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1. Introduction

In 2003, Birus et al. [1] reported data arising from their work on
war victims in Croatia. Subpopulation effects were suspected in this
dataset from the observation that the number of partial matches
appeared to be above expectation from the product rule model. This
paper has been quoted in Australian Courts as suggesting that
existing population genetic models are inadequate [2].

The subject of suggested excess of matching or partial matching
profiles is one that is causing considerable discussion on forensic
discussion groups, web sites and newspapers. For example the
observation of partial matches in the Arizona database [3] has
become a topic of heated discussion in the US:

‘‘At stake is the credibility of the compelling odds often cited in
DNA cases, which can suggest an all but certain link between a
suspect and a crime scene’’ [4].

There is much less discussion in the refereed literature where such
matters should really be settled. The issue is not the presence of
partial matches per se but whether these are occurring at a rate
greater than predicted by the relevant population genetic model.
There have been a number of attempts to assess the population
genetic models used in forensic science many centred around the

pioneering work of Evett using what he termed Tippett tests
18]. With a dataset of size N it is possible to make N(N � 1
comparisons between pairs of profiles. A problem with compa
pairs in a database is that, if a match is observed, it is difficul
know whether the match originates from the same or differ
people. Matching profiles may be the same person samp
separately, twins, close relatives, or unrelated people. Investiga
of these matches can be hampered by practical or le
considerations. Weir suggested focussing on a comparison of
observed and expected number of partially matching profiles [
as a way around this problem. The Weir approach accounts
subpopulation effects. However the number of partially match
profiles could also be affected by the presence of relatives in
dataset examined and this has been suggested as an explanat
again usually in the non-refereed correspondence. However
method of Weir has been extended to account for the presenc
relatives in a dataset [20] and hence the observed and expec
may now be compared accounting for most plausible explanati
for partial matches.

Work has continued on this identification work and a larger
of profiles (unpublished) is now available.

Given
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Ple
Ge
he availability of an expanded database from Croatia, and
ethods for analysis of this database, and

he great interest in the fit of partial matches to expectation
believe it is both timely and useful to examine a large range of
lation datasets for fit to the model and especially to examine the
nded Croatian dataset.

ethods

t is necessary to describe the full and partial matches obtained
g the 15 locus IdentifilerTM DNA profiling system. The
enclature is given in Table 1 (we follow Curran et al. [20]).
or the sake of clarity in the ensuing discussion, we define at
point the ‘top end of the distribution’ as those partially

ching pairs of profiles that are nearest to a full match. These
ld be the 14/1’s, 14/0’s, 13/2’s etc. for a 15 locus system. The

tom end of the distribution’ would then be those pairs of
les that are nearest to complete mismatches. These are 0/0,
0/2, etc.
he key in this procedure is not in determining the observed
ber of matches but in estimating the expected number.
t the top end of the distribution, we expect that any observed
ial matches are more likely to be close relatives than unrelated
viduals. Therefore, we would expect that the observations
ld be above expectation if relatedness were not taken into
unt. It is not unreasonable to assume, given the size of modern
nsic databases, that some cousins or brothers for example
ld be present, and in many cases it is known that relatives are
he database. In the ensuing discussion we tend to emphasise
top end of the distribution since this is the end that is the best
ictor of the point of interest, the full matches.
btaining estimates of the expected number of occurrences of
partial match follows Curran et al. [20]. We briefly reprise the

an et al. method here. The probability of each type of full or
ial match as described in Table 1 is estimated for four classes of
tionship between people taking into account the specific
tionship and the co-ancestry coefficient, u. The classes of
tionship modelled were unrelated, siblings, parent/child and
ins. For each relationship we assume that alleles may be
tical because of chance, because they are identical by descent

the modelled relationship, or because they are identical by
ent from the background co-ancestry, u. The effect of co-
stry is modelled using the approach of Balding and Nichols
which is the analogue of the National Research Council

mmendation 4.2 equations 4.10 [22]. This is the model used in
h of Europe and Australasia but not the US.
elationships other than those modelled are certainly present
e data. We assume that they are of sufficiently low probability,
ciently similar to one of the existing relationships, or of

sufficiently low impact that they can be ignored without serious
consequence.

We will weight the contribution to the partial matches for each
of the four classes of relationship. Since the weights for the four
classes of relationship must add to one, we have only three weights
to specify, the fourth being determined by subtraction. The co-
ancestry coefficient, u, is used to adjust for background relatedness
in the population. Therefore, we have four free parameters; three
weights and the co-ancestry coefficient. Let the number of pairwise
comparisons be denoted

NComp ¼
NðN � 1Þ

2

We label the weights as
a The fraction of comparisons that are between

siblings. Note: This is related to the number
of pairs of siblings (NB) on the database by the
relationship a = NB/NComp.

b The fraction of comparisons that are between cousins.

d The fraction of comparisons that are between
a parent and a child.

u The co-ancestry coefficient

The weights, a, b, d and the value of u are chosen so that the
difference between the observed (O) and expected (E) counts in
each category is minimized with respect to a distance measure.
Curran et al. suggested that a statistic that fits the distributions
across the full range from the bottom to the top of the distribution
is given by the relative proportion of error, i.e.
X jO� Ej

E

The final parameters at best fit do not represent certain knowledge
of these particular fractions of relatives but suggest that these
fractions, if present, would best explain the observations.

From the expanded Croatian database of relatives of missing
people 295 individuals were selected, with known relatives
removed. There are 259 full IdentifilerTM profiles in this dataset.
This gives a total of 33,411 pairs available for comparison.

3. Results

The numbers of observed and expected matches are presented at
the optimal fit for the parameters for relatedness and population
substructure (Fig. 1, left). There were no observed partial matches
beyond 7/8 and accordingly the high end of the X-axis of the graph
consists of observed counts of zero and low values of expected
counts. We have therefore truncated the graph. The optimal fit
parameters may be difficult to understand but translate to those
estimates of relatedness in the dataset that would best fit the
observations. This best fit occurs at 24 pairs of siblings, 1434 pairs of
cousins and 37 parent–child pairs with the remaining 31,916 pairs
being treated as unrelated. Since some effort has been made to
remove all known pairs of relatives then the pairs predicted above
are either unknown relationships still present in the dataset or an
artefact of the optimisation process. The number seems high if they
are undetected pairs of relatives. The latter effect would occur if
there were some pairs of people who, although unrelated by recent
ancestry, had very high level of co-ancestry because of multiple

1
enclature used to describe full and partial matches

Nomenclature

A full 15 locus match

A 14 locus match with one allele of the last locus matching

A 14 locus match with no alleles of the last locus matching

A 13 locus match with one allele at each of the last two loci matching

A 13 locus match with one allele at one of the last two loci matching

G. Lauc et al. / Forensic Science International: Genetics xxx (2008) xxx–xxx
A 13 locus match with no alleles at either of the last two loci matching

A seven locus match with one allele matching at two of the

other eight loci matching

A seven locus match with one allele matching at one of the other eight

loci matching

ase cite this article in press as: G. Lauc, et al., Empirical support
ne. (2008), doi:10.1016/j.fsigen.2008.08.005
common ancestors further in the past and in many ways such
relatedness would mimic subpopulation effects. Whether these
pairs of relatives do indeed exist in the dataset is, surprisingly,
irrelevant. This is because the observation is that a model with these
parameters explains the data well. It does, however suggest that
some accommodation for relatives is necessary, at least in this
for the reliability of DNA interpretation in Croatia, Forensic Sci. Int.
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dataset, to explain the partial matches.The value for u at optimisa-
tion was 0.003 which is quite low and does not suggest excessive
substructure once relatedness has been accommodated.

It is not trivial to assess the quality of fit in these graphs. We
suggest that the readers compare visually the observed and
expected for partial matches at the top end of the scale as this is the
end of the most evidential interest, being the nearest to full
matches. The reader may, for example, concentrate in the 7/2 to 7/8
range. We will also present the distance measure which is a
composite statistic across the whole range.

The fit of observed and expected for the raw product rule with
no accommodation for relatedness was inferior (see Fig. 1, right,
distance function 323) to the optimal fit with both relatedness and
population substructure (see Fig. 1, left, distance function 70.9).

The product rule with relatedness gave a graphic virtually ident
to Fig. 1, left, and is not given due to its similarity. The dista
measure for this was 71.6, similar to that for the full optimisa
with subpopulation effects and relatedness.

This agrees with earlier observations [1] that there appear to
more partial matches than predicted by the product rule. This
key finding of both this and the earlier work but the work h
suggests that the key modelling parameters, at least for
dataset and multiplex, are a consideration of relatedness, not of
subpopulation effect.

The fit to the subpopulation model with the commonly u
value u = 0.01 and no accommodation for relatedness (Fig. 2, ri
distance function 209) was also inferior to the subpopula
model with relatedness (Figs. 1 and 2, left, distance function 7
and was, in fact, only a moderate improvement in fit over the
product rule (Fig. 1, right, distance function 323).

4. Conclusions

The overlap of observed and expected appears to be exc
tionally good to us as long as relatedness and a small leve

Fig. 1. Observed vs. expected for the partially matching profiles at the optimised fitting parameters (left) and using the raw product rule with no accommodatio

substructure or relatedness (right). The fitting parameters at optimisation were: a = 7 � 10�4, b = 4.3 � 10�2, d = 1. 1 � 10�3, u = 0.003.

Fig. 2. Observed vs. expected for the partially matching profiles using the subpopulation model with u = 0.01 and no accommodation for relatedness (right) with the fit a

optimised fitting parameters (left) for comparison.

Table 2
The parameters for relatedness at subpopulation effects at optimal fit for various

databases

a b d u

Australian Caucasians 7.80 � 10�6 9.38 � 10�4 1.14 � 10�8 0.00

G. Lauc et al. / Forensic Science International: Genetics xxx (2008) xxx–xxx
ith
del

few
for

ula-

Australian Aborigines 5.95 � 10�5 4.99 � 10�2 3.65 � 10�11 0.03

West. Aust. Caucasians 6.91 � 10�6 3.08 � 10�3 2.95 � 10�7 0.00

West. Aust. Aboriginals 8.32 � 10�5 1.19 � 10�15 2.05 � 10�5 0.00

NZ Caucasians 7.09 � 10�6 6.51 � 10�10 2.77 � 10�8 0.00

NZ Eastern Polynesians 5.43 � 10�5 3.06 � 10�2 5.64 � 10�14 0.00

NZ Western Polynesian 9.02 � 10�5 7.20 � 10�3 1.36 � 10�6 0.00

Croatian Caucasians 7 � 10�4 4.3 � 10�2 1.1 � 10�3 0.003

Please cite this article in press as: G. Lauc, et al., Empirical support f
Gene. (2008), doi:10.1016/j.fsigen.2008.08.005
substructure are successfully modelled. The raw product rule w
no accommodation for relatedness and the subpopulation mo
with no accommodation for relatedness seem to predict too
matches. However the product rule with an accommodation
relatedness gives only a marginally poorer fit that the subpop
tion model with relatedness.
or the reliability of DNA interpretation in Croatia, Forensic Sci. Int.
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Ple
Ge
e conclude from this that the primary factor in modelling
ch probabilities, in this Croatian dataset at least, is to
uately model relatedness.
revious work has investigated this type of fit to Australian

casians, Australian Aborigines, New Zealand Caucasians, New
and Eastern Polynesians, and New Zealand Western Poly-
ans. [20] Direct comparison of the fit of observed and expected
g the distance measure for these different populations is
pered by the fact that our distance measure is not
pendent of the size of the database and the number of loci.
databases in the earlier work were between 8000 and 17,000
ize hence random effects in the number of observed partial
les would be much less in those databases than in the current

k. This may be seen by looking at the observed values on the Y-
which are typically larger by orders of magnitude in the

ier work. However the modelling parameters at optimal fit
be compared between the different population datasets

le 2).
n all cases the co-ancestry coefficient, u, at optimal fit is small

the possible exception of Australian Aborigines. This indicates
subpopulation effects are usually minimal. However the

tedness parameters at optimal fit are small but non-negligible
at they have a significant effect on the expected number of

ial matches at the top end of the distribution. This is
pletely in line with the expectation that most of the excess
rtial matches would be explained if a small number of pairs of

tives were present in the datasets.
he importance of relatedness has been predicted and is
cted to become greater relative to subpopulation effects as we
more loci to our multiplexes [15]. However it is clear from
les such as the LA Times article quoted in the introduction [4]
there is still room for surprise at the potential magnitude of
anticipated genetic effect. It may be timely to start discussion
t further practical ways, beyond the substantial efforts

ady made by some laboratories, in which the importance of
tedness may be appropriately and proportionately accommo-
d in casework and reported to court.
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