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Abstract. We have developed a new reinforcement learning technique
called Bayesian-discrimination-function-based reinforcement learning
(BRL). BRL is unique, in that it not only learns in the predefined state
and action spaces, but also simultaneously changes their segmentation.
BRL has proven to be more effective than other standard RL algorithms
in dealing with multi-robot system (MRS) problems, where the learning
environment is naturally dynamic. This paper introduces an extended
form of BRL that improves its learning efficiency. Instead of generating
a random action when a robot encounters an unknown situation, the
extended BRL generates an action calculated by a linear interpolation
among the rules with high similarity to the current sensory input. In
both physical experiments and computer simulations, the extended BRL
showed higher search efficiency than the standard BRL.

Key words: Multi-robot System, Reinforcement Learning, Autonomous
Specialisation, Action Search

1 Introduction

This paper introduces a robust instance-based reinforcement learning (RL) ap-
proach for controlling autonomous multi-robot systems (MRS). Although RL has
proven to be an effective approach for behaviour acquisition in an autonomous
robot, it generates quite sensitive results for segmentation of the state and action
spaces. This problem can have severe results as the system becomes more com-
plex. When segmentation is inappropriate, RL often fails. Even if RL obtains a
successful result, the achieved behaviour might not be sufficiently robust. In tra-
ditional RL, human designers segment the space using implicit knowledge based
on their personal experience, because there are no guidelines for segmenting the
space.

Two main approaches for overcoming this problem and learning in a contin-
uous space have been discussed. One applies function-approximation techniques
such as artificial neural networks to the Q-function. Sutton [1] used CMAC and
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Morimoto and Doya [2] used Gaussian softmax basis functions for function ap-
proximation. Lin represented the Q-function using multi-layer neural networks
called Q-net [3]. However, these techniques have the inherent difficulty that a
human designer must properly design their neural networks before executing
RL. Another method is adaptive segmentation of the continuous state space
according to the robots’ experiences. Asada et al. proposed a state clustering
method based on the Mahalanobis distance [4]. Takahashi et al. used the nearest-
neighbour method [5]. However, these methods generally require large learning
costs for tasks such as continuously updating data classifications every time new
data arrives.

Our research group proposed an instance-based RL method called the con-
tinuous space classifier generator (CSCG), which proves to be effective for be-
haviour acquisition [6]. We also developed a second instance-based RL method
called Bayesian-discrimination-function-based reinforcement learning (BRL) [7].
Our preliminary experiments proved that BRL affords far better performance
than CSCG.

This paper introduces an extension of BRL that accelerates learning speed.
Our focal point for the extension is the process of action searching. The standard
BRL has a rule-producing function. In a standard BRL, a robot performs a
random action and stores an input-output pair as a new rule when it encounters
a new situation. This random action sometimes produces one novel situation
after another, resulting in unstable behaviour. To overcome this problem, we
added a function that performs an action based on acquired experience.

The remainder of this paper is organised as follows: Section 2 introduces
the target problem; Section 3 explains our design concept and the controller
details. Section 4 presents the results of our experiments. Section 5 contains our
conclusions.

2 Task: Cooperative Carrying Problem

Our target problem is a simple MRS composed of three autonomous robots, as
shown in Fig. 1. This problem is called the cooperative carrying problem (CCP),
and involves requiring the MRS to carry a triangular board from the start to
the goal. A robot is connected to the different corners of the load so that it
can rotate freely. A potentiometer measures the angle between the load and the
robot’s direction θ. A robot can perceive the potentiometer measurements of the
other robots, as well as its own. All three robots have the same specifications-
each robot has two distance sensors d and three light sensors l. The greater
d / l becomes, the nearer the distance to an obstacle or a light source. Each
robot has two motors for rotating two omnidirectional wheels. A wheel provides
powered drive in the direction it is pointing and passive coasting in an orthogonal
direction at the same time.

The difficulties in this task can be summarised as follows:

– The robots have to cooperate with each other to move around.
– They begin with no predefined behaviour rule sets or roles.
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Fig. 1. Cooperative carrying problem

– They have no explicit communication functions.
– They cannot perceive the other robots through the distance sensors because

the sensors do not have sufficient range.
– Each robot can perceive the goal (the location of the light source) only when

the light is within the range of its light sensors.
– Passive coasting of the omnidirectional wheels brings a dynamic and uncer-

tain state transition.

3 APPROACH

3.1 BRL: RL in Continuous Learning Space

Our approach, called BRL, updates the classifications only when such an update
is required. In BRL, the state space is covered by multivariate normal distribu-
tions, each of which represents a rule cluster, Ci. A set of production rules is
defined by Bayesian discrimination. This method can assign an input, x, to
the cluster, Ci, which has the largest posterior probability, max Pr(Ci|x). Here,
Pr(Ci|x) indicates the probability calculated by Bayes’ formula that a cluster Ci

holds the observed input x. Therefore, using this technique, a robot can select
the rule most similar to the current sensory input. In this RL, production rules
are associated with clusters segmented by Bayes boundaries. Each rule contains
a state vector v, an action vector a, a utility u, and parameters for calculating
the posterior probability, i.e. a prior probability f , a covariance matrix Σ and
a sample set Φ.

The learning procedure is as follows:

(1) A robot perceives the current sensory input x.
(2) Using Bayesian discrimination, the robot selects the most similar rule from

a rule set. If a rule is selected, the robot executes the corresponding action
a, otherwise, it performs a random action.



328 T. Yasuda and K. Ohkura

(3) The robot transfers to the next state and receives a reward r.
(4) All rule utilities are updated according to r. Rules with a utility below a

certain threshold are removed.
(5) When the robot performs a random action, the robot produces a new rule

combining the current sensory input and the executed action. This executed
new rule is memorised in the rule table.

(6) If the robot receives no penalty, an internal estimation technique updates the
parameters of all rules. Otherwise, the robot updates only the parameters of
the selected rule.

(7) Go to (1).

Action Selection and Rule Production. In BRL, a rule in the rule set is
selected to minimise g, i.e. the risk of misclassification of the current input. We
obtain g based on the posterior probability Pr(Ci|x). Pr(Ci|x) is calculated as
an indicator of classification for each cluster by Bayes’ Theorem:

Pr(Ci|x) =
Pr(Ci) Pr(x|Ci)

Pr(x)
. (1)

A rule cluster of i-th rule, Ci, is represented by a vi-centred Gaussian with
covariance Σi. The probability density function of the i-th rule’s cluster is there-
fore represented by

Pr(Ci|x) =
1

(2π)
ns
2 |Σi| 12

· exp
{−1

2
(x − vi)TΣ−1

i (x − vi)
}
. (2)

A robot requires gi instead of calculating Pr(Ci|x)1, because no one can
correctly estimate Pr(x) in Eq.(1). A robot must select a rule using only the
numerator. The value of gi is calculated as

gi = − log(fi · Pr(x|Ci)

=
1
2
(x − vi)TΣ−1

i (x − vi)

− log
{

1
(2π)

ns
2 |Σi| 12

}
− log fi, (3)

where fi is synonymous with Pr(Ci).
After calculating g for all rules, the winner rlw is selected as that with the

minimal value of gi. As mentioned in the learning procedure in Sec. 3.1, the action
in rlw is performed if gw is lower than a threshold gth = − log(f0 · Pth), where
f0 and Pth are predefined constants. Otherwise, a random action is performed.

1 The higher Pr(Ci|x) becomes, the lower gi becomes.
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3.2 Extended BRL

Basic Concept. We have some RL approaches that provide learning in con-
tinuous action spaces. An actor-critic algorithm built with neural networks has
a continuous learning space and modifies actions adaptively [8]. This algorithm
modifies policies based on TD-error at every time step. The REINFORCE algo-
rithm theoretically also needs immediate reward [9]. These approaches are not
useful for tasks such as the navigation problem shown in Sec. 2, because the
robot gets a reward only when it reaches the goal. BRL, however, proves to be
robust against a delayed reward.

In the standard BRL, a robot performs a random search in its action space,
and these random actions can produce unstable behaviour. Therefore, reducing
the chance of random actions may accelerate behaviour acquisition and provide
more robust behaviour. Instead of performing a random action, BRL needs a
function that determines action based on acquired knowledge.

BRL with an Adaptive Action Generator. To accelerate learning, in this
paper, we introduce an extended BRL by modifying the learning procedure, Step
(2) in Sec. 3.1. In this extension, instead of a random action, the robot performs
a knowledge-based action when it encounters a new environment. To do this,
we set a new threshold, P ′

th(< Pth), and provide three cases for rule selection in
Step (2) as follows:

– gw < gth: The robot selects the rule with gw and executes its corresponding
action aw.

– gth ≤ gw < g′th: The robot executes an action with parameters determined
based on rlw and other rules with misclassification risks within this range as
follows:

a′ =
nr∑
l=1

(
ul∑nr

k=1 uk
· al) +N(0, σ), (4)

where nr is the number of referred rules, and N(0, σ) is a zero-centred Gaus-
sian noise with variance σ. This action is regarded as an interpolation of
previously-acquired knowledge.

– g′th ≤ gw: The robot generates a random action.

In this rule selection, the first and third cases are the same as the standard BRL.

4 Experiments

4.1 Settings

Figure 2 shows the general view of the experimental environments for simulation
and physical experiments. In the simulation runs, the field is a square surrounded
by a wall. The robots are situated in a 3.6-meter-long and 2.4-meter-wide path-
way. The task for the MRS is to move from the start to the goal (light source).
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Fig. 2. Experimental Environment

All robots get a positive reward when one of them reaches the goal (l0 > thrgoal

∨ l1 > thrgoal ∨ l2 > thrgoal). A robot gets a negative reward when it collides
with a wall (di

0 > thrd ∨ di
1 > thrd). We represent a unit of time as a step. A step

is a sequence that allows the three robots to get their own input information,
make decisions by themselves, and execute their actions independently. When
the MRS reaches the goal, or when it cannot reach the goal within 200 steps in
simulations and 100 steps in physical experiments, it is put back to the start.
This time span is called an episode.

The settings of the learning mechanisms are as follows.

Prediction Mechanism (NN) Our previous work [7], verified BRL as a suc-
cessful approach to CCP, with a reformation such that the state space was
constructed with sensory information and predictions of the movements of
the other robots in the next time step, to decrease the learning problem
dynamics.
The prediction mechanism attached is a three-layered feed-forward neural
network that performs back propagation. The input is a short history of
sensory information, I = { cos θi

t−2, sin θi
t−2, cosψi

t−2, sinψi
t−2, cos θi

t−1,

sin θi
t−1, cosψi

t−1, sinψi
t−1, cos θi

t, sin θi
t, cosψi

t, sinψi
t}, where ψi

t = (θj
t +

θk
t )/2 (i �= j �= k). The output is a prediction of the posture of the other

robots at the next time step O = {cosψi
t+1, sinψi

t+1}. The hidden layer has
eight nodes.

Behavior Learning Mechanism (BRL) The input is x = { cos θi
t, sin θi

t,
cosψi

t+1, sinψi
t+1, d

i
0, d

i
1, l

i
0, l

i
1, l

i
2 }. The output is a = {mi

rud,m
i
th}, where

mi
rud and mi

th are the motor commands for the rudder and the throttle
respectively. σ in Eq.(4) is 0.05. For the standard BRL, Pth = {0.012, 0.01}.
For the extended BRL, Pth = 0.012 and P ′

th = 0.01. The other parameters
are the same as the recommended values in our journal [7].

4.2 Result: Simulations

Figure 3 shows the averages and the deviations of steps that the MRS takes
by the end of each episode. In the early stages, the MRS requires a lot of trial



Improving Search Efficiency of an IBRL for MRS 331

 0

 50

 100

 150

 200

 0  100  200  300  400  500

S
te

ps

Episode

Standard BRL with Pth=0.010
(Deviation)

Standard BRL with Pth=0.012
(Deviation)

Extended BRL
(Deviation)

Fig. 3. Mean Learning History for 50 Simulations of Three Robots

and error and takes many steps to finish the episode. After such a trial and
error process, the behaviour of MRS becomes more stable and it takes fewer
steps. An MRS with the standard BRL stably achieves the task within nearly
constant steps after the 250th episode, and the extended BRL accomplishes this
in 200 episodes. This means that, in terms of learning speed, the extended BRL
outperforms the standard one.

For the 50 independent runs, the MRS achieved different globally stable be-
haviour. However, we found a common point that robots always achieved cooper-
ative behaviour by developing team play organised by a leader, a sub-leader and
a follower. This implies that acquiring cooperative behaviour always involved au-
tonomous specialisation. The extended BRL displayed higher adaptability, and
yielded autonomous specialisation faster than the standard BRL.

Discussion. There is no significant difference in results in the learning per-
formance of the BRLs for a three-robot CCP; therefore, we tested four- and
five-robot CCP performance for more dynamic and complicated problems. The
four robots use a square load, and the five robots have a pentagonal load. In these
CCPs, ψ is the average of the angles between two neighbouring robots and the
load. The other controller settings are the same as those for the three-robot CCP.

Figure 4 shows the average and the deviations of steps an MRS takes by
the end of each episode. As the number of robots increases, we can find that
the extended BRL provides increasingly better results than the standard BRL,
although it requires more episodes before obtaining stable behaviour. The ex-
tended BRL has a function for coordinating behaviour as well as reducing the
number of random actions that can result in unstable behaviour. These results
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show that the extended BRL has a higher learning ability and is less dependent
on the number of robots in the MRS. This implies that the extended BRL might
have more scalability, which is one of the advantages of MRS over single-robot
systems.

Although parameters that are more refined might provide better perfor-
mance, parameter tuning is outside the scope, because BRL is designed for
acquiring reasonable behaviour as quickly as possible, rather than optimal be-
haviour. In other words, the focal point of our MRS controller is not optimality
but versatility. In fact, we obtain similar experimental results through experi-
ments with an arm-type MRS similar to that in [6] using the same parameter
settings.

4.3 Result: Physical Experiments

We conducted five independent experimental runs for each BRL. The standard
BRL provided two successful results and the extended BRL provided four. Fig. 5
illustrates the best results of the physical experiments. These figures illustrate
the number of steps and punishments in each episode. Comparing these results
shows that the extended BRL requires fewer episodes to learn behaviour. The
other successful results of the extended BRL show better performance than the
best result of the standard BRL. The behaviour of the extended BRL is also
more stable than that of the standard, because the MRS with the standard BRL
gets several punishments after learning goal-reaching behaviour.

Figure 6 shows an example of the behaviour of the extended BRL. In the
early stages, robots have no knowledge and function by trial and error. During
this process, robots often collide with a wall and become immovable (Fig. 6(a)).
Then, some robots reach the goal and develop appropriate input-output map-
pings (Fig. 6(b)). Observing the acquired behaviour and investigating rule pa-
rameters, we found that the robots developed cooperative behaviour, based on
autonomous specialisation.
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Fig. 5. Learning History: Physical Experiment

5 Conclusions

We investigated the RL approach for the behaviour acquisition of autonomous
MRS. Our proposed RL technique, BRL, has a mechanism for autonomous
segmentation of the continuous learning space, and proved effective for MRS
through the emergence of autonomous specialisation. For accelerated learning,
we proposed an extension of BRL with a function to generate interpolated ac-
tions based on previously acquired rules. Results of the simulations and physical
experiments showed that the MRS with an extended BRL did learn behaviour
faster than that with the standard BRL.

In the future, we plan to investigate the robustness and re-learning ability
in a changing environment. We also plan to increase the number of sensors
and adopt other expensive sensors such as an omnidirectional camera that will
allow a robot to incorporate a variety of information, and thereby acquire more
sophisticated cooperative behaviour in more complex environments.
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(a) In the Early Stage (b) After Successful Learning

Fig. 6. An Example of Acquired Behaviour: Extended BRL
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