
INTERACTING CROATIAN NERC SYSTEM AND
INTEX/NOOJ ENVIRONMENT

BOŽO BEKAVAC, ŽELJKO AGIĆ, MARKO TADIĆ

In this contribution, we present design and implementation details of
an early version of Croatian finite state transducer engine called NercFst.
The engine currently implements a small subset of Intex/NooJ finite state
transducer functionality developed for the purpose of deriving a
standalone module for named entity recognition and classification (NERC)
system applicable to Croatian texts, previously created as a module in
Intex. We also provide some general notes on the Intex module for
Croatian NERC and notes on porting the module from Intex to NooJ.
Current NercFst engine functionality overview is given in more detail
along with some upcoming export features for NooJ which are currently
under development with a purpose of supporting portability to various
other open source finite state transducer libraries by exporting systems
designed and implemented within Intex or NooJ linguistic development
environment.

Introduction

Intex and NooJ are well-known powerful environments for developing
rule-based natural language processing systems implementable within
finite state transducer paradigm and beyond. Implementing versatile finite
state transducer backend that encompasses and unites various layers of
linguistic processing, using the same visual design principles, also makes
Intex and NooJ excellent all-round platforms on which to run these
language processing systems.

However, developing large scale natural language processing systems

or information retrieval systems – systems that always require several
layers of standalone natural language processing black-box modules such
as tokenizers, lemmatizers, morphosyntactic taggers and parsers in order
to operate – often has very specific demands on technology. For example,

a system for classifying newspaper articles written in Croatian under a
classification schema might use both lemmatizer and named entity
detection for Croatian as standalone libraries for feature selection at
classifier runtime. For such a system to be implemented as a code library
itself, both lemmatizer and named entity recognition systems should be
deliverable as code libraries, thus preventing the usage of development
environments such as Intex or NooJ. While these subsystems – like the
Croatian NERC system – might still be developed in Intex or NooJ in form
of sets of local regular grammars (i.e. finite state transducers), the
classifier system would require another code library capable of running
these sets of local grammars in a manner as similar to Intex or NooJ as
possible.

Motivation of our work on NercFst system was to create a small and

fast finite state transducer engine with just enough capability to run the
Croatian NERC system (Bekavac 2005; Bekavac, Tadić 2007), thus
making the Croatian NERC system available as a code library for easy
integration within natural language processing systems requiring its
assistance. On a larger scale, we envisioned a development scheme for
finite state transducer based NLP systems in which Intex or NooJ
environment is used repeatedly and iteratively throughout the development
process – in design, development and testing phases of projects – and then,
if explicitly required or otherwise necessary, ported to another
FST-capable and desirably open source library for delivering stand-alone
modules. This vision also encouraged author of Intex and NooJ to provide
some additional export features for NooJ in order to bring the growing
community of Intex and NooJ users closer to a large community of
programmers using various open source finite state transducer libraries
available on the web and utilized in various natural language processing
solutions.

Following sections describe the Croatian NERC module and NercFst

engine in more detail. We also give insight on interacting Intex and NooJ
with other more famous and versatile open source FST engines. Closing
sections deal with prospects of evaluation and several directions for future
work and experiments in the area.

NERC module for Croatian

In this part, a core of system for Named Entity Recognition and
Classification for Croatian Language named OZANA is briefly described

(Bekavac 2005; Bekavac, Tadić 2007). The system is fully implemented in
Intex and it is composed of the module for sentence segmentation, general
purpose Croatian lexicon (common words), specialized lists of names and
local grammars for automatic recognition of numerical and temporal
expressions as transducers. The central part of the system is a set of hand-
made regular grammars (rules) for recognition and classification of names
in tagged and lemmatized texts. Rules are based on certain strategies like
internal and external evidence (McDonald 1996) or recognition on
sequences of entities in text which belong to same class (Mikheev 1999).
Rules are applied using longest match in cascade in defined order (Abney
1996). The results of processing are annotated named entities compliant
with MUC-7 specification.

Since Croatian is a highly inflective language, lists of proper names

(including all possible generated word-forms) are much bigger in
comparison with English or German. For names of persons only, we were
using a list of 15,000 male and female personal names accompanied by
56,000 family names registered in the Republic of Croatia (Boras, Mikelić,
Lauc 2003:224). This list, expanded to an inflectional lexicon i.e. full
word-form list, contains 967,272 lexical entries. Such lists are generated
for single and compound forms as well. This implies that system for
processing Croatian should be very robust to cope with such amount of
lexical entries.

F-measure of the system calculated on informative (newspaper) texts

from January 2005 is 0.9. The same rules applied to another genre
(textbooks) show a significant drop in the accuracy of the system.
Precision is still at 0.79 but recall is at 0.47 thus resulting with F-measure
at 0.59. Compared to a similar system for NERC in French texts (Poibeau,
Kosseim 2001:148), where also Intex was used as a development
environment, we got similar results. System developed for French yielded
0.9 for informative texts and 0.5 in non-informative texts (prose).

NercFst engine for Croatian

NercFst engine – as a finite state transducer library for purposes of
extending Croatian NERC system availability – is developed in standard
C++ programming language using Microsoft VC 9 compiler and heavily
utilizing STL containers and algorithms. It is implemented as set of classes
modeling features of finite state transducers (input and output symbols,
transducer states, input and output tapes, transitions, configurations and

transition tables) and specifics of Croatian NERC system – among the
others: general purpose Croatian lexicon (common words), other
specialized lexicons of various named entities (both single- and multi
word) and morphosyntactic tag querying. The system is envisioned as
code library capable of providing other programmers with an interface of
type given in Figure 1.

// C++ code illustration
// ...
NercFst nfst;
nfst.initFromFile(exportFile);
nfst.run(inputFile);
nfst.output(outputFile);
// ...

Figure 1. NercFst usage illustration

This simple figure clearly illustrates user requirements and system

requirements NercFst had to conform to:

1. A single NercFst transducer nfst is instantiated in computer
memory by reading an exportFile given in Intex or NooJ format.
This implements portability of systems implemented in Intex or NooJ
to our NercFst engine. Method initFromFile() currently reads
Intex files only, namely Intex exports of local regular grammars
provided via exporting Intex GRF files to C files by an option of
compiling deterministic C transition tables of grammars, containing
lists of symbols, states and FST transitions. We chose to implement
this option first as Intex determinizes and minimizes transition tables
while exporting, thus saving us the effort of implementing FST
minimization and determinization algorithms in NercFst. Furthermore,
this Intex feature merges all local grammars for a given graph file into
a single – minimal and determinized – finite state transducer.
Basically, if local grammar LG1 in LG1.grf summons local grammar
LG2 defined in LG2.grf, exporting LG1 via Intex creates a single FST
containing both LG1 and LG2 symbols and transitions. This saves us
the effort of tracking local grammar dependencies as well.
NooJ finite state transducer engine, as opposed to the one in Intex,
performs lazy evaluation of grammars/transducers – transducers are
basically compiled at runtime, if required by input data. Therefore,

NooJ does not support exporting nested grammars into single, unique,
minimized and deterministic transducers and as a consequence, our
NercFst engine is yet to support interaction with NooJ. However, in the
following chapter, we discuss work in progress on some new NooJ
features that make interaction between its engine and third party FST
libraries much easier.

2. A single NercFst transducer nfst has to be able to process files
containing texts written in Croatian. Texts must be tokenized according
to Intex and NooJ tokenization principles (Silberztein 2008a; 2008b)
before being fed to the transducer or by the run() method itself. The
method must also be aware of other NERC annotations applied
beforehand by other NercFst transducer instances, respecting the
longest match rule; if for example a DetectInstitutions grammar would
detect an institution containing a famous person’s name, a
DetectPerson grammar applied afterwards should not consider this
institution for annotation at all. Also, Croatian NERC utilizes lexicon
and morphosyntactic tag lookup. Therefore, run() method also had
to implement these features. Only single word unit lexicons – general
and NE-specific – are currently supported in NercFst via Text Mining
Tools library (Šilić et al. 2007) using Intex-specific <lemma> syntax.
Morphosyntactic tag features and lookup in form <PoS:subPoS> is
provided by CroTag (Agić et al. 2008) – a morphosyntactic trigram
tagger for Croatian. The MULTEXT-East v3 (Erjavec 2004)
morphosyntactic tag specification for Croatian was also slightly altered
to modify Intex/NooJ requirements and specific NERC system
requirements, such as assigning unused specification codes to encode
additional features of named entities, e.g. whether lexicon entry is
personal name, surname or location instead of just proper noun (coded
as Np in the standard).

3. A single NercFst transducer nfst has to provide an option of
exporting its output to XML or other format in which NERC system
annotation is visible and readable by humans. NercFst engine output is
implemented to provide stand-off annotation (we write named entity
begin index, end index and tag type to the output), thus exporting it to
any other format is not a difficult task. Currently, we support MUC-7
specification (Chinchor 1997) and its tag format. As various grammars
could be run sequentially by a single NercFst instance or by a sequence
of NercFst instances, additional mechanism also had to be

implemented for merging outputs with respect to running sequences
and longest match rules.

4. As NercFst is made to run Croatian NERC system and this system

utilized various special keywords provided by Intex and NooJ – these
keywords in fact representing specialized local grammars operating
inside single tokens, such as <PRE>, <MOT>, <MAJ>, <NB>, etc. –
these also had to be supported by NercFst engine. However, being that
basic setting of NERC system and NercFst is that symbol equals token
and token equals a string as underlying data structure, we had to
bypass this token-string rule in order to implement special local
grammars as they have a vital role throughout the entire NERC system
operation.

As clearly indicated in this specification, NercFst is still in an early

development stage and lots of work must be put into improving its features
even in order to compare it to other, more mature and more famous code
projects implementing finite state transducer functionality. However, if
considered solely in context of running Croatian NERC system, it already
serves its purpose as it is, although directing its development towards
interacting with NooJ instead of Intex, still is on the top of our priority list.
Interacting NercFst and other finite state transducer engines with NooJ is
discussed in the following chapter.

Interacting NooJ and transducer libraries

As mentioned earlier, Intex combines dependent local grammars into a
single finite state transducer structure and makes it both deterministic and
minimal. It is available via Intex in internal FST format and C-file format
containing three arrays – list of input and output symbols combined, list of
states indicating final states and list of transitions containing tuples of
integers indicating current state, input symbol and target state of the
transducer. With such a feature set, virtually any finite state transducer
library could support running Intex grammars, providing that several
requirements are supported internally by these libraries. Some of these
requirements are presented in the previous chapter and met to some extent
by NercFst: (1) supporting specialized lexicon lookup, (2) supporting
morphosyntactic tag lookup and (3) implementing keyword-triggered
lexical level local grammars. There are surely other features that are
supported in Intex and NooJ and not utilized in the Croatian NERC system

so we do not try to make this list comprehensive and exact but, in the
contrast, small but indicative.

NooJ environment, as opposed to Intex, evaluates and compiles local
grammars in a manner called lazy evaluation – finite state transducers are
compiled only when required by input text specifics. This feature – even
though it is obviously extremely useful in terms of processing speed when
using NooJ as both development and running environment – makes
implementing single transition table export feature a more difficult task.
Therefore, exporting deterministic transition table is not supported by
NooJ, denying NercFst and potentially other FST libraries of intriguing
prospects of running transducer systems developed in NooJ.

Guided by these underlying ideas of library interaction, upcoming
versions of NooJ environment should – by coordinated work of NooJ
developers and NercFst team – at least enable exporting single local
grammars from graph files into deterministic transition tables in the AT&T
FSM file format (Mohri et al. 1998). This format was chosen because it is
directly supported by almost every relevant open source finite state
transducer library. Namely, OpenFst (Allauzen et al. 2007) and Helsinki
FST toolkit (Koskenniemi, Yli-Jyrä 2008) support it out of the box, while
it can be converted with some effort to Stuttgart FST toolbox (Schmid
2005) syntax. In order to fully recreate old Intex functionality with this
planned NooJ export feature, single local grammars exported to finite state
transducers should be combined by a third-party combining procedure,
creating sequences of embedded FSTs and subsequently merging them
into a single, minimal and deterministic transducer. Being that all stated
finite state transducer libraries implement all the basic transducer
operations – among these, union, minimization and determinization are
required – the task should not pose difficulties. However, as the export
feature is currently under construction by the NooJ development team, it
remains to be tested in the future.

Conclusions and future work

We have presented the work-in-progress on NercFst, a FST engine that
currently implements a small subset of Intex/NooJ FST functionality
developed for the purpose of deriving a standalone module for named
entity recognition and classification in Croatian texts. The advantages of
described system are: (1) possibility of integration and combination with
other natural language processing systems via code library module; (2)
possibility of easily redesigning the system to support other systems for
processing Croatian language developed in Intex or NooJ; (3) easier

control of processing steps since – from the rule developer's point of view
– possibility to approach any data at certain stage of processing could be
very useful. For example, during NERC processing some lexical
knowledge is relevant only for certain type of discourse. Creation of such
resource for temporary lexical data storage is much easier to implement in
described system.

Future work directions are most likely to be spread in two possible
directions: (1) expanding the NercFst library in order to support additional
Intex and NooJ functionality and (2) putting additional effort to interaction
of NooJ with open source finite state transducers in general via standard
finite state transducer file formats.

Acknowledgement

This work has been supported by the Ministry of Science, Education
and Sports, Republic of Croatia, under the grants No. 130-1300646-0645,
130-1300646-1002, 130-1300646-1776 and 036-1300646-1986.

References

Abney, Steven. 1996. Partial Parsing via Finite-State Cascades, Journal of
Natural Language Engineering 2 (4): 337–344.
Agić, Željko; Tadić, Marko; Dovedan, Zdravko. 2008. Combining Part-of-
Speech Tagger and Inflectional Lexicon for Croatian. Proceedings of the
Sixth Language Technologies Conference. Institut Jožef Stefan, Ljubljana,
Slovenia, 2008: 116-121.
Allauzen, Cyril; Riley, Michael; Schalkwyk, Johan; Skut, Wojciech;
Mehryar Mohri. 2007. OpenFst: A General and Efficient Weighted Finite-
State Transducer Library. Proceedings of the Ninth International
Conference on Implementation and Application of Automata (CIAA
2007), Springer: 11-23.
Bekavac, Božo; Tadić, Marko. 2007. Implementation of Croatian NERC
System, in: Piškorski, Jakub; Tanev, Hristo; Pouliquen, Bruno;
Steinberger, Ralf (ed.) Proceedings of the Workshop on Balto-Slavonic
Natural Language Processing 2007, ACL, Prague 2007: 11-18.
Bekavac, Božo. 2005. Strojno prepoznavanje naziva u suvremenim
hrvatskim tekstovima, PhD dissertation, Faculty of Humanities and Social
Sciences, University of Zagreb.

Boras, Damir; Mikelić, Nives; Lauc, Davor. 2003. Leksička flektivna baza
podataka hrvatskih imena i prezimena, Modeli znanja i obrada prirodnog
jezika, Radovi Zavoda za informacijske studije (vol. 12): 219–237.
Erjavec, Tomaž. 2004. Multext-East Version 3: Multilingual
Morphosyntactic Specifications, Lexicons and Corpora. In Proceedings of
the Fourth International Conference on Language Resources and
Evaluation. ELRA, Lisbon-Paris 2004: 1535-1538.
Friburger, Nathalie; Maurel, Denis. 2004. Finite-state transducer cascades
to extract named entities in texts, Theoretical Computer Science, 313(1):
93–104.
Gale, William; Church, Kenneth; Yarowsky, David. 1992. One Sense per
Discourse. Proceedings of the 4th DARPA Speech and Natural Language
Workshop, Harriman, NY: 233–237.
Gross, Maurice. 1993. Local grammars and their representation by finite
automata, Data Description, Discourse. in: Hoey, M. (ed.) Harper-Collins,
London: 26–38.
Koskenniemi, Kimmo; Yli-Jyrä, Anssi. 2008. CLARIN and Free Open
Source Finite-State Tools. In the Proceedings of FSMNLP 2008, Ispra,
Italy.
McDonald, David. 1996. Internal and external evidence in the
identification and semantic categorization of proper names. in: Boguraev,
I.; Pustejovsky, J. (eds.), Corpus Processing for Lexical Acquisition, MIT
Press, Cambridge, MA: 21–39.
Mikheev, Andrei; Grover, Claire; Moens, Marc. 1999. Named Entity
Recognition without Gazetteers, Proceedings of the Ninth Conference of
the European Chapter of the Association for Computational Linguistics,
Bergen: 1–8.
Mohri, Mehryar; Pereira, Fernando; Riley, Michael. 1998. A Rational
Design for a Weighted Finite-State Transducer Library. Lecture Notes in
Computer Science, 1436, 1998.
Piskorski, Jakub; Neumann, Günter. 2000. An Intelligent Text Extraction
and Navigation System, Proceedings of the 6th International Conference
on Computer-Assisted Information Retrieval (RIAO'00), Paris.
Poibeau, Thierry. 2000. A Corpus-based Approach to Information
Extraction, Journal of Applied Systems Studies, 1(2): 254–267.
Poibeau, Thierry; Kosseim, Leila. 2001. Proper Name Extraction from
Non-Journalistic Texts, in: Daelemans, W.; Sima'an, K.; Veenstra, J.;
Zavrel, J. (eds.), Computational Linguistics in the Netherlands 2000:

Selected Papers from the Eleventh CLIN Meeting, Rodopi, Amsterdam:
144–157.
Schmid, Helmut. 2005. A Programming Language for Finite State
Transducers. Proceedings of the 5th International Workshop on Finite
State Methods in Natural Language Processing (FSMNLP 2005), Helsinki,
Finland.
Silberztein, Max. 2008. Intex manual, NooJ manual. Available at URLs
http://www.nyu.edu/pages/linguistics/intex/ and http://www.nooj4nlp.net/
(2008-12-07).
Šilić, Artur; Šarić, Frane; Dalbelo Bašić, Bojana; Šnajder, Jan. 2007.
TMT: Object-Oriented Text Classification Library. Proceedings of the
29th International Conference on Information Technology Interfaces.
SRCE, Zagreb, 2007: 559-566.

