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Abstract. The paper demonstrates the use of self-oscillation identification method for heading con-
troller tuning of the autonomous unmanned surface vehicle (USV) Charlie. In short, the theory
behind self-oscillation identification method is addressed and a model based controller design is
described. Two controllers are implemented on the vehicle: controller with Euler backward differ-
entiator for yaw rate calculation, Kalman filter based yaw rate estimator. The Kalman filter is also
tuned on the basis of the identified model. The methodology for auto-tuning experiment has been
described and implemented on the actual vehicle. The experimental results prove that the proposed
method is easily implemented, non time-consuming and gives satisfactory results.
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1. Introduction

Determining a model of marine vehicles is a very time-
consuming process. However, in order to have auton-
omy, basic control which includes heading, depth (for
underwater vehicles) and surge control, has to be im-
plemented. Procedures for identification of underwater
vehicles models are reported in Ridao et al. (2004), Cac-
cia et al. (2000), Stipanov et al. (2007), Miskovic et al.
(2007a), while some results on autonomous surface ma-
rine vehicles in Caccia et al. (2006). All these procedures
are based on running numerous steady-state experiments
in order to determine the vehicle’s drag. In addition to
that, vehicle’s inertia can be determined by using zig-zag
manoeuvres, Caccia et al. (2006), or open-loop transient
characteristics, Stipanov et al. (2007).

Having this in mind, in Miskovic et al. (2007c) a
much faster identification method has been proposed and
implemented on underwater vehicles. The proposed ex-
periment gives responses similar to those of a zig-zag
experiment - the difference is in using the describing
function theory to determine nonlinear model parame-
ters. This paper uses the same self-oscillations identi-
fication method, which will be described later, and de-

scribes the implementation on Charlie USV together with
the controller design based on the identified model. Us-
ing the proposed procedure, experiments are performed
automatically and with desired precision.

Section I gives a short introduction, presents the ba-
sic characteristics and mathematical model of Charlie
USV and describes the self-oscillation identification me-
thod used on the proposed system. Section II gives de-
sign procedure of the heading controller design and a
short stability analysis. The proposed controller com-
pensates for the nonlinearities in the system and its pa-
rameters are determined based on the model transfer func-
tion and the parameters identified using the proposed
self-oscillation identification method. Section III descri-
bes the implementation issues: different controller types
and automated self-oscillation monitoring and execution
system. Experimental results are presented in Section IV
and the paper is concluded with Section V.

1.1. Charlie USV
The Charlie USV (see Fig. 1) is a small catamaran-
like shape prototype vehicle originally developed by the
CNR-ISSIA for the sampling of the sea surface micro-
layer and immediate subsurface for the study of the sea-
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Fig. 1. Unmanned surface vehicle Charlie.

air interaction Caccia et al. (2005). Charlie is 2.40 m
long, 1.70 m wide and weighs about 300 kg in air. The
vehicle is equipped with a rudder-based steering system,
where two rigidly connected rudders, positioned behind
the thrusters, are actuated by a brushless DC motor. The
navigation instrumentation set is constituted of a GPS
Ashtech GG24C integrated with compass KVH Azimuth
Gyrotrac able to compute the True North. The on-board
real-time control system, developed in C++, is based on
GNU/Linux and run on a Single Board Computer (SBC),
which supports serial and Ethernet communications and
PC-104 modules for digital and analog I/O.

For dynamic description, a practical model for the
vehicle has been defined in Caccia et al. (2006). The
identified model is consistent, from the point of view of
degree of accuracy, quality in terms of noise and sam-
pling rate of the measurements. The experiments have
shown that the sway speed can be neglected, thus we
give here the yaw model of the vehicle with (1)

Ir ṙ = k̃r|r|r|r|+n2δ (1)

where n is the propeller revolution rate, δ is the rudder
angle, Ĩr is moment of inertia, k̃r|r| is linear drag coef-
ficient. Since in equation (1), the steering torque n2δ
has been identified as function of the propeller revolu-
tion rate instead of the advance speed, the rudder action
is neglected when the vehicle is still moving while n is
zero. Thus, the field of validity of the proposed model
of vehicle dynamics is for n > ñ > 0. More information
on the modeling of the Charlie vehicle could be found
in Caccia et al. (2006). The yaw torque controll is per-
formed by controlling the rudder angle δ while propeller
revolution rate n is kept constant.

1.2. Identification by Use of Self-Oscillations
The idea of using self-oscillations to determine system
parameters is described in detail in Miskovic et al. (2007b),

while its application to autonomous underwater vehicles
has been described in Miskovic et al. (2007c). A thor-
ough heading and depth controller design based on the
self-oscillation identification method has been described
in Miskovic et al. (2008) using simulation models of
FALCON and VideoRay Automarine AUVs. The self-
oscillation experiment is done in closed-loop which con-
sists of the process itself and a nonlinear element. The
method is based upon forcing the system into self-oscil-
lations - the magnitude and frequency of the obtained
self-oscillations can be used to determine the process’
parameters. The link between the space of process’ pa-
rameters and the space of magnitudes and frequencies of
self-oscillations is the Goldfarb principle (see Vukic et
al. (2003)). The self-oscillations identification method
can be used to determine parameters of linear and non-
linear models under the assumption that the model struc-
ture is known. The nonlinear element which is usually
used is relay with hysteresis.

Using the proposed method, parameters Ĩr and k̃rr in
a system described with (1) can be determined using (2)
and (3) (see Miskovic et al. (2007c)).

Ĩr =
PN (Xm)

ω2 (2)

k̃rr =−3π
8

QN (Xm)
Xmω2 (3)

In (2) and (3) ω is the frequency and Xm magnitude
of self-oscillations, PN (Xm) and QN (Xm) are real and
imaginary parts of the describing function of the non-
linear element respectively. For the relay with hysteresis

P(Xm) = 4C
πXm

√
1−

(
xa
Xm

)2
and Q(Xm) =− 4C

πX2
m

xa, where

C is relay output, and xa relay width, Vukic et al. (2003).
In the case of Charlie USV relay output is yaw torque
n2δ.

The main assumptions that are posed on given equa-
tions are that the oscillations are symmetric and that high-
er harmonics are negligible in comparison to the first
harmonic. Due to asymmetry in the Charlie USV or a
constant disturbance, a constant term τ∗ can appear in
(1) causing the induced self-oscillations to be asymmet-
ric. The constant term τ∗ can be determined using equa-
tion (4) where TH and TL are the times relay output is
high and low during one oscillation, respectively. If the
constant term exists, it can be compensated within the
controller. For details the reader is referred to Miskovic
et al. (2008).

τ∗ = δn2 TH −TL

TH +TL
(4)

When the self-oscillation experiment is conducted on
a discrete time system some modifications must be made,
see Miskovic et al. (2007b).
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2. Controller design

The controller that is used in this paper is a I-PD con-
troller given with equation (5), Vukic and Kuljaca (2005).
This controller is appropriate for control due to smooth
controller output.

τN (t) = KI

t∫

0

[ψre f (t)−ψ(t)]dt−KPψ(t)−KDψ̇(t)

(5)
In order to compensate the nonlinearity, the steering equa-
tion can be written in form (6) where ε = krr |ψ̇|.

Irψ̈(t)+ εψ̇(t) = τN (t), (6)

Using the proposed control algorithm, the closed loop
equation is

ψ
ψre f

=
1

α
KI

s3 + ε+KD
KI

s2 + KP
KI

s+1
. (7)

The controller parameters are set so that the closed-
loop transfer function is equal to the model function
Gm (s) = 1

a3s3+a2s2+a1s+1 which is stable. In that case,
the controller parameters are given with (8), (9) and (10)
where tilde denotes the parameters obtained using the
proposed self-oscillation identification method.

KI =
Ĩr

a3
(8)

KP =
a1

a3
Ĩr (9)

KD =
a2

a3
Ĩr− ε =

a2

a3
Ĩr− k̃rr |ψ̇| (10)

Stability issues for the proposed controller have been
described in detail in Miskovic et al. (2008). Here we
will assume that the stability can be compromised due
to false identification of the system’s parameters, giving
the closed loop equation in the form (11) where Ir and
Ĩr are real and identified moments of inertia respectively,
and ε = krr |ψ̇| and ε̃ = k̃rr |ψ̇| with krr and k̃rr being real
and identified drag coefficients, respectively.

ψ
ψre f

=
1

Ir
Ĩr

a3s3 +
[
a2 +a3

ε−ε̃
α

]
s2 +a1s+1

(11)

The closed loop will be stable if condition (12) is ful-
filled.

|ψ̇|<
a2
a3

Ĩr− 1
a1

Ir

k̃rr− krr
. (12)

This condition is implemented within the controller
as a limiter to the derivation channel. Under the assump-
tion that k̃rr is within 20% of krr and that Ĩr is within 10%
of Ir, the constraint can be set to |ψ̇|< 2

3
Ĩr
k̃rr

9a1a2−10a3
a1a3

.

3. Implementation issues

The complete scheme of implementation can be presented
with Fig. 2. The basic parts of the controller scheme are
the controller and the self-oscillation execution and mon-
itoring system. The main goal of the self-oscillation exe-
cution and monitoring system is to automatically gather
self-oscillation data, calculate controller parameters and
switch between control and self-oscillation mode.

3.1. Controller Implementation
Once the controller is written in a discrete form given
with (13)

τN,k = τN,k−1 +KITsek−KP∆ψk−K∗
D,k∆rk (13)

where ek = ψre f (k)−ψ(k), ∆ψk = ψ(k)−ψ(k−1), ∆rk =
r(k)− r(k− 1) and the time variable parameter K∗

D,k =
KD− krr|r(k)|, the issue of calculating the yaw rate, i.e.
heading derivative remains. In this paper we will demon-
strate the results using the controller with yaw rates ob-
tained in two ways: using the Euler backward difference
and using the Kalman filter.

Using the Euler backward difference (EB Controller)
The classical procedure is to perform the backward Eu-
ler discretization method on the derivative sψ(t) yield-
ing r(k) = ψ(k)−ψ(k−1)

Ts
. Even though this is the sim-

plest method, many problems concerning noise ampli-
fication are involved. Therefore this procedure should
be avoided.

Using the Kalman filter (KF Controller) If system equa-
tion (1) is linearized and written in a discrete state-space
form, than a Kalman filter can be obtained where xi =[

ψi ri
]T is the state vector.

When the new measurement from the gyro is avail-
able (every 0.5s) the Kalman filter measurement matrix
is h =

[
1 0

]T and in other cases h =
[

0 0
]T . It

CharlieCONTROL 
ALGORITHM

N

MONITORING

REF

Fig. 2. Implementation scheme of controllers tuned according
to self-oscillation experiments.
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Fig. 3. Flow diagram of the self-oscillation monitoring
system.

should be mentioned that the compass data has an update
frequency of 2Hz while Kalman filter estimates values at
the frequency 8Hz. This means that EB controller will
have the refresh rate of 0.5s while KF controller will re-
fresh its output every 0.125s.

3.2. Monitoring and Identification System
The Monitoring and Identification System takes relay
output and relay input as input parameters, and outputs
identified system parameters and switching signal. As
it can be seen from Fig. 3 after the relay has been in-
serted in the closed loop, the data collection is initiated.
Based on the relay output data, every time a relay output
changes, the maximum value in the previous half-period
and the duration of the previous half-period is recorded.
This data is gathered until a predefined number of mea-
surements (in this paper it is five) has a standard devia-
tion less than a predefined value (in this paper it is 10%).
This means that the obtained data is reliable and can be
used for identification procedure. This leads the algo-
rithm to the phase in which the system parameters are
calculated and the controller with the new parameters is
inserted in the closed loop.

4. Experimental results

Experimental tests have been carried out at Genova-Prá
harbor with the Charlie USV. Numerous self-oscillation
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Fig. 4. Charlie’s path during one of the self-oscillation
experiments (green circle marks the beginning and red
square the end of data recording, dotted line is the path
before and after the experiment).
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Fig. 5. Charlie’s heading and rudder angle during one of the
self-oscillation experiments (green circle marks the
beginning and red square the end of data recording).

experiments were run and the data obtained was used to
determine the model of the vehicle and to tune controller
parameters. Some self-oscillation experiment data are
shown in Table 1. The columns in the table are as fol-
lows: relay output (δ · n2), relay hysteresis width (xa),
modified relay hysteresis width (x∗a),self-oscillation mag-
nitude (Xm), period of self-oscillations (T ), value of the
bias during the experiment according to (4) (τ∗) in rela-
tion to the relay output, identified moment of inertia (Ĩr),
identified constant drag (k̃r) and identified linear drag
(k̃rr).

During the experiment the vehicle was excited with
a constant force equivalent to n2 = 36V and the relay
output was either 20◦ or 25◦. In the cases when smaller
relay outputs were used, the data were difficult to ob-
tain, i.e. the automated self-oscillation monitoring sys-
tem would never stop due to inconsistent data (it would
take long time to fulfill the self-oscillation acquiring pro-
cess). The reason for this is the external disturbance and
system noise. In Miskovic et al. (2007c) it is shown
that the ratio between the magnitude of obtained self-
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Tab. 1. Self-oscillation experiment results from Charlie USV

δ ·n2 xa[◦] x∗a[◦] Xm[◦] T [s] τ∗
n2δ · 100% Ĩr k̃r k̃rr

20◦ ·36V
5
10

5.70
10.94

10.18
14.65

11.83
15.83

19.24
20.38

264.24
264

95.032
117.69

1186.329
1365.77

25◦ ·36V
5
10

6.58
11.32

11.56
16.3

11.55
14.93

13.85
6.87

275.44
285.51

103.59
115.93

1111.54
1140.4
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Fig. 6. Heading and rudder angle with the EB controller.

oscillations (Xm) and the hysteresis width (xa) should be
around 1.5. The results show that this was more or less
accomplished. The identified bias term can be a good
indicator of the disturbance that was present in the sys-
tem during the experiment. In this case, the disturbance
can appear due to sea currents or vehicle asymmetries.
However, it can be shown that the biased value does not
influence the quality of the identified data significantly.

From experiments in Table 1 it can be seen that the
vehicle’s moment of inertia is consistent. The constant
drag has been identified using (14). A detailed derivation
of this formula can be found in Miskovic et al. (2007b)
and Miskovic et al. (2007c).

kr =−QN (Xm)
ω

(14)

This parameter is calculated in order to check if a lin-
ear model fits the obtained data better than the nonlinear
model. It can be seen from Table 1 that the data more
consistently fit (3) rather than (14). Therefore, the as-
sumption from the beginning that the process can be de-
scribed using (6) is valid.

The last experiment from Table 1 was used to tune
the controllers and it is shown in Fig 5 where heading
(ψ)and commanded rudder angle (δ) are shown. Fig. 4
shows the path of the vehicle during the same experi-
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Fig. 7. Heading and rudder angle with the KF controller.

ment. The controller was automatically tuned so that the
desired closed loop function is Bessel filter with charac-
teristic frequency 0.45s−1. The step response of the de-
sired model has a time of first maximum at around 15s
and an overshoot of about 1%. The model was chosen in
such a way that the rudder signal is not noisy in steady
state (slower model) but that transient response is fast
enough (faster model).

Results with EB and KF controllers are shown in Fig.
6 and Fig. 7, respectively. In both cases the behavior of
the system is satisfactory. The main difference between
the two cases is in rudder angle noise level. In the fol-
lowing part noise attenuation will be observed by finding
the spectra of the rudder angle for the two cases.

The rudder angle signals from Fig. 6 and Fig. 7
were first filtered out with a high pass 8th order Butter-
worth filter with a cutoff frequency 3

4 π rad
sample . This way

only the high frequency components remain in the sig-
nal. Now the power spectrum density was estimated us-
ing the Welch’s method. The results for both controllers
are shown in Fig. 8. Now it is clear that in the case of
KF controller, the noise is smaller, hence the controller
action is less jerky.

Therefore, if simpler controller is needed (because
of memory limitations) EB controller is sufficient. How-
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case of EB and KF controllers.

ever, if there is the possibility of implementing a Kalman
filter as an addition to the controller, it is advised.

5. Conclusion

This paper has demonstrated how self-oscillation iden-
tification method can be used on tuning heading con-
trollers for marine surface vehicles. The greatest advan-
tage of the proposed method is the fact that it is not time-
consuming and that it can be simply implemented. It
has also been shown that good results are obtained even
when external disturbances are present, making the ex-
periment itself feasible in real conditions. The imple-
mentation of two controllers is described: a classical
controller which calculated the derivative by using Eu-
ler backward method (EB controller), and a controller
with a Kalman filter (KF controller). The greatest ad-
vantage of the EB controller is its simplicity, while the
disadvantages are higher noise level in actuators. The
KF controller is somewhat more complex, but the noise
level is reduced. Having this in mind, the KF controller
is advised where possible.

6. Acknowledgments

The work was carried out in the framework of the re-
search project ”RoboMarSec - Underwater robotics in
sub-sea protection and maritime security” supported by
the Ministry of Science, Education and Sport of the Re-
public of Croatia (Project No.036-0362975-2999). The
research was partially funded from the scholarship award-
ed by the Italian Government and the Ministry of Sci-
ence, Education and Sport of the Republic of Croatia.
The authors would like to thank Giorgio Bruzzone and
Edoardo Spirandelli for their fundamental support in the

development and operation of the Charlie USV, and As-
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