2
SOFTWARE QUALITY METRICS SYSTEM (SQMS)
MITIP 2008, 12-14 November, Prague

SOFTWARE QUALITY METRICS SYSTEM (SQMS)
Ninoslav SLAVEK, Krešimir NENADIĆ, Damir BLAŽEVIĆ
Computer Department

Faculty of Electrical Engineering
 Kneza Trpimira 2 b, 31000, Osijek
Croatia
E-mail: <ninoslav.slavek@etfos.hr>
Abstract:

This paper describes the concept of a Software Quality Metrics System (SQMS), developed for the organizations who wish to understand and resolve their software quality problems. The purpose of SQMS is to support the quality function in software production organizations (SPO). It uses the software process quality metrics and software product quality metrics and describes how quality of software can be measured, estimated, and improved.
Keywords:

Software product quality, software process quality, software metrics, ISO certification, Reliability measurement.
1. INTRODUCTION
As the complexity of software applications increases, software developers face a new set of quality requirement. Many companies are devoting a great deal of efforts to set up quality systems and raise the maturity of the software development process, based on the assumption that the best practices of software development have a positive impact on the quality, productivity and timeless of software. This paper describes how quality of software can be measured, estimated, and improved using the concept of a Software Quality Metrics System (SQMS) whose purpose is to support the quality function in software production organization (SPO). The six software quality factors and 32 quality sub-characteristics of the Software Product Evaluation Standard ISO 9126 [2] are used as the software product quality model, and as a basis to identify the key quality characteristics of software applications. The Capability Maturity Model Integration (CMMI) [1] is used as the software process quality model, and as a framework for process improvement. Typically, metrics may be relevant to a specific applications domain; different types of software applications have different quality profiles. Use of software quality metrics during software development was rarely found; therefore this study attempts to identify practical quality metrics for software applications. The relation between software process quality and the quality of a software product is based on the paradigm that the quality of a software product is determined by the quality of the software process. The current state of the art for software certification is the application of general quality standards such as ISO 9001. The problem is that it certifies the process of producing software and not the products which result. Product and process are closely linked and cannot be separated when quality is analyzed. Although the ISO certification is felt necessary, such certification cannot give a sufficient guarantee of the quality of the delivered product; reasons are: (i) quality of a software product is not guarantied by a certificate on its production process, (ii) it is more important the result of the process, i.e., the product, than the process itself, (iii) a coupled certification is necessary, both the process and product [2]. Several experiences report the impact in quality and productivity due to the process improvement effort, but there is no quantitative evidence that the good results were a consequence of process improvement. What is needed is quantitative data showing evidence of positive correlation between process maturity levels and project results. The software product quality needs to be a part of the development process. The characteristics of software product quality need to be located and checked in the intermediate software products during software process. If the process is weak, the end product will suffer. But an over-reliance on process is dangerous. The observations that can make on the artifacts of software and its development demonstrate a duality of between process and product [5], the duality is important element in keeping creative people engaged as the transition from programming to software engineering is finalized.
2. SOFTWARE PRODUCT QUALITY MODEL

A common approach to formulating a model for software product quality is to first identify a small set of high-level quality attributes and then, in a top-down fashion decompose it into sets of subordinate attributes. The Standard ISO 9126 and McCall’s model [4] are typical of this approach. In McCall’s model the approach has been to focus on the user view of the final product, and to attempt to identify key attributes from this viewpoint. ISO further simplified the model, which is general accepted, being state-of-the-art in software product quality specification. Software quality characteristics are gathered from practical situations, they are:
FUNCTIONALITY - a set of attributes that bear on the existence of a set of functions and their specified properties. The functions are those that satisfy stated or implied needs.
RELIABILITY - a set of attributes that bear on the capability of software to maintain its level of performance under stated conditions for a stated period of time.

USABILITY - A set of attributes that bear on the effort needed for use, and on the individual assessment of such use, by a stated or implied set of users.
EFFICIENCY - A set of attributes that bear on the relationship between the level of performance of the software and the amount of resources used, under stated conditions. MAINTAINABILITY - A set of attributes that bear on the effort needed to make specified modifications.
PORTABILITY - A set of attributes that bear on the ability of software to be transferred from one environment to another.
The characteristics are further broken down into lower quality sub – characteristics.
The standard provides a framework for organizations to define a quality model for a software product. It leaves to each organization of specifying its own model.
3. SOFTWARE PROCESS QUALITY MODEL
A few known and marketed software improvement approaches are the Capability Maturity Model (CMM), Capability Maturity Model Integration (CMMI) [1], and ISO 15504 (SPICE) [6]. The CMM contains the elements of effective processes for one or more disciplines. It describes an evolutionary improvement path from ad hoc, immature processes to disciplined, mature processes with improved quality and effectiveness. The CMMI is a CMM based concept used for process and performance improvement. It describes the characteristics of effective processes. It is structured into five maturity levels, the considered process areas (PAs), the specific goals (SG), and generic goals (GG), specific practices (SP) and generic practices (GP). The PAs is a group of practices or activities performed collectively to achieve a specific objective. Figure 1. shows the general relationships between the different components. This model defines the Maturity Level (ML) of the organization, taking into account its software process, as to guide an improvement process.

[image: image1]

Figure 1. The CMMI model components
There are five MLs and each level acts as a foundation for the following level and indicates the capability of the organization process. CMMI for development consists of 22 PAs with capability or MLs. iT should be adapted to each individual company. The PAs are devided into four categories namely: a) Process Management, b) Support, c) Project Management and d) Engineering. Process improvement needs software measurement. Figure 2. shows the dependencies between the execution process, its definition and the improvements. The circle follows the E4 – Goal oriented measurement process (Establish –Extract –Evaluate –Execute) starting with objectives (establish), through executing the process and measuring results (extract), evaluating results (evaluate) and deriving and implementing concrete improvements (execute). To make change sustainable, it is based on realistic improvement objectives. For example, a department goal could be to improve reliability. Design manager might break that down further to redesigning those components that are at edge of being maintainable. Appropriate indicators are needed to support the selection processes that define the way towards the needed quantitative targets related to the goal. Objectives related to individual processes must be unambiguous, agreed by managers, engineers, and suppliers among others. This is obvious for test and design groups.

[image: image2]
 Figure 2. Process improvement
The first are reinforced for finding defects thus focus on writing and executing test suites, design groups are targeted to delivering code that execute without defects. Defects must be corrected efficiently which allows for setting up a quantitative objective for that group, that is the faults it has to resolve. This may uncover one of conflict situations embedded in an improvement program. Setting a target of reducing defects triggers activities in design, such as improved coding rules, code inspections, and so on. Finding such defects up front means better input quality to integration test. A goal oriented measurement ensures that process improvement is embedded in a closed feedback loop.
4. DESIGN OF A SOFTWARE QUALITY METRICS SYSTEM (SQMS)

The purpose of SQMS is to support the quality function in SPOs, to achieve better quality for quality for customers and improve the ability to predict and detect quality at an early stage. SQMS consists of three primary entities, as shown on Figure 3.: 1) set of software product quality factors and characteristics, 2) set of high level software process quality attributes, and 3) set of quality metrics used to measure quality attributes, namely: product metrics, process metrics, and resource metrics.
In focus of SQMS are software projects that are software producing entities, and an organization and management built around these projects. A project is an entity within SPO which has a well-defined goal and has to exploit the resources provided by the SPO to develop a certain software product according to a time schedule.
CMMI concentrated on the design of a detailed process quality attribute hierarchy resulting in a process quality model.
Software Product Evaluation Standard ISO 9126 concentrated on the design of a detailed product quality attribute hierarchy resulting in a product quality model.

[image: image3]
Figure 3. SQMS shema
SQM establishes a system that enables to analyze the relations between a software process quality model and software product quality model, and the relations between process qualities attributes and product quality attributes (Figure 3., arrows 1,2,3). Organization establish, review, and refine processes (arrow 1), and all process changes influence the products developed by the processes. There is relation between process quality attributes and product quality attributes (arrow 3), analysis of a general data and process maturity profile, and the analysis of maturity profile and process and product specific data show the positive impact of process maturity levels on product quality attributes. This relation proves the paradigm of the software process and software product quality. Higher process maturity levels of attributes influences the related software product quality attributes resulting in a higher quality of this attributes. Thus, the goal of SQMS is to evaluate and verify the benefits gained by improving the process maturity level. In the front line of both, the process product quality model is the software product improvement, resulting in a high quality software product delivered on time and at less cost. The results of SQMS show evidence of positive correlation between process maturity levels and project results.
5. GENERAL CONCEPT OF SQMS
The software quality requirements for each system are unique influenced by system or application-dependent characteristics; therefore, each software system must be evaluated for its basic characteristics. For example, for safety-critical applications (for Nuclear Power Plants for example) reliability, correctness, and testability are of main importance. The next level of quality requirements involves proceeding from the quality characteristics to the sub-characteristics. Next, a decision maker and the user sets hurdle rates for selected quality characteristics. The hurdle rates are the values set up-front that must be achieved during the measurement of these characteristics. The quality evaluation processes steps are: 1. System characteristics definition - the basic characteristics for evaluating target system are defined. Next, related quality characteristics and sub characteristics are selected and defined. 2. Metrics’ selection - in order to measure each quality characteristic, metrics are selected and defined. 3. Hurdle rate definitions - the decision maker together with the user sets hurdle rates for defined quality characteristics. 4. Measurement and assessment the quality characteristics are measured. The quality requirement level for each quality characteristic is clarified in order to meet users’ needs. Each quality characteristic achieved value is compared with the hurdle rate values that must be achieved during the measurement of these characteristics.

5.1. Implementation of reliability measurement

Software reliability is one of the high level, external product attribute which appears in all quality models. The only type of product for which this attribute is relevant is executable code [3]. Reliability is defined as the probability of no occurrence of a software failure during a certain period on a specified condition [7]. A software failure is defined as an unacceptable departure from normal program operation caused by a software error latent in the software [8]. Refer to (1), the reliability function,
Ri (t) = P(Ti > t) = 1- Fi(t),

(1)
is the probability that the program will survive for a time t before failing next. P will denote probability, Fi(t) is the distribution function of random variable T. The techniques for the measurement and assessment of reliability are based on the software reliability growth models, characterized by a non-homogeneous Poisson process. Tools exist to automate these computational intense procedures. During the testing phase, software is subject to failures caused by errors latent in software. Test data such as the numbers of detected errors can then be observed. If it is assumed that the correction of errors does not introduce any new errors, the cumulative number of detected errors increases as they are corrected and the mean time interval between software errors becomes longer. This means that the reliability increases with the progress of software testing. Generally, software reliability assessment during the testing phase is closely related to the quality and quantity of executed test cases. In other words, software process attribute testing influences the software products attribute reliability. Every system has a true reliability that is generally unknown. An area of increasing concern is the use of software in safety-critical and real-time embedded systems, where it is common to require the achievement and assurance of very high software reliability. The applications that call for real-time embedded systems and safety-critical systems are particularly susceptible to failures. To be highly reliable software must have high testability and enormous amounts of successful testing (“high reliable” means 10-9 failures in a 10-hour period, although testing alone can never demonstrate this degree of precision [7]). For example, to assess a probability of failures that is less than 10-9 ((< 10 failures per test, where (represents the true probability of failure) with a confidence of 99%, approximately 4,6 billion successful executions are needed! [7]. In order to assess software reliability it is necessary to collect the testing time data (the calendar time, the testing effort, the CPU time, the number of executed test cases) that is used as the unit of an error-detection or failure-occurrence period for describing the time-dependent behavior of the cumulative number of errors detected or failure occurring during the testing time phase.
6. CONCLUSIONS

The new concepts have been developed for organizations who wish to understand and resolve their software problems. Using SQMS will allow managers to get quantitative feedback about the software development and management process within their company. No claim is made that the proposed model is the only one that might be employed. The model is empirical and therefore corrigible and open to refinement.

7. REFERENCES
[1] Chrisis, M. B.; Konrad, M.; Shrum, S.: "CMMI. Guidelines for Process Integration and Product Improvement", ed 2. Addison – Wesley, Reading, USA, 2006.
[2] Dromey. R.G.: “A Model for Software Product Quality”, IEEE Transactions on Software Engineering, Vol.21, No.2, 1995.

[3] Fenton, N. E.: "Software Metrics, A Rigorous Approach", International Thompson Computer Press, N.Y., 1995.
[4] McCall. J, Richards, P.: “Factors in Software Quality”, NTIS AD-A049-14, 1977.

[5] Ebert C.; Dumke, R.: "Software Measurement", ISBN 978-3-540-71648-8, Springer Berlin, Heidelberg, New York, 2007.

[6] ISO 15504 SPICE, Assessment Instrument Standard, Assessment Instrument Product Description, ISO/IECT/JTC1/SC7/WG10, 1994.
[7] Shigeru, Y.: “Software Quality/Reliability Measurement and Assessment: Software Reliability Growth Models and Data Analysis”, Journal of Information Processing, Vol.14, No.3. 1991.

Process Area 1

Process Area 2

Process Area 3

Specific goals

Generic goals

Specific practices

Generic practices

Product quality model

Process quality model

Process quality

attributes

Product quality

attributes

					 																																																									 1	

Process maturity	 	

				 																																															 Metrics 2

	 																					 Quality characteristics			 		 																				PAs

		 																							 and subcharacteristics					 																																											 category					

 3

				 																																											 ORGANIZATION

			

Execute process

Measure

process

Control

process

Define

process

Improve

process

Agree on

objectives

MITIP 2003

