
137

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

JIOS, VOL. 32, NO. 2 (2008) SUBMITTED 05/08; ACCEPTED 11/08

Java Applications Development Based on Component and

Metacomponent Approach

Danijel Radoševi danijel.radosevic@foi.hr

University of Zagreb

Faculty of Organization and Informatics Varaždin

Mario Konecki mario.konecki@foi.hr

University of Zagreb

Faculty of Organization and Informatics Varaždin

Tihomir Orehova!ki tihomir.orehovacki@foi.hr

University of Zagreb

Faculty of Organization and Informatics Varaždin

Abstract

Component based modeling offers new and improved approach to design, construction,
implementation and evolution of software applications development. This kind of software
applications development is usually represented by appropriate component model/diagram.
UML, for example, offers component diagram for representation of this kind of model. On the
other hand, metacomponents usage offers some new features which hardly could be achieved
by using generic components. Firstly, implementation of program properties which are
dispersed on different classes and other program units, i.e. aspects, is offered. This implies
using automated process of assembling components and their interconnection for building
applications, according to appropriate model offered in this paper, which also offers generic
components usage. Benefits of this hybrid process are higher flexibility achieved by
automated connection process, optimization through selective features inclusion and easier
application maintenance and development. In this paper we offer an approach of application
development based on hybrid component/metacomponent model. The component model is
given by UML diagrams, while the metacomponent model is given by generator scripting
model. We explain that hybrid approach on an example of Java Web application development.
Keywords: component model, metacomponent model, web application, Java

1. Introduction

The concept of building software from components has been used for many years. Software is
made from components that can be developed or can be bought. This kind of application is
more flexible than applications developed using non-component approach because of their
plug and play nature.

Components are built to be reusable which makes development of further applications
that offer similar functionalities much easier. Another step forward would be metacomponents
usage. Metacomponents are used as templates for making final components using an
automated process of generation. This means that metacomponents are more general in
relation to appropriate components. The generation process of metacomponents depends on
their specification, which offer optimization (in relation to standard components) because
components generated from metacomponents don't need to contain all possible features of the
whole problem domain; i.e. involving of particular feature depends on component
specification. Also, metacomponents can be combined in a way that more than one
metacomponents can be used in generation of some particular component. Also, some
metacomponents can be used in generation of different kinds of components.

UDC 004.4:004.73
Original Scientifi c Paper

138

RADOŠEVI ET AL. JAVA APPLICATIONS DEVELOPMENT BASED ON...

So, the metacomponent approach has the potential of making application/component
development process more flexible, giving more reusability and some level of optimization in
relation to standard component approach.

2. What is a component?

Despite of the fact that components are known for years, when we talk about component
based software development (CBSD) we can say that it is a discipline that is still in the
process of development [2]. There are several important terms that we can identify in this
discipline but the main focus is on a component. A component is a part of a program product.
It consists of a group of functionalities that are offered through that component [2]. A
component is implemented in some programming language, compiled and as such it
represents the black box, that is, the implementation details of a component are not known to
its environment.

In order to communicate with its environment, components use one or more interfaces.
The interfaces specify the services that a component provides. In most cases interface defines
just syntactical aspect of a component (inputs and outputs) and says nothing about semantical
aspect. This tells to user very little about what a component really does.

In order to describe functionalities of a component, every component has its contract
which defines what component has to be provided with by its environment and what it
provides to its environment if the conditions that are specified in the contract are fulfilled. A
contract of a component also describes a way of communication/interaction between
components in some particular group.

2.1. Types of components

There are 3 main types of components [2]: custom-built components, reusable components
and commercial components. Custom-built components are components developed for some
particular purpose. Reusable components are components owned by developers of application
that have been developed for some other application but can be used for present development.
Commercial components are components that are developed for sale on a component market.
A UML is mostly used to model a component and to show its structure (Figure 1).

Figure 1. UML model of Java composite component

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

139

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

2.2. Components characteristics

There are some components principles which distinguish them from other programming
technologies [2]:

 reusability – the property to use a component developed during one software
development process (SDP) in another SDP,

 substitutability - the ability to replace component with alternative implementation of
component,

 extensibility – the characteristic which can add new features to individual components
or extend one component into two or more components,

 composability – the ability to assemble various component functions in order to satisfy
specific user requirements.

Beside the mentioned principles the following are also referred [14][5]:
 executability – component is an executable programming module,
 interface – the property which determines internal running of components,
 source code protection – source code isn’t directly accessible to component users,
 interaction between components in order to exchange information,
 flexibility – the property to modify a single component in order to use it in another

SDP,
 maintainability – the ability to modify component in order to adapt it to a specific

SDP.

2.3. Problems with components

When we consider the process of components assembling we are facing with several
problems [10]:

 if we want to utilize a particular functionality we need to identify appropriate
component(s),

 there are some gaps between components and desired functionality so we need to
specify and resolve them,

 it is necessary to specify interaction between components,
 during the interaction between components in nonlinear systems some emergent

behavior can occur.

Because of these problems, we will examine properties which metacomponent approach
brings.

3. Metacomponent approach

Metacomponent is, according to Villacis, a "container component that has “inside” knowledge
about the connections between components embedded within it" [16]. The main difference
between metacomponents and components is that metacomponents are just templates for
components, not the whole components that could be included into working applications. So,
metacomponents require some automated process to produce components. That process is
quite invasive - all changes are hardcoded into program code through the process of
generation. The main advantages of this approach are, according to [3]:
 optimization: unlike components, which should cover wide area of their problem

domain, to fulfill needs of many different applications, metacomponents are pretty "light"
- specific properties could be involved by specific needs of particular application (defined
in application specification).

 aspects: according to Kinczales [7], aspects represent features that are not strictly
connected to individual program organizational units like functions or classes, so they can
appear within different application parts. During the process of component generation,

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

140

RADOŠEVI ET AL. JAVA APPLICATIONS DEVELOPMENT BASED ON...

particular aspects are integrating with different metacomponents, giving them the features
from application specification. It means that some feature have to be defined just once (in
the application specification), but dispersed on different application parts. It was shown
that UML and other object modeling techniques have significant problems in modeling
aspects (i.e. Lee [8]).

 flexibility: while components need to be accessed through its public interface,
metacomponents allow invasive approach, i.e. can be changed inside. This enables fine
adjusting of desired properties.

3.1. Scripting model of generator

Including aspects into generated application requires appropriate connectivity model, which is
called, according to Kandé [6], the Join points model. Scripting model of generator [11] is
kind of Join points model, where join points are defined as typeless [12] unlike classic object
model, where join point are defined as complex connectivity classes. The property of being
typeless should make connectivities easier, just like scripting programming languages, which
tend to be typeless, and are used for connecting components written in system (structural and
object oriented) programming languages [9].

3.1.1. Diagrams of generator scripting model

The scripting model consists of two graphic diagrams (or equivalent textual specifications), so
it's simpler in relation to the models based on UML [11]. The first diagram is called the
specification diagram and defines the structure of the application specification within the
generation system. The specification diagram of Java application for remote database
maintaining generator defines features (aspects) which make single application different from
other within its problem domain. In the example, specification defines used tables and fields
in each table (Figure 2.).

Figure 2. The specification diagram of the example Java application

The generation system generates the application within its problem domain, which is
designated by program code templates (metascripts). The connection rules for connecting
metascripts to application specification are defined in the second diagram - the metascripts
diagram [11]. The metascripts diagram of Java application for remote database maintaining
generator defines connections between metascripts and application specification (Figure 3.).

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

141

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 3. The metascripts diagram of the example Java application

4. Application prototype

In order to develop a suitable generator a desktop/web application prototype was developed
using Java technology. This prototype was developed in such way that it consists of all
elements and provides all necessary functionality that will be used later in other generated
applications. The platform for prototype development was chosen according to some simple
guidelines, namely the main reason for choosing Java was its openness and platform
independency.

When we talk about Java we talk about programming language but also about platform (a
hardware or software environment in which program runs [1]).

When writing java code, all code is first written in plain text files ending with the .java
using some editor. The files are called the source files. They are then compiled using java
compiler into .class files. The files (.class) contain bytecode that isn’t native to computer
processor. Bytecode is machine language of the Java Virtual Machine (Java VM [15]).
Compiled application is run with the instance of Java VM. Java VM is available on various
platforms and that is why java programs are able to run on different operating systems. The
process of running Java application is shown in Figure 4.

Figure 4. Running Java application

The technology that was used inside of Java is Swing. Swing is a GUI toolkit for Java. It
is one part of the Java Foundation Classes (JFC) [4]. Swing includes graphical user interface

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

142

RADOŠEVI ET AL. JAVA APPLICATIONS DEVELOPMENT BASED ON...

(GUI) widgets such as text boxes, buttons, split-panes, and tables. Swing is a platform
independent, Model-View-Controller GUI framework for the Java system [13]. Swing enables
one to develop an application that can be used as a desktop or web application (as an applet
inside of a browser). Using this kind of technology a high-level of flexibility was gained.

The database used in this prototype is MS Access database. It was used because of its
simplicity but any other database could also be used, without changing any of program code,
except database connection string. The database consists of two interlinked tables, called
“Students” and "Subjects". The structure of prototype database structure is shown in Table 1
and Table 2.

Attributes Data types

student_id (primary key) integer
surname_name varchar
year_of_study integer

year_of_enrolment integer

Table 1. Structure of table “Students”

Attributes Data types

subject_id (primary key) integer
student_id (foreign key) Integer

subject_name varchar
semester integer
teacher varchar

Table 2. Structure of table “Subjects”

The prototype developed is the base for generating similar and more complex programs.
The whole program is written in just one .java file which simplifies generating process. The
application prototype implements the following functionalities:
 Inserting new participants
 Updating existing participants
 Deleting existing participants
 Viewing existing participants
 Interlinking of tables using foreign keys

All these functions are implemented on just one screen to simplify the usage of this
prototype. Also some other features such as asking confirmation for deleting are also
implemented. The screenshot of application is shown in Figure 5.

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

143

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 5. Screenshot of application prototype

5. Generating case

Generating case refers to generating Java applets for database administration (data review;
adding. editing and deleting records), according to appropriate specification and program
code templates (metascripts).

5.1. Specification

According to scripting model of generator, building an application starts with the
specification. For example:

link:subjects.student_id->students.student_id

title:Students

table:students
primary_key:student_id

field_int:student_id
field_char:surname_name

field_int:year_of_study

field_int:year_of_enrollment

title:Subjects

table:subjects
primary_key:subject_id

field_int:subject_:id

field_int:student_:id
field_char:subject_name

field_int:semester

field_char:teacher

This specification defines tables to be created and maintained (students, subjects), with its
fields (id, surname and name, year of study and year of enrollment for table students; id,

name, semester and teacher for table subjects), primary keys (student id, subject id), foreign
key (student id) and group titles (Students, Subjects). These are the features of generated
application that varies within its problem domain.

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

144

RADOŠEVI ET AL. JAVA APPLICATIONS DEVELOPMENT BASED ON...

5.2. Metascripts

Metascripts (program templates) define common parts of different applications among its
problem domain. Features from specification are connected to metascripts according to the
metascripts diagram (Figure 3). In the following example, several features are connected to
appropriate metascripts:

. . .

 {

 JOptionPane pane = new JOptionPane(

 "#table# with #primary_key# already exists !");

 JDialog dialog = pane.createDialog(new JFrame(), "Data enter failed!");

dialog.setVisible(true);

 #primary_key#_polje.requestFocus();

 #primary_key#_polje.setSelectionStart(0);

 #primary_key#_polje.setSelectionEnd(100);

 }

. . .

After connecting to specification (generated parts are bolded):

. . .

{

 JOptionPane pane = new JOptionPane(

 "students with that id already exist !");

 JDialog dialog = pane.createDialog(new JFrame(), " Data enter failed!");

 dialog.setVisible(true);

id.requestFocus();

id.setSelectionStart(0);

id.setSelectionEnd(100);

 }

. . .

In the example, all tags (marked by # signs) are directly exchanged by values from
specification. That is not a case in bit more complex example:

public void mouseClicked(MouseEvent e)

{

 int row = table.getSelectedRow();

 int counter=0;

 if ((#table#.getValueAt(row, 0)) != "")

 { //#primary_key#.setText(table.getValueAt(red,0).toString());//subtemplate

#show_record#

 }

 #primary_key#_polje.setEditable(false);

}

 After using appropriate specification elements (generated parts are bolded):

public void mouseClicked(MouseEvent e)

{

 int row = students.getSelectedRow();

 int counter=0;

 if ((students.getValueAt(row, 0)) != "")

 {

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

145

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

 id.setText(students.getValueAt(row, counter ++).toString());

surname_name.setText(students.getValueAt(row,counter ++).toString());

year_of_study.setText(students.getValueAt(row,counter ++).toString());

year_of_enrollment.setText(students.getValueAt(row,counter++).toString());

 }

 id.setEditable(false);

}

Using of sub templates is defined by lower levels of the metascripts diagram (Figure 3).

6. Combining component and metacomponent approach

Despite of using metacomponent model, like scripting model of generator, the whole
approach of application development is hybrid: component and metacomponent approaches
are combined.

Why? Looking just application prototype, it could be fully described by its component
model, despite the fact that some of the components are generated from appropriate
metacomponents. It's not necessary that all of the components have to be generated - some
have no features which should be defined in the application specification. The aspiration of
generator scripting model is to make application specification as light as possible, so it has to
contain only features which have to be different inside the generator problem domain.

In our example of Java database administration application, the component model is given
in Figure 6:

Figure 6. Java database administration application component model

7. Conclusion

In this paper component and metacomponent approach was discussed and an example of Java
software generation system built using metacomponents was shown. Appropriate generator
was developed using generator scripting model which represents kind of metacomponent
model and the main advantages of metacomponent approach, toward to component model
have been shown. Regarding the fact that the fully metacomponent approach could be too
demanding, we suggest the hybrid component/metacomponent approach. Some of the
components are common for all applications inside the generator problem domain and there is
no need to generate them from metacomponents. On the other hand, the metacomponent
approach includes automatic code generation, some level of optimization (only
metacomponents which are really needed according to application specification will be

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

146

RADOŠEVI ET AL. JAVA APPLICATIONS DEVELOPMENT BASED ON...

included into final application), and easier further application maintenance through changing
its specification and metacomponents.

In our future work we plan to improve the generative application development based on
generator scripting model with main accent on following areas:

 problem domain reengineering,
 introducing some new concepts to the scripting generator model, like virtual

metascripts, similar to the object model, and
 development of new programming platforms for making generators, except the

existing scripting and C++ platform.

References

[1] Arnold, K.; Gosling, J. The Java programming Language, Addison-Wesley, 1998.

[2] Crnkovic, I.; Larsson, M. Building Reliable Component-Based Software Systems,
Artech House, Boston, 2002.

[3] Czarnecki, K.; Eisenecker, U. W. Generative programming: methods, tools and

applications, Addison-Wesley, 2000.

[4] Flanagan, D. Java Foundation Classes in a Nutshell: A Desktop Quick Reference,
O'Reilly, 1999.

[5] Gómez-Perez A.; Lozano A. Impact of Software Components Characteristics above
Decision-making Factors, International Workshop on Component-Based Software

Engineering (CBSE 2000), pp. 15 – 23, Limerick, Ireland, 2000

[6] Kandé, M. M.; Kienzle, J.; Strohmeier, A. From AOP to UML - A Bottom-Up
Approach, 1st International Conference on Aspect-Oriented Software Development,
2002., Enschede, The Netherlands, URL: http://lglwww.epfl.ch/workshops/aosd-
uml/Allsubs/kande.pdf

[7] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C. V.; Loingtier, J. M.;
Irwin, J. Aspect-Oriented Programming, Lecture Notes in Computer Science, Vol.
1241/1997, pp. 220 – 242, 1997.

[8] Lee, K.W.K. An Introduction to Aspect-Oriented Programming, COMP 610E 2002

Spring Software Development of E-Business Applications. The Hong Kong University
of Science and Technology, 2002.

[9] Ousterhout J. K. Scripting : Higher Level programming for the 21st Century,
Computer, Vol. 31, No. 3, pp. 23 – 30, 1998.

[10] Parsons, R. Components and the World of Chaos, Software, Vol. 20, No. 3, pp. 83 –
85, 2003.

[11] Radoševi!, D. Integration of Generative Programming and Scripting Languages,
PhD thesis, Faculty of Organization and Informatics, Varaždin, Croatia, 2005.

[12] Radoševi!, D., Kozina, M.; Kli"ek, B. Comparison between UML and Generator
Application Scripting Model, Proceedings of the 16th International Conference on

Information and Intelligent Systems (IIS), pp. 115 – 122, Faculty of Organization and
Informatics, Varaždin, Croatia

[13] Reenskaug, T. The Model-View-Controller (MVC): Its Past and Present, University
of Oslo, URL: http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf,
Retrieved May 15 2007

[14] Simão, R. P. S.; Belchior, A. D. Quality Characteristics for Software Components:
Hierarchy and Quality Guides, Lecture Notes in Computer Science, Volume 2693, pp.
184-206., Springer, 2003.

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

147

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[15] Stärk, R.; Schmid, J.; Börger, E. Java and the Java Virtual Machine: Definition,

Verification, Validation, Springer-Verlag, 2001.

[16] Villacis, J. E.; Govindaraju, M.; Stern, D.; Whitaker, A.; Breg, F.; Deuskar, P.;
Temko, B.; Gannon, D.; Bramley, R. CAT: A High Performance, Distributed
Component Architecture Toolkit for the Grid, Proceedings of the 8th IEEE

International Symposium on High Performance Distributed Computing, Redondo
Beach, USA, pp. 125 – 132, 1999.

JIOS, VOL. 32, NO. 2 (2008), PP. 137-147

