although this latter theory de-
scribes the nonadiabatic-adiabatic crossover in the con-
tinuum limit (large Holstein polaron) appropriately and
indicates the continuous to discrete adiabatic crossover
correctly, the actual calculation of the lattice coarsening
effects proved too intricate [47]. On the other hand, when
starting from the atomic limit it is difficult to reach the
adiabatic regimes, in particular, it is difficult to describe
adiabatic contributions to the dispersion even for small
polarons.

Various approximate diagrammatic techniques have
been developed to account for high order corrections in
g, including the self-consistent Born approximation [48],
the dynamical mean field theory [49], and the momen-
tum averaging approach [48,50]. These approaches have in
common that the electron self-energy is treated as a local
quantity. However, as shown in references [47,51], it is nec-
essary to retain the non-local contributions to the electron
self-energy in order to correctly describe the adiabatic po-
laronic correlations involving multiple lattice sites. In fact,
with the increasing range of adiabatic correlations, many

numerical methods proposed in the literature become in-
adequate, including those based on selective diagrammatic
calculations, as well as those based on direct calculations
of polaron states. The well controlled general way of deal-
ing with this problem was recently proposed in the context
of the relevant coherent state method (RCSM) [52], which
calculates accurately the low-frequency polaron spectra
and wave functions for the whole parameter space of the
Holstein polaron. For this reason, the RCSM is used in the
present study as the numerical tool for fulfilling the gaps
in the phase diagram that are not covered by the limiting
analytical solutions.

Until now, the various regimes of the Holstein polaron
have not been described on an equal footing. By review-
ing the results for some of them and developing further the
analysis for others, we are able to achieve a comparable
level of understanding for all regimes across the entire pa-
rameter space. Some entirely new results for the small adi-
abatic polaron and the crossover between its adiabatic and
nonadiabatic translational dynamics are presented here.
Regarding large adiabatic polarons, the formalism of the
moving set of coordinates is used to derive the expres-
sion for the polaron band structure in presence of lattice
coarsening effects, an important problem also appearing
in the soliton theory. Furthermore, the nature of singular-
ities appearing within the formalism of the moving set of
coordinates in the large and in the small polaron regime
is clearly distinguished.

In Section 2 the model and some general properties of
the Holstein polaron states are discussed, whereas a short
overview of the perturbative results is presented in Sec-
tion 3. The key-elements that characterize the adiabatic
polaron dynamics are identified in Section 4. The large
adiabatic polaron and the two crossovers, towards the
weak-coupling regime and the regime of small adiabatic
polarons, are analyzed in Section 5. In Section 6, the small
pinned polarons are investigated in detail, with particu-
lar emphasis on the characteristics of the polaron disper-
sion properties. The RCSM results are used to disentangle
various contributions to the polaron dynamics along the
crossover between freely moving and nearly pinned po-
laron states, which spans across the phase diagram from
the nonadiabatic to the adiabatic limit. The overview of
the most important results and conclusions is given with
the phase diagram for the one-dimensional Holstein po-
laron problem in Section 7, where the generalization of
the phase diagram to higher dimensional cases is also dis-
cussed. A short summary is presented in Section 8.

2 General

The present work considers polaron properties within the
Holstein model [53] in one dimension. In momentum space,
the Holstein Hamiltonian is given by

Ĥ = −2t
∑

k

cos(k) c†kck + ω0

∑

q

b†qbq

−g/
√

N
∑

k,q

c†k+qck (b†−q + bq), (1)
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where N is the number of lattice sites (N → ∞). c†k and b†q
are the creation operator for the electron and phonon, re-
spectively. Only the single-electron problem is considered.
The electron is described in the tight-binding nearest-
neighbor approximation, with t the electron hopping en-
ergy. The coupling with the branch of dispersionless op-
tical phonons is local. g is the electron-phonon coupling
energy. The phonon energy ω0 is taken throughout this
work as the unit of energy. Besides t/ω0 and g/ω0, the
two other parameters used are the binding energy of the
polaron in the atomic limit (t = 0), εp = g2/ω0, and the
dimensioneless parameter λ = εp/t. Unlike g, εp and λ are
adiabatic parameters in the sense that they do not depend
of the mass of the nucleus.

The part of the spectrum below the phonon thresh-
old [54] for incoherent scattering, ω < E0 + ω0, involves
eigenstates for which the phonons are coherently corre-
lated with the electron in the space. In other words, the
electron-phonon correlation length d is for these eigen-
states finite. This lenght defines the spreading of the (po-
laronic) phonon field that moves with the electron. In par-
ticular, the spectrum for ω < E0+ω0 can be interpreted in
terms of one (or more) polaron bands [55]. Each polaron
state in the band is an eigenstate of the total momentum
K̂ =

∑
k k c†kck +

∑
q q b†qbq, where K̂ commutes with the

Hamiltonian (1).
Since the homogenous q = 0 phonon mode in equa-

tion (1), b†q=0 =
∑

n b†n/
√

N , interacts only with the total
electron density that is conserved,

∑
k c†kck = 1, the cor-

responding part of the Hamiltonian

Ĥq=0 = ω0 b†q=0bq=0 + g (b†q=0 + bq=0)/
√

N, (2)

can be solved exactly [40]. The solutions are given by the
ground and excited states of the displaced q = 0 harmonic
oscillator. The displacement of the q = 0 oscillator defines
the mean total lattice deformation,

xtot = x0

√
N 〈Ψ |(b†q=0 + bq=0)|Ψ〉 = 2x0 g/ω0, (3)

where |Ψ〉 is any eigenstate of the total Hamiltonian (1)
and x0 is the root mean-square zero-point displacement√

1/2Mω0, with M the mass of the nuclei (� = 1).
In the present work, the local interplay between the

electron and its accompanying phonon field is referred
to as the local dynamics. In the static ω → E0 limit,
the local electron-phonon correlations are characterized
by the mean total lattice deformation xtot and the cor-
relation length d. While xtot is simply determined by the
ratio g/ω0, the correlation length behaves differently in
the case of the adiabatic and the nonadiabatic local corre-
lations. The polaron dynamics is adiabatic when the elec-
tron follows the motion of the lattice deformation almost
instantaneously. Nonadiabatic dynamics involve processes
for which the electron is temporarily detached from the
deformation.

The distinction between adiabatic and nonadiabatic
contributions is important for the understanding of po-
laron dispersion properties as well. By analogy to d, which

characterizes the local correlations, the effective polaron
mass mpol describes the translational dynamics involv-
ing the joint motion of the electron and the phonon field
along the lattice. Generally, the effective mass is given
by a different combination of parameters in the adiabatic
and nonadiabatic cases. In addition, the polaron disper-
sion properties depend on the value of the electron-phonon
correlation length d (polaron size). Namely, polarons that
are large with respect to the lattice constant a move as
free particles and can be investigated in the continuum
approximation. However, lattice coarsening effects come
into play for small polarons d ∼ a, because they can be
pinned to the lattice.

The polaron formation is discussed in this work in
terms of analytical results for the ground state energy,
the polaron size, and the effective mass for various pa-
rameter regimes. However, in the crossover regimes, rather
than simply focusing on these quantities, the analysis is
performed by considering the polaron band structure for
ω < E0 + ω0. In this way, important insights into the
nontrivial mixing of fundamentally different contributions
to the polaron dynamics, which would not be apparent
from an analysis of the ground state and the effective mass
alone, are obtained.

3 Perturbative approaches

In order to discuss the nature of polaron states in the
weak-coupling and small t limits, it is convenient to ana-
lyze the leading corrections to the polaron binding energy
and the effective mass in the context of two standard per-
turbative approaches. In particular, the perturbative cor-
rections in g are discussed in Section 3.1, while the power
series expansion in t is examined in Section 3.2. In the first
case, the perturbative theory is translationally invariant
from the outset, while in the second case the perturba-
tive expansion starts with the atomic t = 0 limit, i.e.,
from the state which breaks the translational symmetry.
In this connection, it is interesting to point out that in the
small g and t regime (g, t � ω0) the leading corrections for
both perturbative approaches give the same polaron be-
havior. This result serves as good evidence supporting the
view that both perturbative series are equivalent, when
summed to infinite order.

3.1 Leading corrections in g

Up to the second order in g of the nondegenerate
Schrödinger perturbation theory [56], the polaron bind-
ing energy is given by [57]

Δpol = εp/
√

1 + 4t/ω0, (4)

while for the effective polaron mass one obtains

mpol

mel
= 1 + εp

2t + ω0

(ω0)
1
2 (4t + ω0)

3
2
, (5)
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with εp = g2/ω0. Up to the second order, the electron-
phonon correlation length d is independent of the coupling
g. In particular, in the static ω → E0 limit, the mean
lattice deformation decays exponentially with the distance
m from the electron [58],

um ∼
(

1 + ω0/2t−
√

ω0/t + ω2
0/4t2

)m

. (6)

The polaron is small (d/a � 1) for t/ω0 � 1, and large
(d/a 	 1) for t/ω0 	 1.

In the small polaron limit t/ω0 � 1, the binding energy
and the effective mass behave according to

Δpol ≈ εp ,
mpol

mel
≈ 1 +

Δpol

ω0
. (7)

In the opposite, large polaron limit d/a ∼ √
t/ω0 	 1,

one obtains

Δpol ≈ εp

2

√
ω0

t
,

mpol

mel
≈ 1 +

1
2

Δpol

ω0
. (8)

By introducing Nd = 1 + 2d/a, where Nd is the effec-
tive number of lattice sites involved by the electron dress-
ing effects (the polaron size), the binding energy for weak
couplings can be, to a good approximation, written as
Δpol ≈ εp/Nd, satisfying the both limiting behaviors given
by equations (7) and (8). The fact that the correlation
length d depends on the lattice mass through the ra-
tio t/ω0 reflects the nonadiabatic nature of the electron-
phonon correlations in the weak-coupling limit. This holds
for any dimensionality of the system. In particular, in
the context of the diagrammatic perturbation theory, one
finds that the leading contribution to the electron self-
energy is given by the local bare electron propagator [49],
Σ(2)(ω) = g2Gloc(ω − ω0). In the weak coupling limit,
the ground-state properties are determined by the value
of Σ(2)(ω) at the bottom of the nearly free electron band,
which leads to the correlation length d independent of
g [47].

For large polarons, equation (8) can be derived in the
continuum approximation by considering the long-wave
limit for the electron dispersion [47]. On the other hand,
for small polarons, the band structure of equation (1)
should be preserved in order to derive equation (7).

The weak-coupling regime, for which the electron is
only weakly dressed by the phonon cloud, is determined by
the condition Δpol < ω0. For the one dimensional system,
one obtains

εp/ω0 < Nd ≈ 1 + 2
√

t/ω0, (9)

i.e., g/ω0 < 1 for t � ω0 and g/ω0 < (t/ω0)1/4 for t 	 ω0.
Namely, for Δpol ∼ ω0, the second and fourth order contri-
butions to the binding energy are comparable [47], mean-
ing that the two-phonon processes are of similar impor-
tance as the single-phonon processes. In other words, for
Δpol � ω0, the electron is strongly renormalized by the
phonon field.

3.2 Leading corrections in t

In the atomic limit t = 0, the polaron formation involves
a single lattice site and the ground state energy of the
electron-phonon system is N -fold degenerate, E0 = −εp.
By taking into account the first order corrections in t, one
obtains the well-known nonadiabatic Lang-Firsov small
polaron band. With respect to the free-electron case, the
bandwidth of the Lang-Firsov polaron band is reduced by
the electron quasi-particle weight,

tLF = t exp (−εp/ω0). (10)

The polaron hopping in equation (10) involves processes
for which the electron hops to the neighboring site by de-
taching itself from the phonon field. Such nonadiabatic
contributions delocalize the whole polaron, rather than
breaking the coherent correlation between the electron
and phonons, since below the phonon threshold the in-
coherent scattering is forbidden by the energy constraint.

In the small t and weak coupling εp � ω0 limit, the
first order expansion in t computed by the degenerate
Schrödinger perturbation theory gives the same polaron
binding energy and the effective mass (i.e., by expand-
ing Eq. (10)) as in equation (7), derived in the context of
the perturbation theory in g. The crossover between the
weak-coupling regime and the strong-coupling regime, in
which the (Lang-Firsov) polaron is characterized by an
exponentially reduced bandwidth, occurs for

g ∼ ω0. (11)

In the εp/ω0 	 1 limit, the polaron hopping energy tLF ,
given by equation (10), becomes negligible. That is, for
εp 	 ω0 � t, the non-exponentially small correction to
the polaron ground state energy is given by the second
order contribution in t that is independent of the polaron
momentum [59],

E0 = −εp − 2
t2LF

ω0
[Ei (2εp/ω0) − γ0 − ln (2εp/ω0)]

≈ −εp (1 + t2/ε2
p), (12)

with Ei(x) the exponential integral, and γ0 Euler’s con-
stant. The second term in equation (12) is independent
of the lattice mass, revealing the adiabatic nature of local
electron-phonon correlations. One notices that this behav-
ior is fundamentally different from that obtained in the
weak coupling limit. Namely, in the latter case, t appears
in the polaron binding energy in equation (4) through the
nonadiabatic ratio t/ω0.

The nonadiabatic hopping (10) is apparently inde-
pendent of the system dimensionality D. On the other
hand, the second order corrections in equation (12) are
D-dependent. However, for εp 	 ω0 � t, their nature is
adiabatic just like in equation (12), irrespectively of the
system dimension.

4 Adiabatically self-trapped electron

When g and/or t cannot be treated as small perturbations,
instead of dealing with the (high-order) perturbation
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Figure 1. (Color online) The polaron formation in the
Holstein model for strong-couplings. For all lattice deforma-
tion relevant for the polaron dynamics the associated electron
spectrum, calculated as a function of the lattice deformation,
exhibits a large gap ΔAD � ω0, separating the ground (local-
ized) state from the excited states. Although the electron is
trapped by the lattice deformation, the translational symme-
try is preserved because the electron can move along the lattice
together with the lattice deformation.

theory [47], it is convenient to approach the polaron
problem in terms of the adiabatic approximation [60,61].
Namely, when the electron spectrum is calculated as a
function of the lattice deformation, as illustrated in Fig-
ure 1, a large gap ΔAD opens for strong couplings. The gap
ΔAD separates the excited states from the ground state,
the latter being characterized by a finite electron-phonon
correlation length d. This length is, unlike for weak cou-
plings, independent of the lattice mass, d ∼ 1/λ, with
λ = εp/t = g2/t ω0.

In the adiabatic limit the electron always stays in the
localized ground state, i.e., the electron is self-trapped.
The nonadiabatic corrections involve transitions of the
electron back and forth into the excited states of the adia-
batic electron spectrum (see Fig. 1). The adiabatic regime
is frequently assigned to large values of the ratio t/ω0 (fast
electron vs. slow lattice). However, it is important to real-
ize that the condition ΔAD 	 ω0 that makes the nonadi-
abatic corrections small depends on the coupling g, with
ΔAD ∼ εp for small polarons and ΔAD ∼ (εp λ) for large
polarons. This means that for small polarons ΔAD can
be large even in the small t/ω0 limit. On the other hand,
for large polarons, the condition t/ω0 	 1 by itself is not
sufficient to guarantee ΔAD 	 ω0, i.e., the adiabatic be-
havior.

4.1 Adiabatic approximation

Within the adiabatic approximation, the electron wave
function is determined by the lattice deformation, while
the dependence on the lattice momentum is assumed to be
negligibly small. Accordingly, the wave function of the po-

laron is decomposed into the product of the lattice Φph(u)
and the electron ηn(u) part,

|Ψ(u)〉 = Φph(u) ⊗
∑

n

ηn(u) ĉ†n |0〉, (13)

with ηn(u) the ground-state electron wave function. Here-
after, for sake of brevity the lattice deformation is denoted
by a vector u ≡ {un}. That is, u represents a point in
the N -dimensional configuration space of lattice deforma-
tions. The component un is the lattice deformation at the
site n expressed in dimensionless unit; un = 1/2 corre-
sponds to the root-mean square zero-point displacement
of the free lattice. In present notation, |u| is the norm of
the vector, |u| = (

∑
n u2

n)
1
2 . The unit vector is denoted by

û, |û| = 1.
The expectation value of the Hamiltonian (1) with re-

spect to the electron ground state ηn (shifted by the zero
point energy) is given by

ĤAD = −ω0

4

∑

n

∂2

∂u2
n

+ ω0

∑

n

u2
n

−t
∑

n

η∗
n(ηn+1 + ηn−1) − 2g

∑

n

un |ηn|2.(14)

The requirement that the electron energy εAD(u) is min-
imal for the given lattice deformation u yields

εAD(u) ηn = −t (ηn+1 + ηn−1) − 2g un ηn, (15)

the solutions of which can easily be found numerically.
The solution with the lowest energy defines the ground
state, whereas other solutions define the excited states of
the adiabatic electron spectrum, shown schematically in
Figure 1.

Since the electron ground state ηn in equation (14)
is a function of the deformation u, with the exception
of the first term, the rest of equation (14) can be inter-
preted as the adiabatic potential UAD(u) that character-
izes the lattice dynamics in the adiabatic approximation.
The Hamiltonian ĤAD is translationally invariant just as
is the Hamiltonian (1). The first term in equation (14)
represents the kinetic energy of the lattice. The contribu-
tion to ĤAD arising form the fact that the electron wave
function and the lattice kinetic energy operator do not
commute is neglected in the adiabatic limit.

For the Holstein model, the homogeneous (q = 0) lat-
tice mode couples to the total electron density. For this
reason one should consider just those lattice deforma-
tions in equation (15) that satisfy the sum rule (3), i.e.,∑

n un = g/ω0. The wave functions ηn depend only on
λ, while the electron spectrum exhibits a simple scaling
property,

εAD(u, εp, λ) = εp ε̃AD(ω0u/g, λ). (16)

Furthermore, the same property is exhibited by the adia-
batic potential,

UAD(u) = ω0 | u |2 +εAD(u) = εp ŨAD(ω0u/g, λ). (17)
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The only parameter that governs ŨAD(u) is λ, namely
the parameter that defines the adiabatic electron-phonon
correlation length (the polaron size).

4.2 The moving set of coordinates

In order to discuss the adiabatic polarons, it is convenient
to introduce a moving set of coordinates u = {s, Qα(s)},
which allows a natural distinction between the transla-
tional and local dynamics. Namely, in this formalism, s
represents the position of the polaron in its translational
motion along the minimal energy path. Qα(s) are the coor-
dinates of the normal modes that move with the polaron.
These coordinates describe the local lattice dynamics in-
volving displacements orthogonal to the minimal energy
path associated with the translation.

The formalism of the moving set of coordinates was
originally introduced in the context of the quantum field
theory in order to analyze soliton-like solutions involv-
ing multi-dimensional configuration space [62]. It is ex-
tensively used in quantum chemistry to calculate reaction
rates for adiabatic potentials that describe various chem-
ical reactions [63,64]. In these problems, the minimal en-
ergy path (reaction path) usually connects two minima,
separated by a potential barrier, corresponding to the de-
sired reactants and products. The particularity of the po-
laron problem is that the minimal energy path involves
motion along a periodic lattice

UAD(s, Qα(s)) = UAD(s + sa, Qα(s + sa)), (18)

with sa denoting the length of the path in the configu-
ration space u that corresponds to the translation of the
polaron by one lattice site. The approach with the moving
set of coordinates was used for the adiabatic polaron prob-
lem previously in the continuum approximation [65–68].
The analysis presented here extends those investigations
by addressing the issue of lattice coarsening effects.

Due to the periodicity, it is sufficient to analyze the
properties of the adiabatic potential UAD for one unit cell
in order to identify the key elements of the polaron adi-
abatic dynamics. In particular, in the following sections
three aspects of the adiabatic dynamics are separately dis-
cussed: the emergence of the barrier for the translational
motion due to the lattice coarsening, the phonon soften-
ing effects related to the local dynamics involving fluctu-
ations around the minima of the adiabatic potential, and
the appearance of the kinematic coupling [67] between the
translational and local dynamics due to the curvature of
the minimal energy path.

4.3 Peierls-Nabarro barrier

The translational motion of the polaron along the minimal
energy path is characterized by N -fold degenerate minima
and saddle points of UAD(u). Their difference in energy
defines the Peierls-Nabarro (PN) barrier ΔPN , which is
the minimal energy barrier that must be overcome in order

0 5 10 15

0.1

0.2

0.3

0.4

0.5

λ

Δ(λ)
~

Figure 2. The PN barrier Δ̃PN (λ) = ΔPN/εp as a function
of λ. It is exponentially small for λ � 1, whereas for λ � 1 it
asymptotically approaches the constant value Δ̃PN ≈ 1/2.

to move classically the adiabatic polaron from one lattice
site to another. By choosing one of the minima of UAD(u)
as the origin for the coordinate s, the PN barrier in terms
of the moving set of coordinates may be expressed as

ΔPN = UAD(sa/2, Qα = 0) − UAD(0, Qα = 0). (19)

The lattice configurations associated with stationary
points of the adiabatic potential are obtained by extrem-
izing UAD(u) with respect to un,

∇UAD(u) = 0 ⇒ un = (g/ω0) |ηn|2. (20)

After inserting equation (20) into (15) one obtains the
discrete nonlinear Schrödinger equation whose stationary
solutions define the stationary points of UAD(u). The lat-
tice deformations uM corresponding to the minima are
centered at the lattice site, while the deformations uPN

corresponding to the saddle points with the lowest energy
are centered between the neighboring lattice sites. By in-
serting equation (20) into (15), one can easily verify that
the PN barrier scales as

ΔPN = UAD(uPN ) − UAD(uM ) = εp Δ̃PN (λ). (21)

The PN barrier rescaled by εp in Figure 2 is shown as a
function of λ. In the small polaron limit λ 	 1, the PN
barrier is the highest, being of the same order of mag-
nitude as the polaron binding energy, ΔPN ≈ εp/2. For
large polarons, d/a ∼ λ−1 	 1, the shape of the lattice
deformation is not significantly altered by the lattice dis-
creteness as the polaron moves along the minimal energy
path. Accordingly, in the small λ limit one finds that the
PN barrier is exponentially small [70,71],

lim
λ→0

Δ̃PN (λ) ∼ λ−2 exp (−2π/λ). (22)

It is worth noting that λ < 1 appears also in the trans-
lationally invariant diagrammatic theory as the condition
for the validity of the continuum approximation in the
adiabatic limit [47].
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4.4 Phonon softening

Apart from the role in the polaron translational dynam-
ics, the adiabatic dynamical correlations manifest them-
selves through the softening of the local phonon modes
associated with the lattice deformation. The adiabatically
self-trapped electron introduces an effective coupling be-
tween lattice vibrations within the range of the electron-
phonon correlation length d ∼ 1/λ. As a consequence, the
effective elastic constants which characterize the lattice-
deformation normal modes are weaker than in the case of
uncorrelated ω0 lattice vibrations.

In the limit of the large PN barrier ΔPN 	 ω0, the
local dynamics of the polaron is restricted to harmonic
fluctuations around the minima of UAD(u), whereas an-
harmonic contributions to the local dynamics responsible
for the polaron delocalization can be neglected. Namely,
because of the exponentially small probability for the tun-
neling through the PN barrier, the time scale 1/ω0 as-
sociated with the local dynamics is much shorter than
the time scale on which the polaron moves along the lat-
tice. The harmonic expansion of the adiabatic potential
UAD(u) around the minimum UAD(uM ) is given by

UAD(uM + h) ≈ UAD(uM ) + ω0 h K̃ h. (23)

h represents the displacement from the equilibrium con-
figuration uM . K̃ is the elastic constant matrix,

Ki,j = δi,j + Πi,j , (24)

here, δi,j is the Kronecker delta. Πi,j is the (static) elec-
tron polarizability matrix describing the adiabatic corre-
lations. It is determined by the adiabatic changes of the
electron wave function in response to infinitely small lat-
tice displacements from the equilibrium configuration uM .
In terms of the electron basis corresponding to uM , one
obtains [69]

Πi,j(λ) = −4 εp η0
i η0

j

∑

ν �=0

ην
i ην

j

εν − ε0
, (25)

where the index 0 denotes the ground state solution of
equation (15), whereas ν > 0 denotes the excited state
solutions. Because the electron spectrum ε0, εν , scales ac-
cording to equation (16), Πi,j(λ) is a function of λ.

By solving the matrix problem (24), one obtains the
normal modes of the lattice deformation,

UAD(Qβ) ≈ UAD(uM ) +
∑

β

ωβ Q2
β. (26)

It should be stressed that the harmonic term in equa-
tion (26) includes the (local) fluctuations along the mini-
mal energy path too. That is, the coordinate of the normal
mode β with the lowest frequency in equation (26) corre-
sponds to the coordinate s in the formalism of the moving
set of coordinates {s, Qα(s)}. In this respect, it is impor-
tant to distinguish between the fluctuations around the
minima associated with the coordinate s and the motion

0.5 1 1.5 2 λ

0.2

0.4

0.6

0.8

1

ω
B

ω
P

Figure 3. (Color online) The eigenfrequencies ωβ/ω0 of the
six lowest normal modes β as functions of λ. The pinning and
the breather mode are denoted by P and B, respectively.

from one minimum to another involving the same coordi-
nate. The latter contributes to the translational dynamics,
whereas the former is associated with the local dynamics.
Hereafter, the index β is used to denote the full set of N
normal modes appearing in equation (26), calculated with
respect to the potential minimum. The index α involves
the moving set of N − 1 normal modes orthogonal to the
minimal energy path.

The lattice deformation Qβ = {Qβ,n} associated to
the normal coordinate Qβ may be either symmetric or an-
tisymmetric with respect to the polaron center, which de-
fines the parity of the normal mode β. Because the elastic
constant matrix (24) is determined by λ, the same applies
to the unit vectors Q̂β and to the ratios ωβ/ω0 defining
the frequency softening.

The eigenfrequencies ωβ/ω0 of the six lowest normal
modes are plotted in Figure 3. The softening effects are
particularly strong for the lowest odd (pinning, β = P )
and the lowest even (breather, β = B) mode. The fre-
quency of the odd pinning mode ωβ=P tends to zero in
the large polaron limit (the left side of Fig. 3). This is a
consequence of the disappearance of the PN barrier (22)
for small λ; in the ΔPN → 0 limit, the restoring force
vanishes for fluctuations in the direction parallel to the
minimal energy path.

In the d ∼ λ−1 � 1 limit, the adiabatic correlations
in the lattice dynamics at different sites disappear since
the electron and the lattice deformation localize to a single
lattice site. In the absence of adiabatic correlations involv-
ing multiple lattice sites there is no frequency softening.
Accordingly, in Figure 3 one observes that for 1/λ → 0 all
the frequencies ωβ approach the bare value ω0.

4.5 Curvature of the minimal energy path

For the lattice with cyclic boundary conditions, the min-
imal energy path forms a closed loop in the configura-
tion space of lattice deformations u. The curvature of this
path, which depends nontrivially on εp and λ, introduces
a kinematic coupling [67] between the motion along the
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minimal energy path and the motion orthogonal to it. This
effect can be investigated by expressing the kinetic part of
the Hamiltonian (14) in the representation of the moving
set of coordinates {s, Qα(s)}.

First, in the moving set of coordinates the lattice de-
formation u is expressed as

u(s, Qα) = a(s) +
∑

α

Q̂α(s) Qα, (27)

with a(s) the lattice deformation corresponding to the
point s along the minimal energy path and Q̂α(s) the
unit vector representing the unit displacement along the
normal coordinate Qα, orthogonal to the minimal energy
path. The total differential du is given by

du =

[
∂a(s)

∂s
+
∑

α

∂Q̂α(s)
∂s

Qα

]
ds +

∑

α

Q̂α(s) dQα.

(28)
Multiplying equation (28) by the unit vector ∂a(s)/∂s,
which is tangential to the minimal energy path, gives

∂a(s)
∂s

du =

[
1 +

∑

α

(
∂Q̂α(s)

∂s

∂a(s)
∂s

)
Qα

]
ds. (29)

Using the completeness relation for the unit vectors
{∂a(s)/∂s, Q̂α}, after some algebra, one obtains the fol-
lowing expression for the kinetic energy associated with
the motion along the minimal energy path [63]

∂2

∂s2
∼
[
1 −

∑

α

κα(s)Qα

]−2

, (30)

with

κα(s) = −∂Q̂α(s)
∂s

∂a(s)
∂s

= Q̂α(s)
∂2a(s)

∂s2
. (31)

It is assumed here that the second term inside the square
brackets of equation (30) is small for lattice configura-
tions Qα relevant for the polaron dynamics. Otherwise,
the singularities appear in the theory, indicating that the
regime, for which the moving set of coordinates {s, Qα(s)}
is inadequate, has been reached. In particular, in the case
when the fluctuations orthogonal to the minimal energy
path are described by the zero-point motion, 〈Q2

α〉 ∼ 1,
one finds that the applicability of the current formalism
is restricted by the condition

κ(s) � 1 , κ(s) =
√∑

α

κ2
α(s), (32)

where the coefficients κα(s) determine how the curvature
of the minimal energy path is partitioned among the nor-
mal modes α.

Values of the coefficients κα(s) for different modes may
be estimated by performing a simple analysis of the adia-
batic potential UAD(u). In this respect, it is convenient to
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Figure 4. (Color online) In general, the projection of the dis-
placement vector hPN , given by equation (33), is substantial
only in the direction of the pinning β = P and breather β = B
coordinates (dashed curves), cos2 γP + cos2 γB ≈ 1. For large
polarons (λ � 1) it is substantial only in the direction of the
pinning coordinate, cos2 γP ≈ 1. The PN barrier for εp = 10
and εp = 103 is plotted by solid curves.

use quantities which are simple functions of Hamiltonian
parameters. In particular, it is convenient to consider the
relationship between two lattice deformations associated
to the neighboring stationary points of the adiabatic po-
tential. The displacement hPN from the minimum to the
nearest saddle point in the configuration space u in terms
of the normal modes, obtained in equation (26), is given by

hPN = uPN − uM = |hPN |
⎛

⎝
∑

β

Q̂β cos γβ

⎞

⎠, (33)

with |hPN | ∼ g/ω0 and the arguments γβ are functions
of λ. Since κα(s) ∼ ω0/g, it is the arguments γβ that
define the nontrivial relation between the curvature of the
minimal energy path and the normal modes β.

From Figure 4 one can see that hPN lies almost en-
tirely in the plane of the lattice configurations spanned
by the pinning β = P and breather β = B coordinates.
That is, cos2 γβ=P + cos2 γβ=B > 0.99 is satisfied for all
λ. According to these findings, one may conclude that
the effects due to the curvature of the minimal energy
path are, in general, important just for the two normal
modes β with the lowest frequencies. The interpretation
of this result in the context of the moving set of coor-
dinates is straightforward. For the kinematic coupling in
equation (30), only the coefficient κα(s) associated to the
moving normal mode α with the lowest frequency is sig-
nificant, while for the other modes the coefficients can be
neglected.

5 Large adiabatic polarons

The large adiabatic polaron (d/a ∼ λ−1 	 1) has many
analogies with a classical soliton (with a fundamental dif-
ference that it carries the elementary charge e). Its local



O.S. Barǐsić and S. Barǐsić: Phase diagram of the Holstein polaron in one dimension 9

dynamics is characterized by a large gap in the electron
spectrum ΔAD 	 ω0, involving a large lattice deformation
with respect to the zero point displacements. Concern-
ing the translational dynamics, the quantum tunneling ef-
fects can be neglected because the pinning potential (22)
vanishes exponentially with d. Thus, for ΔAD 	 ω0 and
λ � 1, the same arguments as those appearing in the soli-
ton theory, based on the large effective mass, can be used
to justify the use of the classical approximation.

It should be stressed that long-range adiabatic corre-
lations occur only for one dimensional Holstein polarons.
Indeed, the regime of large adiabatic polarons makes the
1D case exceptional. In contrast, the other regimes in the
phase diagram discussed herein appear regardless of the
dimensionality.

In what follows, a short overview of the properties of
the large adiabatic polaron derived in the classical limit
is given in Section 5.1. The crossover from large adiabatic
polarons to large polarons in the weak-coupling regime is
discussed in the context of the continuum (λ � 1) approx-
imation in Section 5.2. The crossover from freely moving
to pinned adiabatic (ΔAD 	 ω0) polarons due to the lat-
tice coarsening effects is discussed in Section 5.3.

For both of the afore mentioned crossovers involving
large polarons one should consider quantum fluctuations
of the lattice deformation field, the nature of which is qual-
itatively different for the two cases. By crossing towards
weak-coupling (ΔPN ∼ ω0), it turns out that the nona-
diabatic quantum electron-phonon correlations take con-
trol of the polaron dynamics. On the other hand, the po-
laron dynamics remains adiabatic in the crossover regime
between freely moving and pinned polarons (λ ∼ 1). In
this latter case, the quantization of the lattice deforma-
tion field is necessary in order to describe the quantum
tunneling through the PN barrier.

5.1 Classical lattice theory of large adiabatic polarons

By treating the lattice classically in the continuum limit
for the polaron solution with the minimal energy, one ob-
tains [53,72]

uM
n =

2g

ω0
|ηn|2 , ηn =

√
λ

2
sech [λ (n − ξ/a)/2] . (34)

uM
n is the classical lattice deformation at the site n and

ηn is the electron wave function. λ defines the electron-
phonon correlation length d, whereas ξ represents the posi-
tion of the polaron on the continuous axis. The binding en-
ergy of the large adiabatic polaron (34) is one third of the
gap in the adiabatic electron spectrum, Δpol = ΔAD/3,
with ΔAD = εp λ/4 [73].

The solution in equation (34), which breaks the (full)
translational symmetry, defines the static polaron prop-
erties. The electron ηn is trapped by the self-consistent
lattice deformation uM

n . The full translational symmetry
is restored by considering ξ as a dynamical coordinate,
ξ = x− vt, where ξ corresponds to the Goldstone mode of

Table 1. The space symmetry and the frequencies of the adi-
abatically softened normal modes obtained in the continuum
approximation.

ωβ=P ωβ=B ω2 ω3 ω4 ω5

symmetry − + − + − +

ωβ/ω0 0 0.648 0.882 0.912 0.949 0.958

the continuous translational symmetry. In the continuum
approximation, the effective polaron mass mpol [67],

mpol ∼
∑

n

(∂un/∂ξ)2 ,

mpol

mel
=

2
15

1
ω2

0

(εp λ)2 , (35)

is linear in the mass of nucleus, mpol ∼ ω−2
0 . The same

result may be derived in the context of the moving set of
coordinates {s, Qα(s)} by neglecting the curvature of the
minimal energy path,

ds = ŝ [∂s/∂ξ] dξ ⇒ ds2 ∼ m∗ dξ2. (36)

Furthermore, such behavior of the effective mass together
with the behavior of the polaron size d ∼ 1/λ is obtained
from the scaling properties of the infinite-order diagram-
matic perturbation theory [47], which is translationally
invariant and quantum from the outset.

Concerning the local dynamics, the elastic constants
ωβ and the parity of the normal modes derived in the
continuum approximation (ΔPN = 0) are given in Ta-
ble 1 [74]. The pinning mode, for which the elastic con-
stant ωβ=P is zero, corresponds to the Goldstone mode for
the polaron translation. The values in Table 1 represent
the λ−1 → 0 limits of the plots in Figure 3.

5.2 Crossover towards weak-coupling regime

The properties of the large adiabatic polaron have been
discussed so far by treating the translational and local dy-
namics separately. However, due to the curvature of the
minimum energy path, a kinematic coupling emerges be-
tween the coordinates s and Qα(s). Within the contin-
uum approximation, the curvature of the minimal energy
path (32) scales as [67]

κ ≈ κα=B ∼
√

λ−1 ω0/g. (37)

By inserting equation (37) into (32), the regime of weak
kinematic coupling can be identified,

κ2 � 1 ⇒ εp λ 	 ω0. (38)

One observes from equation (38) that, in the continuum
λ � 1 limit, the condition (32) is just a restatement of
the condition ΔAD = εp λ/4 	 ω0 that justifies the adia-
batic approximation. In other words, for large polarons the
singularities in the kinetic energy (30) obtained in the adi-
abatic approximation coincide with the breakdown of the
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adiabatic approximation. This result has a simple phys-
ical interpretation. The quantum effects associated with
the zero-point motion perpendicular to the minimal en-
ergy path should be a small perturbation to the adiabatic
motion of the equilibrium lattice profile (34) along the con-
tinuous axis. If this condition is not satisfied, the adiabatic
approximation breaks (ΔAD ∼ ω0) and the nonadiabatic
quantum fluctuations take over.

This interpretation is consistent with equation (9),
derived from the weak-coupling side. It can be there-
fore concluded that the crossover between large adiabatic
polarons and large nonadiabatic polarons in the weak-
coupling regime occurs for εp λ ∼ ω0, or equivalently,
for g/ω0 ∼ (t/ω0)

1
4 .

5.3 Crossover towards pinned polarons

While in the continuum limit the large adiabatic polaron
behaves essentially as a free particle, the polaron spec-
trum exhibits a gapped band structure when the lattice
coarsening effects are taken into account. In the simplest
terms, the pinning effects on the polaron dispersion prop-
erties can be analyzed by neglecting the curvature of the
minimal energy path for the polaron translation, which
is appropriate in the regime of large adiabatic polarons
(εp 	 εp λ 	 ω0).

Assuming that the PN potential behaves approxi-
mately as UPN(s) = ΔPN sin2 (πs/sa), with sa being
the length of the minimal energy path corresponding to
the translation of the polaron by one lattice site,

mpol ∼ s2
a ≈

∑

n

(uM
n+1 − uM

n )2, (39)

the polaron dispersion properties are determined by
Mathieu’s equation. Introducing x = s/sa, one obtains

[
ω0

4
1
s2

a

∂2

∂x2
+ E

(n)
K − ΔPN sin2 (π x)

]
Ψ(x) = 0. (40)

The translationally invariant solutions of the Mathieu’s
equation (40), shown in Figure 5, describe the disper-
sion properties of large adiabatic polarons in the presence
of pinning effects. The band structure in Figure 5 is ob-
tained by calculating numerically the stationary points of
UAD(u) that define sa in equation (39) and ΔPN in equa-
tion (21). In equation (40), E

(n)
K is the energy of the po-

laron with momentum K, with n distinguishing between
different bands.

In Figure 5, the PN barrier is plotted by the thick
curve. For large PN barriers (right side of Fig. 5) the po-
laron bands are very narrow. In this limit, the separation
between different bands is given by the frequency of the
pinning mode ωα=P , discussed in connection with equa-
tion (26). In the limit of a vanishing PN barrier (the left
side of the Fig. 5) all the gaps between bands close. The
spectrum describes a free-like particle, with the effective
mass given by equation (39). In the continuum λ � 1
limit, equation (39) reduces to equation (35), the latter
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Figure 5. (Color online) The translationally invariant solu-

tions of equation (40) that describe the dispersion E
(n)
K of large

adiabatic polarons in the presence of the PN barrier. K is the
momentum and n is the band number. For n even, where n = 0
denotes the lowest band, the bands are bounded from below
and above by the K = 0 (full curves) and K = π (dashed
curves) states, respectively. For n odd the situation is oppo-
site, i.e., the bands are inverted. The thick curve is the PN
barrier ΔPN .

being derived in the classical approximation. That is, in
the continuum λ � 1 limit, the same effective mass char-
acterizes the quantum and the classical motion of the large
adiabatic polaron.

The band structure in Figure 5 involves the bands for
which all the oscillators associated with the dynamics or-
thogonal to the energy path are in the ground state. Ad-
ditional bands are obtained by considering the excitations
of these oscillators,

E(K, n, nα) = E
(n)
K +

∑

α�=P

nα ωα. (41)

The treatment of the large adiabatic polaron in equa-
tion (41) neglects entirely the effects due to the curvature
κ(s) of the minimal energy path. With these effects taken
into account, one would observe a weak hybridization be-
tween different nα �= 0 bands. The hybridization issue is
discussed in more detail in Section 6.2.

6 Small pinned polarons

6.1 Adiabatic translational dynamics

It was argued in Section 5.2 that, in the context of
the (adiabatic) moving set of coordinates, the increas-
ing importance of kinematic contributions in the contin-
uum limit can be traced from the curvature of the min-
imal energy path κ(s). In particular, the singularities in
equation (30) are avoided only for sufficiently large εp,
εp/ω0 � λ−1. For small polarons, on the other hand, the
singularities in the context of the moving set of coordi-
nates appear due to the particular shape of the adiabatic
potential for any value of εp. That is, although in the
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Figure 6. The adiabatic potential as function of coordinates
Qβ=P and Qβ=B, belonging to the pinning and breather nor-
mal modes for λ = 1.2 and λ = 4. The absolute minimum of
UAD(Qβ=P , Qβ=B) is at the origin, while the two local min-
ima correspond to polarons centered at the nearest-neighboring
sites.

εp 	 ω0 limit κ(s) satisfies equation (32) along the min-
imal energy path that connects two minima of the adia-
batic potential, this quantity is singular at the minima. As
argued here, the nature of the singularities in the cases of
the large and small polarons is fundamentally different. In
the former case, the quantum fluctuations perpendicular
to the minimal energy path are involved, whereas in the
latter the singularities are found along the minimal energy
path itself.

The curvature κ(s) is singular at the minima of
UAD(u) when the normal mode with the lowest frequency
is the (even) breather mode. As can be observed from
Figure 2, this happens for λ � 1.4. The shape of the adi-
abatic potential as a function of the pinning Qβ=P and
breather Qβ=B normal coordinates is compared for large
(ωβ=P < ωβ=B) and small (ωβ=P > ωβ=B) polarons in
Figure 6. In Figure 6a the minimal energy path passes
the minimum uM tangentially in the direction of the axis
Qβ=P . On the other hand, in Figure 6b the minimal en-
ergy path in the vicinity of uM is in the direction of the
axis Qβ=B, with uM representing the (singular) turning
point. This result regarding the appearance of singulari-
ties in the small polaron case can easily be generalized to
higher dimensional lattices.

6.2 Crossover between small and large adiabatic
polarons

With the complex shape of the adiabatic potential, the
quantitatively accurate description of the adiabatic trans-
lational dynamics for small polarons relies on numeri-
cal methods. The problem is simplified by the large PN
barrier, which permits one to consider only the nearest-
neighbor hopping processes. One may start with a set of
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Figure 7. (Color online) The lowest polaron band and the
excited polaron bands associated to the pinning and breather
modes, calculated by the RCSM, for t = 250 in the upper and
for t = 25 in the lower panel (ω0 = 1). The spectra are shifted
by the ground state energy. The K = 0 and K = π states
are plotted by full and dashed curves, respectively. The inset
shows the band structure for t = 25 in terms of 22 states with
different momenta for each band, K = 0, π, n × 0.15, n ≤ 20.

vibrational wave functions that describe harmonic fluc-
tuations around the minima of UAD(u), and then calcu-
late the overlap integrals between the vibrational wave
functions involving the nearest neighbor sites. Because the
minimal energy path within the unit cell practically lies in
the plane of the pinning and breather modes (as discussed
in connection with Fig. 4), the overlap integrals should be
considered explicitly only for these two modes [52]. Follow-
ing such a procedure, one obtains a tight-binding problem
that can easily be solved, in particular numerically. In fact,
with generalizations necessary for the description of large
polarons and nonadiabatic contributions, the correspond-
ingly extended approach is used by the relevant coherent
states method (RCSM). The latter methodology, intro-
duced recently in reference [52], calculates accurately the
polaron spectra for the whole parameter space.

Figure 7a shows the RCSM polaron spectrum in the
crossover regime λ ≈ 1 between large and small adia-
batic polarons (t/ω0 = 250). It involves the lowest po-
laron band, denoted by G, and six excited bands. All the
states are given with respect to the polaron ground state
E0 ≡ E

(i=0)
K=0 . The notations B (breather) and P (pinning)
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relate the narrow bands on the right side of the spectra
(large PN barrier) with the harmonic adiabatic theory.
For example, PB denotes the band which involves the ex-
citation of the pinning and the breather mode shown in
Figure 3, i.e., its position in the spectrum is determined
by ωβ=B + ωβ=P . BB means a double excitation of the
breather mode, and so on.

The spectrum in Figure 7a is given for the same choice
of parameters as in Figure 5. By comparing these two spec-
tra for λ � 1, one finds that the energies of the (large)
polaron states in Figure 7a behave according to the pre-
diction of the approximate calculation of equation (41),
derived by entirely neglecting the curvature of the minimal
energy path. In particular, there is no significant difference
in the dispersion properties of the large polaron described
by the solutions (Fig. 5) of Mathieu’s equation (40) and
the RCSM states marked by the arrows in Figure 7a. Con-
cerning the local dynamics, the K = 0 state marked by the
filled circle involves the excitation of the breather mode.
Its energy on the left side of Figure 7a (λ � 1) is very
close to the energy of the breather mode ωβ=B ≈ 0.65,
obtained in the continuum approximation (see Table 1).
This result agrees with equation (41) as well. Thus, it can
be concluded that our equation (41) gives a very satisfac-
tory description of the large polaron band structure in the
presence of lattice coarsening effects.

The polaron spectrum in the crossover regime between
pinned small polaron states and freely moving large po-
laron states exhibits a particularly complex structure. It
is characterized by a strong hybridization between dif-
ferent excited bands, as can be seen from Figure 7b for
t/ω0 = 25. The hybridization is best observed from the
inset of Figure 7b, in which the each band is shown in
terms of 22 states with different momenta. The first and
second excited bands touch in Figure 7b for g/ω0 ≈ 6.3.
This band touching corresponds to the symmetry allowed
crossing of the two K = π polaron states of opposite
parity. A detailed discussion of parity properties can be
found in reference [39]. For g/ω0 < 6.3 in Figure 7b, the
strong hybridization results in a very atypical dispersion;
the K = 0 and K = π states of the first excited band
intersect twice.

On the left side of the spectrum in Figure 7b involv-
ing large polarons (t/ω0 = 25), the excited band corre-
sponding to the excited breather mode (the K = 0 state
is denoted by the filled circle) shifts towards the phonon
threshold with decreasing g. This indicates the presence
of nonadiabatic contributions to the polaron dynamics,
the consequence of which is a suppression of the adiabatic
softening of the breather mode that moves with the po-
laron. As one can see from Figure 7a, this shift is far less
pronounced for larger values of ΔAD/ω0 (t/ω0 = 250 in
Fig. 7a vs. t/ω0 = 25 in Fig. 7b).

6.3 Adiabatic and nonadiabatic small-polaron hopping

In the regime of small pinned polarons εp λ > εp 	 ω0,
the large gap in the adiabatic electron spectrum, ΔAD ∼
εp, makes the local dynamics adiabatic irrespectively of

the ratio t/ω0. However, due to the large PN barrier,
ΔPN ≈ ΔAD/4, two kind of processes should be consid-
ered for the translational dynamics. The small polaron
hopping is adiabatic when dominated by the processes in
which the electron and the lattice deformation move to-
gether to the neighboring site. Yet, when the deformation
field is pinned by the PN barrier too strongly, the delocal-
ization energy is gained by the nonadiabatic rather than
the adiabatic hops of the electron to the neighboring site.
During the nonadiabatic hops, the electron is detached
temporarily from the lattice deformation field.

It is convenient to discuss the distinction between the
adiabatic and nonadiabatic regimes for the small-polaron
hopping by considering the two-site model as the results
exist in closed form [75–78]. As long as the electron-
phonon correlation length is shorter than the size of the
cluster under consideration, one may expect that the ob-
tained solutions satisfactorily reproduce the main polaron
properties. In particular, in the limit d ∼ 1/λ → 0, it can
be argued that the dimensionality and the cyclic bound-
ary conditions that characterize clusters of different size
are not of decisive importance.

Regarding the nonadiabatic small-polaron hopping, it
should be noticed that the hopping energy in the lead-
ing order in t, given by equation (10), depends only on
the quasi-particle weight exp (−εp/ω0). All the phonons
contributing to this quantity involve a single lattice site,
which makes it independent of the cluster size and the
dimensionality of the lattice.

By separating out the homogenous lattice deforma-
tion, the adiabatic potential for the two-site cluster is ob-
tained as [76]

U2(x̃) = εp (x̃2 −
√

2x̃2 + λ−2) , x̃ = ω0 x/g, (42)

with x the relative lattice deformation between the two
sites. Obviously, the effects due to the curvature of the
minimal energy path cannot be addressed within the two-
site model. However, for λ 	 1, the adiabatic hopping
energy that characterizes the motion along the path that
connects two minima behaves similarly, independently
of the cluster size and system dimensionality. Namely,
the scaling properties of the adiabatic potential, given
by equation (17), are a general property of the Holstein
Hamiltonian. For example, the adiabatic potential for the
three-site cluster in polar coordinates takes the form [79]:

U3(r̃, φ) = 2εp

√
2h/3 cos (φ/3)

r̃ = ω0 r/g , cosφ = −f/h
3
2 ,

h = r̃2 + 3λ−2/2

f = r̃3 cos (3φ) + (3λ−2/2)
3
2 .

For both, U2(x̃) and U3(r̃, φ), only λ defines the essential
dependencies. Starting with the 1/λ → 0 limit, in which
the PN barrier is the same for any cluster, ΔPN = εp/2,
one finds that the leading correction in 1/λ involves the
top of the PN barrier. Namely, at this point the polaron is
centered between two lattice sites, meaning that the elec-
tron is equally shared between the two neighboring sites.
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The kinetic energy gain due to such electron delocaliza-
tion is given by the electron hopping energy t. On the
other hand, it is easy to verify that the 1/λ corrections
to the minima of the adiabatic potential are given in the
second order. Thus, the PN barrier up to the leading or-
der in 1/λ behaves according to ΔPN ≈ εp (1/2 − 1/λ),
in perfect agreement with numerical results in Figure 2,
derived in the context of the infinite lattice.

For λ > 1 (pinned polarons) the potential U2(x̃) ex-
hibits two minima at x̃M = ±√

1 − λ−2/
√

2, which are
separated by the PN barrier. The frequency of the har-
monic vibrations around the two minima is softened with
respect to the bare frequency ω0,

ω′/ω0 ≈
√

1 − λ−2. (43)

The polaron hopping energy can be estimated by using
the quasi-classical WKB approximation [80],

ln(tApol) ∼ −2
∫ xM

0

√
|E0 − U2(x)| dx, (44)

with E0 = U2(xM ) + ω′/2. Following reference [78], for
g � t the adiabatic hopping energy is obtained as

tApol ≈ (2π)−1ω′ exp (−(εp/ω0) f(λ)),

f(λ) =
√

1 − λ−2 − λ−2 ln

(
1 +

√
1 − λ−2

λ−1

)
. (45)

In the λ 	 1 limit, which is of interest here, tApol scales as

tApol ≈
�ω′

π
exp

(−εp/�ω (1 − 1/2λ2)
)

(46)

∼ exp (−εp/ω0) exp (t2/2g2). (47)

The term t2/g2 in the exponential does not appear in the
case of nonadiabatic hopping in equation (10). Thus, it
follows that for t � g the adiabatic hopping dominates
the small-polaron translational dynamics [8,81].

On the other hand, for g � t, the integration in equa-
tion (44) gives the same exponential behavior as in equa-
tion (10) [78],

tApol ≈ π−1 g exp (−εp/ω0). (48)

In the regime g � t, when the adiabatic and nonadia-
batic hopping energies differ only in the preexponential
factor, the nature of the small-polaron hopping is appar-
ently mixed. Yet, since equation (48) is derived by neglect-
ing kinetic energy contributions related to nonadiabatic
effects, its applicability in the whole g � t regime still
remains to be verified.

As pointed out in connection with equation (14), the
lattice kinetic energy operator in the adiabatic limit be-
haves as if it commutes with the electron wave function.
In general, of course, this is not the case and one should
consider the corresponding kinetic contributions as well.
In particular, for the two-site model the calculations can
be performed analytically. The ground-state electron wave

function corresponding to the adiabatic potential (42) is
given by [76]

|η〉 = cos η(x̃) |c†1〉 + sin η(x̃) |c†2〉

cos η(x̃) =

√
1
2

+
√

2x̃

2
√

2x̃2 + λ−2

sin η(x̃) =

√
1
2
−

√
2x̃

2
√

2x̃2 + λ−2
, (49)

where |c†1〉 and |c†2〉 are the wave functions of the electron
localized at the site 1 and 2, respectively. The exact ex-
pectation value of the lattice kinetic energy is obtained as

〈η|T̂ |η〉 = −ω0

4
∂2

∂x2
+ ΔT (x̃),

ΔT (x̃) =
εp

8

(
ω0

εp

)2(
λ−1

λ−2 + 2x̃2

)2

. (50)

The nonadiabatic contribution ΔT (x̃) has the shape of a
squared Lorentzian centered at the top of the PN barrier
x̃ = 0. Using a simple variational approach, it is shown
in reference [75] that ΔT (x̃) introduces corrections to the
adiabatic hopping energy (48) given by

lim
1/λ→0

tApol ∼ g e−εp/ω0

(
1 − π

8
ω0

t
+ O

(
ω0

g

))
. (51)

The ω0/t correction in equation (51) clearly demonstrates
that for t � ω0 the adiabatic treatment of the small-
polaron hopping breaks down. In this regime the function
U2(x̃) + ΔT (x̃) at x̃ ≈ 0 takes values that are larger than
the free electron energy, meaning that the electron nec-
essarily detaches from the lattice deformation during the
hop.

The nature of the small polaron hopping is contro-
versial in the literature [82]. From the current analysis,
it might be concluded that the translational dynamics of
the small pinned polarons (εp λ > εp 	 ω0) is nona-
diabatic for t � ω0 and adiabatic for t > g. The regime
ω0 � t � g appears as a crossover regime in which the hop-
ping processes involve a mixture of adiabatic and nonadi-
abatic contributions. The situation is much simpler with
the local dynamics. In the whole regime of small pinned
polarons the nonadiabatic contribution ΔT (x̃) given by
equation (50) vanishes for x̃ ≈ x̃M , i.e., the local dynam-
ics is adiabatic. In particular, for the two-site model the
local dynamical correlations are characterized by the adi-
abatically softened frequency (43).

6.4 Polaron self-trapping

The term polaron self-trapping is frequently used in the
literature to mark the change from free-particle-like to
exponentially-large effective mass behavior of the polaron
states. In the small t limit, t/ω0 � 1, discussed in Sec-
tion 3.2, this change occurs for a nonadiabatic combi-
nation of parameters, g/ω0 ≈ 1. For the opposite limit,
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Figure 8. (Color online) The polaron band structure for t =
2.5 (ω0 = 1) calculated by the RCSM. The spectrum is shifted
by the ground state energy. The K = 0 and K = π states are
plotted by full and dashed curves, respectively.

t/ω0 	 1, it is argued in Section 6.2 that the polaron
self-trapping occurs for λ ≈ 1, where λ is a parameter
independent of the mass of the nucleus.

By constructing a very simple additive combination of
the nonadiabatic and the adiabatic criteria for the polaron
self-trapping, one obtains an empirical formula that accu-
rately describes the polaron self-trapping regime for the
whole parameter space,

gST = ω0 +
√

t ω0. (52)

The formula (52) was suggested in reference [45], by con-
sideration of numerical solutions for the lowest polaron
band. It satisfies both limiting behaviors discussed in this
work: gST /ω0 ≈ 1 in the small t limit and g2

ST /t ω0 =
λST ≈ 1 in the large t limit.

For moderate values of t/ω0, for which the two terms
contributing to gST in equation (52) are comparable, a
complex mixture of adiabatic and nonadiabatic contribu-
tions takes place in the polaron self-trapping regime. In
Figure 8 the polaron spectrum is shown for t/ω0 = 2.5.
Unlike in Figures 7a and 7b, the gap between the lowest
and the excited bands remains considerable for all cou-
plings, indicating that the adiabatic dynamics is charac-
terized by a substantial PN barrier. That is, whereas this
gap closes in Figure 7a as g is decreased (see the low-
est two K = π states pointed by the arrow), in Figure 8
all the excited polaron bands shift towards the phonon
threshold. This shift is a clear indication that the nona-
diabatic correlations take control of the local dynamics
in the left-part of Figure 8, meaning that this parameter
regime corresponds to weak couplings.

On the right side of Figure 8, corresponding to the
pinned small polarons, the positions of the narrow excited
bands in the spectrum are well predicted by the harmonic
adiabatic theory. Since t ∼ g, according to the discussion
in Section 6.3, the polaron hopping energy involves adia-
batic and nonadiabatic processes. This conclusion agrees
with the numerical analysis of the small polaron hopping
for the infinite lattice carried out in reference [55].

7 Phase diagram

7.1 One dimensional case

The discussion of the polaron properties in this work can
be summarized in terms of the two dichotomies in the
polaron dynamics, local vs. translational and adiabatic vs.
nonadiabatic, with emphasis given to the importance of
the lattice coarsening. The corresponding phase diagram
for the Holstein polaron is proposed in Figure 9. Different
regimes and crossovers between them are drawn in the
two-dimensional parameter space g/ω0 vs.

√
t/ω0.

Along the solid curve in Figure 9, corresponding to
equation (9), the polaron binding energy Δpol is of the or-
der of the bare phonon energy ω0. Above this curve the lo-
cal dynamics is adiabatic (self-trapped electron), whereas
below is the weak-coupling regime (weakly dressed elec-
tron). It is stressed in Section 3.1 that, for weak couplings,
the local and translational dynamics of the polaron are
nonadiabatic. In the absence of adiabatic correlations, the
spectrum below the phonon threshold exhibits a single po-
laron band. Additional polaron bands below the phonon
threshold appear in the regime above the solid curve in
Figure 9, due to the adiabatic softening of the phonon
modes associated with the (large) lattice deformation.

Along the thin dashed curves in Figure 9 the electron-
phonon correlation length d (polaron size) takes constant
values. In the weak-coupling regime d is independent of g,
whereas in the regime above the solid curve d is indepen-
dent of the lattice mass, being constant for λ = g2/ω0 t
constant. The thin dashed curves in Figure 9 are given
for λ = 2n, with n representing an integer in the range
from −2 to 7, inclusively. Along the thick dashed curve,
corresponding to λ = 1, the polaron deformation spreads
over a few lattice sites. The polarons are small/large in
the region on the left/right side of the λ = 1 curve. In the
case of large polarons, as argued in Section 3.1 for weak
couplings and in Section 5 for the adiabatic limit, in order
to calculate the polaron binding energy and the effective
mass one may apply the continuum approximation, which
neglects the lattice coarsening effects.

The green area in Figure 9 corresponds to the regime
of large adiabatic polarons. In this regime, the polarons
behave as free particles with large mass. The mass is
given by equation (35), derived here by treating the lat-
tice classically in the continuum approximation. In the
regime of large adiabatic polarons, as discussed in connec-
tion with equation (38), the kinematic coupling in equa-
tion (30) between the translational degree of freedom and
the adiabatically-softened normal modes that move with
the polaron is weak, scaling as

√
λ−1ω0/g. This means that

in the case of large adiabatic polarons, the local and trans-
lational dynamics can be treated separately, as in equa-
tion (41). From Figure 9, one observes that the large adi-
abatic polaron crosses directly into a large nonadiabatic
polaron for weak-couplings (nonadiabatically dressed elec-
tron). The position of this crossover in the phase diagram
follows from equations (9) and (38), i.e., it is given by
t/ω0 ∼ (g/ω0)

1
4 .
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Figure 9. (Color online) The phase diagram for the 1D Holstein polaron plotted in the parameter space g vs.
√

t, with ω0 as
the unit of energy. The weak-coupling regime (lattice quantum fluctuations important) (Sect. 3.1), the regime of large adiabatic
polarons (classical behavior) (Sect. 5), the regime of small adiabatic polarons (adiabatic hopping) (Sect. 6.1), the regime of small
nonadiabatic Lang-Firsov polarons (nonadiabatic hopping) (Sect. 3.2) are shown in blue, green, yellow and red, respectively. The
regime of small polarons (Sect. 6.3), for which neither the adiabatic nor nonadiabatic contributions prevail in the translational
dynamics, corresponds to the transition area from red to yellow. Along the thick and thin dashed curves the electron-phonon
correlation length d (polaron size) takes constant values. For weak couplings d is independent of g, whereas for strong couplings
(adiabatic local dynamics) d is constant for λ = g2/ω0 t constant. The thick dashed curve denotes the crossover between large
(λ < 1) polarons (continuum approximation applicable) and small (λ > 1) polarons. The nonadiabatic to adiabatic crossover
in the local dynamics is represented by the solid curve, g2 ∼ 1 + 2

√
t. This crossover is derived from the weak-coupling side in

equation (9) and from the strong coupling side in equations (38) and (11) for large and small polarons, respectively. The circles
denote the polaron self-trapping g ∼ 1 +

√
t (Eq. (52)), marking the crossover between pinned polarons (above the circles) and

freely moving polarons (below the circles). The two crossovers involving small pinned polarons denoted by the dotted (g ∼ t)
and dot-dashed (t ∼ 1) curves are associated with the changes in the translational dynamics. The small polaron hopping is
nonadiabatic for t � 1 and adiabatic for t � g, while for 1 � t � g the hopping processes involve a mixture of adiabatic and
nonadiabatic contributions (Sect. 6.3). The white area corresponds to the regime of parameters in which polaron formation
involves a complex mixture of adiabatic and nonadiabatic contributions and lattice coarsening effects.

According to the nature of the translational dynamics,
the regime of small pinned polarons (εpλ � εp 	 ω0) in
Figure 9 is divided by the dot-dashed and dotted curves,
corresponding to t ∼ ω0 and t ∼ g, respectively. As ar-
gued in Section 6.3, for t � g, the small-polaron hopping
is dominated by adiabatic processes, in which the electron
and the lattice deformation hop together to the neighbor-
ing site. For t � ω0, the nonadiabatic hopping prevails
because the electron is too slow to follow the lattice de-
formation during the hop. For ω0 � t � g, the polaron
hopping involves a mixture of adiabatic and nonadiabatic
processes.

The circles in Figure 9 are drawn along the curve
defined by equation (52). The circles mark the polaron
self-trapping, i.e., the crossover regime between pinned
polarons (above the circles) and freely moving polarons
(below the circles). In the adiabatic limit t 	 ω0, the po-
laron self-trapping corresponds to the large circles, drawn
close to the λ ≈ 1 curve. For λ � 1, the large adiabatic po-

laron is free to move since the PN barrier is ineffective, de-
creasing exponentially with the polaron size d ∼ 1/λ (see
Eq. (22)). For λ ∼ 1, as shown by Figure 5, the gapped
polaron band structure develops from the free-particle-like
spectrum due to the pinning effects. On the other hand,
for small polarons (λ � 1), a strong hybridization between
the excited bands associated with the lowest odd (pinning)
and even (breather) modes occurs. As explained in connec-
tion with Figures 4 and 6, the origin of this hybridization is
the lattice coarsening. Namely, the coarsening introduces
not only the PN barrier in the polaron adiabatic motion
along the lattice, but it also effectively couples the low-
est two normal modes of the adiabatic lattice deformation
(the pinning and the breather mode) through the transla-
tional motion.

For t � ω0, the polaron self-trapping is marked in
Figure 9 by small circles, corresponding to g ≈ ω0. This
crossover is identified in Section 3.2 as the crossover be-
tween the weak-coupling regime and the regime of small
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nonadiabatic (Lang-Firsov) polarons. More precisely, for
t � ω0, the lattice pinning of the polaron coincides with
the adiabatic self-trapping of the electron. The local cor-
relations are adiabatic and nonadiabatic on the strong-
coupling and weak-coupling sides of this crossover, respec-
tively. On the other hand, on both sides of the crossover,
the translational dynamics is characterized by the nona-
diabatic polaron hopping energy, given by equation (10).

It is argued in Section 6.4 that the subtle balance be-
tween nonadiabatic and adiabatic contributions on the
discrete lattice describes the polaron self-trapping for
moderate values of t/ω0, i.e, 1 � t/ω0 � 20. In this
regime of parameters, corresponding in Figure 9 to the
white area, the polarons exhibit particularly interesting
properties. That is, although the static properties, like the
binding energy, change slowly with parameters, the dis-
persion changes dramatically. For example, for t/ω0 = 5,
by increasing the coupling from g/ω0 = 3 to g/ω0 = 3.5,
the polaron effective mass changes by two orders of mag-
nitude, mpol/mel ≈ 0.147 vs. mpol/mel ≈ 0.0019. At the
same time, the change in the binding energy is far less
dramatic, Δpol/ω0 ≈ 2.5 vs. and Δpol/ω0 ≈ 4.5.

7.2 Generalization to higher dimensional cases

In contrast to the two and higher dimensional realizations
of the Holstein polaron, the particularity of the one dimen-
sional D = 1 phase diagram is that it exhibits the regime
of large adiabatic polarons. Namely, in the case of short
range interactions, for dimensions greater than one the
adiabatic polarons are unstable when the size of the po-
laron exceeds a critical value that depends on D [69,84,85].
In particular for the Holstein model, for D = 2 one finds
that the adiabatic polaron is unstable for λ < 3.34 and for
D = 3 it is unstable for λ < 5.42 [69]. In other words, for
D > 1 the adiabatic polaron is stable only if it is small,
i.e., pinned by the discrete lattice.

On the other hand, for weak couplings, the polarons
are large for t/ω0 	 1, irrespectively of the dimension
of the system. By considering the generalization of equa-
tion (9) to arbitrary D [83],

εp/ω0 � (t/ω0)D/2, (53)

one obtains, as a function of D, the part of the phase
diagram in Figure 9 that belongs to the weak-coupling
regime. One observes that for D > 1 the large polaron for
weak-couplings crosses into a small adiabatic polaron.

Regarding small polarons, it is plausible to think that
the structure of the corresponding part of the phase di-
agram is unaffected by the dimension of the system.
Namely, in the case of small polarons, the dispersion prop-
erties are determined by the nearest neighbor polaron
hopping energy, the nature of which cannot be affected
fundamentally by the lattice dimensionality. In particu-
lar, both, the nonadiabatic and the adiabatic regime of
small pinned polarons are reported in the context of the
dynamical mean field theory [86,87], which is exact in the
infinite dimensional limit.

8 Summary

The properties of the Holstein polaron are discussed in
terms of limiting analytical results, while the recently in-
troduced relevant coherent state method is used to gain
detailed insights into the nontrivial mixing of fundamen-
tally different contributions to the polaron dynamics in the
crossover regimes (quantum vs. classical, weak vs. strong
coupling, adiabatic vs. nonadiabatic, itinerant vs. self-
trapped polarons, large vs. small polarons). New results
are derived, particularly concerning adiabatic aspects of
the polaron properties. An original and unifying interpre-
tation of the polaron formation is proposed with particular
emphasis on lattice coarsening effects in terms of two di-
chotomies in the polaron dynamics, local vs. translational
and adiabatic vs. nonadiabatic. The degree of applicability
of various approximate approaches to the regimes encoun-
tered in the phase diagram is fully clarified, which gives a
complete explanation of the low-frequency polaron band
structure.

For the one dimensional D = 1 Holstein model five
regimes are identified and positioned in the parameter
space. In the weak-coupling regime the local and the trans-
lational polaron dynamics are nonadiabatic due to quan-
tum fluctuations of the lattice deformation field. In the
regime of large adiabatic polarons, the Holstein polaron
has many analogies with classical solitons, moving freely
along the lattice with a large effective mass. As a conse-
quence of the discreteness of the lattice deformation field
in the regime of small adiabatic polarons, the transla-
tional dynamics involves (adiabatic) quantum tunneling
through the Peierls-Nabbaro (PN) barrier. In the regime
of small nonadiabatic (Lang-Firsov) polarons, the trans-
lational dynamics involves nonadiabatic polaron hopping
and adiabatic local correlations. Between small adiabatic
and Lang-Firsov polarons, the regime of small pinned
polarons is located, for which neither the adiabatic nor
nonadiabatic contributions prevail in the translational dy-
namics. For higher dimensional D > 1 cases, the large
polarons exists only for weak couplings. As the coupling
is increased, such large polarons cross directly into small
adiabatic polarons.

This work was supported by the Croatian Government under
Projects Nos. 035− 0000000− 3187 and 119− 1191458− 0512.
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51. O.S. Barǐsić, Phys. Rev. B 76, 193106 (2007)
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