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Abstract: Wireless Sensor Networks shift from academic 

realm to industry. The shifting has been started with private, 
specialized and business-to-business application, but business-
to-customers applications and services come in focus now. In 
business-to-customers (end users, subscribers) applications, 
Quality of Services is critical issues as well as scalability and 
reliability. This paper uses robust three-state Markov model of 
wireless sensor network to obtain probability density function 
of the service delay for use in modeling of end user sensor 
based delay-sensitive services from QoS and scalability point 
of view. 

I. INTRODUCTION 

   The computing science and industry have been dealing with 
reality for decades. Back in time, the once emerging 
computing science and industry were promised virtual reality. 
After numbers of takes off, especially successful in movies, 
virtual reality hype has been reduced to feasible, and less 
resources demanding, augmented reality. The reduction was 
initiated by industry impatient to capitalize on new 
technologies. After high flying and big drop in expectations, it 
seems that we are, again, going up. The new rise is leveraging 
by tiny computers capable to constantly monitor physical 
world and even live creatures. The new reality flavor is not 
virtual, as not as augmented, it seems more like real reality. In 
addition to feel real world around, that tiny computers could 
process gathered measurements and create wireless networks 
by themselves in order to communicate monitored data. We 
just summarize concept of wireless sensor network (WSN). 
The WSN concept, for the truth sake, is not novel at all, but it 
is definitely mature and ready to go out from scientific 
laboratories and academy environment.  
   Constantly big advances in miniaturization of electronic and 
sensor components, and far slower, but also constant 
improvement in electric energy sources and batteries take us to 
the level where sensor network nodes finally looks like in 
original idea i.e. very small, or better tiny, and smart 
containers (embedding sensing, processing and radio 
capabilities) that dramatically extended direct human sensing 
of nature. Improvements in radio communications,  

 
networking, and software also contribute to take WSN concept 
to the level at which industry recognizes its potential. 
   In order to offer sensor measurements or sensor-based 
applications to horizontal, mass market (and end users) 
industry looks at seamless integration of WSNs with existed 
networks, primarily with the Internet and mobile networks, as 
well as quality of service of those new services. 

Various transport capacity of data-gathering in wireless sensor 
networks are analyzed from the organization point of view are 
discussed in [1]. The quality of service concept [2] as its 
known in traditional network, defined mainly with network 
parameters such as end-to-end delay, jitter, and throughput is 
not sufficient for the new class of services [5]. Other 
parameters such as reliability and response delay are important 
for mass-market acceptance and success of sensor-based 
applications and services. In [6] authors analyze methods for 
minimizing the maximum delay in WSN by intelligent sink 
placement. Ref. [7] presents more detailed analysis on Markov 
model for WSN but without QoS analysis. 

   In this work we investigate QoS control mechanism for 
delay-sensitive services in WSN. We define minimal delay 
that should not be overlapped (delay threshold) based on the 
delay pdf determined by Markov model of the WSN. Since the 
service delay highly depends on the traffic load, it is modeled 
by appropriate forecasting model based on which the 
application server can in time store and service the requests 
during the high load conditions.  

   The rest of this paper is organized as follows: Section II is 
dedicated to description and analysis of sensor network’s 
Markov model. Section III presents the proposed system for 
QoS control for delay-sensitive services based on delay 
distribution and load prediction. In Section IV ARIMA models 
are shortly discussed suitable for application in forecasting 
systems are considered. Section V presents numerical results 
and performance of the proposed QoS control scheme. Section 
VI concludes the paper with a few remarks on the presented 
results. 
 



II SENSOR NETWORK MODEL 

   Wireless sensor networks are composed of a large number of 
sensing devices, which are equipped with limited computing 
and radio communication capabilities. [7] 
Sensors are used in various fields such as medicine, industries 
or even at home for measuring or surveillance of various 
parameters like heart bit rate, body temperature, outdoor 
temperature, poison detection, smoke detection etc. 
In wireless sensor networks sensors are positioned far apart 
measuring, calculating and sending their data to the main node 
called Sink. Sink collects data, stores them in data base if 
necessary, and serves as user interface receiving requests from 
user and replying to them. Depending on radio communication 
capabilities and distance to the sink, sensors can communicate 
with sink either directly or thru nearest neighbor sensors using 
multihop communications. 
Since sensors are running on batteries, to save energy and 
prolong battery life sensors have two major operational states: 
active state and sleep state. In active state sensor can generate 
and process data, or transmit or receive data on the way to the 
sink.  
In sleep state sensor is not active thus it cannot measure, 
transmit or receive data which results in energy savings. 
According to [7] sensor once in active state sets time instant in 
future when it will switch to sleep state. Since sensor can only 
switch to sleep state if sensor’s buffer is empty, if buffer is not 
empty and time instant in future is reached, the sensor 
prolongs its active state with restrictions. In prolonged active 
state sensor can only wait for the neighbor sensors to become 
available for reception of data and send data to neighbor 
sensor. Once in sleep state sensor sets time instant in future 
when switching to active state will occur. Both active state 
time and sleep state time are geometrically distributed with 
parameters p and q respectively. 
In this paper Markov chain for sensor with infinite buffer 
described in [7] and shown in Fig. 1. and DTMM describing 
the behavior of sensor next hops in Fig. 2. 

 
Fig. 1 Markov chain describing sensor behaviour [3] 

 
Fig. 2 DTMM model describing the behaviour of the sensor next-hops  

 
were combined and reduced to simple three state Discrete-

Time Markov Model (DTMM) on Fig. 3. shows the reduced 
model with following states: 

T - transmit state in which sensor can generate data, 
whether sensor is measuring data or receiving it, or 
send data to Sink or neighbor sensor 
W - wait state in which sensor waits for neighbor 
sensors to become available for reception of data 
S - sleep state in which sensor saves energy 

 

 
Fig. 3. Reduced discrete-time Markov model 

 
   The process of reduction of number of states was following:  
Transition between all active states with forward capability 
were summed together and then added with 1 minus sum of all 
transitions from all states with forward capabilities forming 
joint self transition probability of transmit state. In the same 
way self transition probability for wait and sleep states were 
calculated. Transition probabilities for different states were 
calculated by summing all probabilities from all forward 
capable states to all waiting states resulting in transition 
probabilities from transmit to wait state, and similar for all 
other transition probabilities. Equation for calculating for 
transmit state Transition probabilities of DTMM shown in Fig. 
3 based on the model shown in Fig. 1 by using probabilities 
from [7] are: 
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Resulting transition probabilities for simplified Markov model 
are shown in Table 1. 
 
Parameters in Table 1. are defined as follows : [5] 

p – parameter of geometric distribution describing 
sleep state time 
q – parameter of geometric distribution describing 
active state time 
g – Bernoulli process parameter describing sensor 
data generation 



α – probability of data being received from 
neighboring node in time unit 
β - probability if data being send to neighboring node 
or Sink in time unit 

f, w – transition probabilities form Forward to Wait state and 
vice versa. 

So Sd P(Sd|So) 

T T 1-2w+ βpg- βp- 
β 

T S β (1+p-pg) 
T W 2w 
W W 1-2f 
W T 2f 
W S 0 
S T q(f-w+1) 
S W q(1-f+w) 
S S 1-2q 

Table 1. Transition probabilities for the reduced model in Fig. 3 

Considering sensor model as M/M/1 single server queue we 
can write the probability that time TQ an item spends in system 
is lower or equal to t [11]. This represents cumulative 
probability distribution 

(1 ) /Pr 1 t TS
QT t e ρ− −≤ = −⎡ ⎤⎣ ⎦                                                           (4) 

where ρ is utilization of the system, and Ts is service time. 

By differencing (4) we get pdf for M/M/1 system with queue  

(1 ) /1
( ) (1 ) t TS

S
p t e

T
ρρ − −= −                        (5) 

Since WSN is modeled with three states Markov model as 
shown on Fig. 3. with inactive (sleep and wait states) system 
will be available according to state stationary probability 
which results in increased delay. Considering that WSN is not 
always available for processing incoming requests according 
to sum of stationary probability of wait and sleep states, 
successively from one slot to another WSN will be available 
with probability: 

( ) 1 ( ) t
A S WP t = − Π + Π                                                (6) 

where SΠ  is stationary probability for sleep state, and WΠ  is 
stationary probability for wait state. Probability density 
function for data delivery delay for farthest node from the sink 
is expressed by multiplying (5) and (6) giving: 
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S W
S
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T
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       (7) 

by replacing ρ with STλ  we get delay as function of traffic 
load: 

( )/( 1 )1
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S

tt TTp t T e
T

λλ − −
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⎜ ⎟
⎝ ⎠

   (8) 

Fig 4. shows pdf for data delivery delay report with offset of 6 
data units which is minimal delay since data from the farthest 

node has to travel in average through M=6 nodes till it reaches 
the sink.   

T1, T2 and T3 represents time delays that includes 95% area 
for traffic loads λ1,λ2, and λ3. 
 

 

Fig. 4.   Data delivery delay pdf for farthest node 

III  QOS ANALYSIS FOR DELAY-SENSITIVE SERVICES 
 

A. The proposed system 

It is well known that the important strategic issue of the 
contemporary ICT systems is to provide customer with services 
available anytime, anywhere and at guaranteed quality. 
Specifically, in delay-sensitive applications a quality of service 
(QoS) is dominantly determined by the time instant spent 
between the customer inquire  (by pushing button, launching 
call, …) of a service and time instant at which the response 
take place. Sensor wireless network technologies connected to 
Internet, PSTN, GSM, and other public networks (Fig. 5) are 
actual and feasible solutions that should satisfy above 
mentioned strategic QoS issues, but operational aspects are still 
big job for researchers. One of the most challenged issue in 
sensor network applications is to guarantee the required QoS 
for mobile calls that require fast and possibly real-time 
response enabling users to obtain fresh information at the 
acceptable low delay.  

Subscribers calls impose service requirements (queries) to 
the wireless sensor networks with an intensity that vary in time, 
in capacity and in complexity as well. For example, a simple 
query for data on temperature in the sensor position may vary 
in frequency during a day, in the required precision causing 
more bits per response and more processing time as well. Let 
service priority, capacity and complexity define QoS 
parameters related with service of a class c. 
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Fig. 5 Architecture of the considered system 
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As described in Section II, network of sensors operates 
according to the three-state sensor Markov model which 
incorporates network functions including communicating, 
storing and routing. Time consumption of these functions 
causes delay in response whose PDF depends on transient 
probabilities of the Markov model, but also on traffic intensity 
(Fig. 4).  

B. The QoS control scheme 

Assuming that application server in Fig. 5 is equipped with 
an infinite storage and very fast server system compared with 
the sensor network system, the application server can be 
supported by the traffic load predictive application which 
should generate traffic load forecasts for enough long horizon. 
When the forecasting system alert the control system due to 
ongoing traffic load that can not be satisfied at the guaranteed 
QoS (DT) the application server sends request to the sensor 
network for the data expected to be requested by customers. 
Application server must send the request in time i.e. enough 
earlier so that for the predicted traffic load, sensor network can 
respond and deliver data at a high reliability before a high load 
starts. This time instant can be determined from the delay PDF 
as it is marked in Fig. 4 with T1, T2 and T3. This preceding time 
can be determined from the delay PDF (7) based on the 
condition 

( ) TRDP
iT

p t dt
∞

=∫         (9) 

Fig. 4. shows times T1, T2 and T3 that define  request 
dropping probability of 5% obtained from (9) for λ1 = 0.4, λ2 = 
0.9 and λ3 =0.95. 

Let ˆ ( )c t k tλ + Δ  be the class c traffic load forecasted for the 
horizon ; 1,2, ,k t k KΔ = L . The variance of the prediction 

error ˆ( ) ( ) ( )c c ce t k t t k t t k tλ λ+ Δ = + Δ − + Δ  is 2
, ( )e c t k tσ + Δ  

and its deviation , ( )e c t k tσ + Δ  can be used to define the 
prediction confidence interval. With Normal assumption, 99% 
confidence limits are given approximately as  
 ,

ˆ ( ) 3 ( )c e ct k t t k tλ σ+ Δ ± + Δ   (10) 
The minimum load to be served in order to satisfy the 
predicted demand is defined by the upper prediction 
probability limit, thus  

,
ˆ( ) ( ) 3 ( )c c e ct k t t k t t k tλ λ σ+ Δ = + Δ + + Δ  (11) 

Value cλ can be considered as the maximum traffic load that 
will not be really exceeded.  The request dropping probability 
(RDP) for the class c service is then defined with the delay 
threshold DT,c which follows from (8) by replacing  λ  by cλ .  
The forecasting system should alert the control system if the 
forecasted traffic cλ  exceeds the traffic load Aλ  which 
represents the maximum load at which the delay threshold DT,c 

does not exceed the targeted request dropping probability 
(TRDPC) for the class c service. The QoS control system, 
when alerted, send a request to the sink and WSN for the data 
at the instant which precedes the predicted overload instant for 
DT,c time units. The system continuously monitors actual and 
forecasted loads cλ and ĉλ respectively and if C Aλ λ> sends 
requests for data to WSN but at the reduced rate 1 Aλ λ= by 
filtering the incoming requests while the rest 2 Aλ λ λ= − are 
immediately answered based on stored data. In this way, the 
QoS control system keeps the service delay below the TRDPC 
and at the same time minimizes the age of information.  
Based on the above analysis we can launce the following 
algorithm  
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The QoS control algorithm 

IV ARIMA MODELS FOR LOAD FORECASTING 

Many empirical time series such as the number of active 
channels have no fixed mean value although they exhibit 
homogeneity in the sense that one part of the series behaves in 
the same way as the other parts. Autoregressive Integrated 
Moving Average (ARIMA) models, which describe such 
homogeneous nonstationary behavior, can be obtained by 
performing a suitable differentiation of the process to obtain 
stationary process. In general, the time series also exhibits 
periodic behavior, and therefore require both nonperiodic and 
periodic differencing.  

The multiplicative ARIMA models incorporate nonperiodic 
and periodic behavior.  

Nonstationary multiplicative models are defined by [6] 
  
 
 

where λ is the considered random variable, ),0(N 2
t εσε ≈  is 

noise variable, d and D are degrees of nonseasonal and 
seasonal differencing, respectively, S is the period, L is a 
backward shift operator and  

 
  (13) 
 

Coefficients of polynomials a(L) and A(LS) are autoregressive 
aperiodic and periodic parameters, respectively, while b(L) 
and B(LS) are polynomials whose coefficients are moving 
average aperiodic and periodic parameters, respectively. These 
polynomials are given by 
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The resulting model can be denoted as ARIMA 
(p,d,q)x(P,D,Q)S, where p, P are the numbers of  
autoregressive parameters and q, Q are the numbers of moving 
average parameters, respectively.   
Periodic behavior can be expected in campus or in company 
buildings where people call for some services almost 
periodically. Typically, teachers and students call for services 
during hourly breaks etc. Employers in company used to call 
in the afternoon before leaving the office and so on.  

It is also useful to expand the ARIMA model with an 
intervention model in order to fit the knowledge about future 
exceptional events that could influence the demand [10][12]. 
These exceptional events such as emergency situations, sports 
events, conferences, strikes etc. generate burst-like traffic and 
could be critical to keep targeted QoS i.e TRDP. The effect of 
an intervention variable ξn on the variable being modeled can 
also be defined as an ARMA model 
  ( ) ( )t t bL Lδ λ ω ξ −=                       (14) 

where δ(L) and ω(L) are polynomials whose coefficients are 
autoregressive and moving average parameters for 
intervention system respectively.  
Based on Eq. (10) we can write the one-step ahead conditional 
expectation of the considered variable as follows: 
  1 1( ) ( ) ( ) ( )S S

t ta L A L b L B Lλ ε− −=   (15) 
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Values of ψ weights follow from 1)L()L(c =ψ  with     
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. 
Note that εt=0 in Eq. (11) does not mean that the right side 
equals zero since εt-i for i=1,2, …are not equal to zeros. 
  Despite the model dimensionality, measurement based 
methods use hidden Markov model, Kalman filter or state-
space model, Wiener filter or Bayesian model [6]. Particularly, 
in real applications time series modules such as exponential 
smoothing or ARIMA models are useful [12].  Autoregresive 
and ARIMA models have been proposed to characterize the 
video traffic. 
V  NUMERICAL RESULTS 

Based on trade of between average data unit delivery delay 
and average network energy consumption studied in [7] - 
sleep/active transition rates were chosen to be equal to 0.1. 
The α and β were also chosen as average values for 
unconditioned transmission rates computed by model 
developed in [7] valued as α=0.13 and β=0.5. The g was 

chosen to be 0.005 which represents heavy network load 
condition. In this work we have considered simulated Poisson-
distributed non-stationary request traffic with seasonal 
behavior. In identification procedure based on analysis of 
autocorrelation, partial correlation and power spectrum [6] the 
sequence has been modeled with ARIMA model (8) 
ARIMA(1,1,0)x(1,1,0)S. 
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Fig. 7 Request dropping probability versus traffic load 

Parameters a1 and A1 are estimated from the sample 
autocorrelation lags via Yule-Walkers equation [9]. This 
model produces predictions of minimum error variance and 
error variable presents an independent (white noise) process. 
The prediction interval was Δt=60 s and the targeted RDP was 
set to 0.05 by taking into account 99% upper confidence limit. 
The forecasted load was 0.63cλ =  and from Fig. 7. followed 
that the application server should send request for data at 
DT=20 time slots in advance. 

VI  CONCLUSIONS 

In this paper we have presented a new approach to QoS 
control for delay-sensitive services based on sensor network 
Markov model and ARIMA models for traffic load 
forecasting. The main advantages of the presented approach is 
in efficiency of QoS control at a minimum cost of information 
oldness and simplicity of the system implementation at the 
application server. Simplicity is advantage, because it provides 
usage of the model in dynamic caching of sensor 
measurements in network layer as response to service request 
peaks. 
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