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Abstract. In the first part of these lecture notes we introduce the phenomenological equations for
describing the heat and charge transport in thermoelectric samples. We discuss the solution obtained
for various boundary conditions that are appropriate for the homogeneous and inhomogeneous
thermoelectrics. In the second part we develop the formalism for a linear-response many-body
description of the transport properties of correlated electrons. By properly determining the local
heat-current operator we show that the Jonson-Mahan theorem applies to the Hamiltonians that
are commonly used for the intermetallic compounds with Cerium, Europium and Ytterbium ions,
so the various thermal-transport coefficient integrands are related by powers of frequency. We
illustrate how to use this formalism by calculating the thermoelectric properties of the periodic
Anderson model and, then, show that these results explain the experimental data on heavy fermions
and valence fluctuators. Finally, we calculate the thermoelectric properties of the Falicov-Kimball
model and use the results to explain the anomalous features of the intermetallic compounds in
which one observes the valence-change transition.
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INTRODUCTION

We are interested in the processes that occur in a thermoelectric sample connected to two
reservoirs on different temperatures, chemical potentials, and voltage. The temperature
difference, ∆T , and the difference in the voltage and chemical potentials, ∆V and ∆µ ,
give rise to the charge and energy transport through the sample that would bring, eventu-
ally, both reservoirs into equilibrium. For a given thermoelectric material and the bound-
ary condition defined by ∆T , ∆µ , and ∆V we ask what is the distribution of temperature,
electrical and chemical potential in the sample and how are the current densities related
to the gradients ∇T (x), ∇φ(x) and ∇µ(x), where φ(x) and µ(x) are the electrical and
chemical potential, respectively. These questions can be answered by solving the trans-
port equations, together with the continuity equations and the Maxwell equation. The
transport equations relate the currents to the driving forces, which are assumed to be
given by a linear combinations of the gradients ∇T (x), ∇φ(x) and ∇µ(x). The transport
coefficients are specified by the thermoelectric properties of the sample and can either
be obtained from the measurements or calculated from a microscopic model. The choice
of the currents and the forces is not unique, i.e., the transport equations can be written in
a number of equivalent ways. Here, we consider only the pairs that lead to the symmetric
transport coefficients. In what follows, we derive the compleat set of equations for the
thermoelectric problem and discuss the solution. We neglect any changes in the thermo-
dynamic state of the reservoirs and assume that each elementary (macroscopic) volume
of the sample can be described by local thermodynamic functions. In our case, the lo-
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cal quantities describe a system of interacting particles in the presence of an external
potential.

The currents generated by the driving forces give rise to irreversible processes that
increase the entropy of the thermoelectric sample. The rate of change of the entropy is
obtained from the integral[1, 2]

S =
∫

d3x s(u,n), (1)

where s(x) is the local entropy density, n(x) particle density, u(x) the energy density,
and the integration is over the sample. Using the first law of thermodynamics,

ds =
∂ s
∂u

du+
∂ s
∂n

dn, (2)

where ∂ s/∂u = 1/T and ∂ s/∂n =−µ/T , we can write the rate of change of entropy as

dS
dt

=
∫

d3x
{

1
T

du
dt
− µ

T
dn
dt

}
. (3)

The conservation of charge and energy provide the continuity equations that relate the
time-derivatives of the charge and energy densities to the divergencies of the correspond-
ing current vectors,

dn
dt

=−1
e

∇ ·J (4)

and
du
dt

=−∇ ·Ju, (5)

where J(x) and Ju(x) are the charge current density and the energy current density,
respectively. The continuity equation can also be written in terms of the internal energy
current density, JE = Ju−φJ,

du
dt

+∇ ·JE = E ·J, (6)

where E = −∇φ is the external field. In a stationary state, where du/dt = 0, the total
energy current is conserved, ∇ · Ju = 0, while ∇ · JE is equal to the work E ·J which is
done in the system by the external field per unit volume and time.

Using the continuity equations and substituting ∇ · JE = T ∇(JE/T )− T JE∇(1/T )
and (µ/T )∇ ·J = ∇(µJ/T )−J∇(µ/T ) we rewrite Eq.(3) in the form

dS
dt

=
∫

d3x
1
T

{
J · (E− T

e
∇

µ

T
)+JE ·T ∇

1
T

}
−

∫
d3x∇ · JE −µJ/e

T
(7)

that allows a simple interpretation[1, 2]. The second term can be trqansformed into a
surface integral which gives the entropy change arising from an entropy current flowing
across the boundary of the sample. Inroducing the heat current density JQ = JE −µJ/e
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and the entropy current density JS = JQ/T , the rate of change of the entropy due to these
boundary currents can be written as,

−
∫

d3x∇ ·
JQ

T
=−

∫
sur f ace

dA ·JS. (8)

The first term in Eq. (7) gives the rate of change of the local entropy density at each
point of the sample, as described by the expression,

T
dsV

dt
= J · (E− T

e
∇

µ

T
)+JE ·T ∇

1
T

. (9)

In a stationary state, the forces and currents are time-independent and all the entropy
produced locally is transported out of the sample by the entropy current.

The charge and energy conservation allow us to express the rate of change of the local
entropy density as a scalar product

T
dsV

dt
= J ·xL

φ +JE ·xL
E , (10)

where J and JE are the currents corresponding to the generalized forces,

xL
φ = −∇φ − T

e
∇

µ

T
=−∇(φ +

µ

e
)− µT

e
∇

1
T

,

xL
T = T ∇

1
T

. (11)

Following Onsager, we introduce the generalized current vector

Ĵ = (Jx,Jy,Jz,Jx
E ,Jy

E ,Jz
E) = (Ĵ1, . . . , Ĵ6), (12)

and the generalized force vector

x̂ = (xφ
x ,xφ

y ,xφ
z ,xT

x ,xT
y ,xT

z ) = (x̂1, . . . , x̂6), (13)

such that
dsV

dt
=

Ĵ · x̂
T

. (14)

Finally, assuming that the system is close to an overall equilibrium, and that the gener-
alized forces are small, we approximate the current vectors by a linearized form,

Ĵa = ∑
b

Labx̂b. (15)

The general arguments of irreversible statistical physics show that one can define the
currents and the forces in a number of ways but as long as the scalar product in Eq. (14)
is conserved the transport coefficients are symmetric and satisfy the Onsager relations
[1, 2, 3].

Lab = Lba. (16)
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Note, the transport equations and the continuity equation are not sufficient for a unique
determination of the current vectors and the scalar fields T (x), φ(x) and µ(x) for a
given set of boundary conditions. To obtain the complete solution we have to relate the
electrical potential to the charge and current densities by the Maxwell equations. For a
non-magnetic sample without the displacement currents these are

∇ ·E = 4πρT ∇×E =−1
c

∂B
∂ t

, (17)

∇ ·B = 0 ∇×B =
4π

c
JT , (18)

where ρT = ρ + ρext and JT = J + Jext are the total charge and current densities, ρext
and Jext are the external charged and current densities, and ρ = e(n− n0), where n0 is
the equilibrium number density of electrons in the sample.

We now have a complete set of equations and can find the solution of the thermoelec-
tric problem by the following procedure. For an arbitrary choice of T (x), φ(x) and µ(x)
find the local values of n(x) from the partition function and obtain the current densities
J and Ju from the transport equations. Use Maxwell equations to obtain a relationship
between E(x), B(x), n(x) and J(x), and solve these equations to determine the electrical
field for a given value of T (x) and µ(x). Alternatively, if no current is flowing, deter-
mine the electrical potential for a given charge distribution which depends on T (x) and
µ(x) from the Poisson equation. Finally, use the continuity equations to find the distri-
bution of temperatures and the chemical potential in the sample. The particular solution
obtained in such a way depends on the choice of transport coefficients (they describe the
sample) and on the boundary conditions (they describes the reservoirs).

PHENOMENOLOGICAL EQUATIONS

The irreversible thermodynamics[1, 3] deals with the systems subject to a thermal gra-
dient, and the inhomogeneities in the electrical and chemical potential. The inhomo-
geneities of µ(x) are due to it deviation from the uniform chemical potential µ0 that we
use to control the total number of particles in the sample. The electro-chemical potential
which drives the currents in the absence of the temperature gradient is φ̄ = φ + µ/e; the
electro-chemical field is Ē =−∇(φ + µ/e).

The pair (J,JE) and (xL
φ
,xL

T ) which we introduced before is convenient because the
coefficients Lab can be calculated for a given Hamiltonian by the linear response theory.
The phenomenological transport equations read,

J(x) = L11xL
φ +L12xL

T ,

(19)
JE(x) = L21xL

φ +L22xL
T ,

and the corresponding continuity equation is

∇ ·JE = E ·J, (20)
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which shows that the Joule heat is the “source” of the energy current. The transport coef-
ficients in these equations have been used by Lutinger [2] to relate the phenomenological
description of heat and charge transport to microscopic calculations.

Mahan[4] redefines the coefficients and the forces as L̄i j = T Li j and xL = xM/T , such
that

xM
c = −∇φ

T
− 1

e
∇

µ

T
,

xM
T = ∇

1
T

.

Since we have L̄i jxM = Li jxL, the scalar product J̄ · x̄ is obviously conserved and the
transport equations read

J(x) = −L̄11[
∇φ

T
+

1
e

∇
µ

T
]+ L̄12∇

1
T

,

(21)

JE(x) = −L̄21[
∇φ

T
+

1
e

∇
µ

T
]+ L̄22∇

1
T

.

The coefficients L̄i j are also convenient for relating the phenomenological theory to
microscopic calculations[4].

In addition to the charge current density J and the energy current density JE one often
considers other pairs of currents, like the number current density JN = J/e and the heat
current density JQ = JE − (µ/e)J = Ju− φ̄ J or the entropy current density JS = JQ/T
or the total energy current density Ju. In a non-interacting system, JQ = Ju− φ̄ J is field-
free, i.e., JQ = JK describes the kinetic energy current. ’This agrees with the intuitive
notion of the heat (current) as a kinetic energy current’[1].

Most applications use transport equations with the charge current J and the heat
current JQ = T JS. The condition

eJN(x)xG
c +T Js(x)xG

Q =−JN(x)∇µ̄(x)−JS(x)∇T (x),

gives the generalized forces

xG
c = −∇µ̄

e
=−∇φ̄ ,

xG
Q = − 1

T
∇T, (22)

where µ̄ = eφ̄ . The transport equations are

J(x) = −G11∇φ̄(x)−G12
∇T (x)

T
,

(23)

JQ(x) = −G21∇φ̄(x)−G22
∇T (x)

T
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and the coefficients Gi j satisfy Onsager relation. Equating the currents in Eqs.(23) and
(19) we find G11 = L11 and G12 = L12− (µ/e)L11. Equating JE(x) = JQ(x) for J = 0,
and using ∇φ̄ = (G12/G11)∇T/T ), gives G22 = L22−2(µ/e)L12− (µ/e)2L11.

The continuity equation for the heat current density q(x, t) is

dq
dt

+∇ ·JQ = Ē ·J. (24)

Callen[1] redefines the coefficients in (23) as Ni j = T Gi j and the forces as

xN
c = −∇φ̄

T
,

xN
Q = − 1

T 2 ∇T = ∇
1
T

. (25)

The transport equations now read

J(x) = −N11

T
∇φ̄ − N12

T 2 ∇T,

(26)

JQ(x) = −N21

T
∇φ̄ − N22

T 2 ∇T.

Another pair[4] that is often used for a system of particles moving in an external field
−∇φ(x) is the charge current J(x) and the total energy current Ju(x) = JQ(x)+ φ̄J(x).
The invariance of the scalar product

JxP
c +JuxP

u =−J
∇φ̄

T
+JQ∇

1
T

gives the generalized forces

xP
c = −∇

φ̄

T

xP
u = ∇

1
T

.

The transport equations are

J(x) = −P11∇
φ̄

T
+P12∇

1
T

,

(27)

Ju(x) = −P21∇
φ̄

T
−P22∇

1
T

.

The coefficients Pi j satisfy Onsager’s relations and are related to Li j or L̄i j in an obvious
way.
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PHYSICAL INTERPRETATION

Transport equations describe the properties of a sample connected to the reservoirs at
different temperatures and electro-chemical potentials, such that the charge and heat
currents flow from one reservoir to the other. The currents flow in response to the
external perturbation, so as to bring the system in the equilibrium. Since the driving
fields are given by the gradients of potentials, the particles move towards the potential
minimum.

Physical interpretation of the transport equations is particularly simple if we define a
new set of transport coefficients in the following way: σ = G11, σα = G12/T , β = G21,
and κ̄ = G22/T . The transport equations then read[5],

J(x) = −σ∇φ̄ −σα∇T,

JQ(x) = −β∇φ̄ − κ̄∇T, (28)

where σ can be interpreted as the electrical conductivity and α as the Seebeck coef-
ficient. However, ∇φ̄ and ∇T are not the correct generalized forces for the currents
J(x) and JQ(x) and the symmetry between transport coefficients is lost, i.e., β 6= σα

(β = σαT ). The first part of the heat current in Eq.(28) arises because the electrons ex-
perience a change in the velocity when there are local inhomogeneities in the electrical
potential. In a stationary flow, this additional kinetic energy is converted into reversible
thermoelectric heat. The second term of the heat current is due to the diffusion of par-
ticles from the high to low temperatures. The overall entropy production can be written
as[5],

dS
dt

=
∫ [

κ(∇T )2

T 2 +
J2

σT

]
dV ≥ 0, (29)

where the thermoelectric term has been eliminated by partial integration. The thermo-
electric effects are reversible and do not change the total entropy, even though they
produce the local heat and transfer the entropy from one part of the system to another.
The overall entropy production is manifestly positive-definite.

Transport Eqs.(28) together with Maxwell equation (18) and the continuity equations
(4) and (5) determine completely the electrodynamics of a conductor in which the cur-
rents flow due to the electrical and thermal fields. The solution provides the distribution
of electrical fields, temperature, current and heat current in the sample for any value
of kinetic coefficients σ , α , Π and κ , and for any value of the external potential drop
∆V and temperature difference ∆T . These coefficients can either be calculated from the
Hamiltonian or taken as material-specific constants. In microscopic calculations we ex-
presse the coefficients in Eqs.(28) through the Luttinger coefficients which are directly
related to the correlation functions of a given microscopic model. We have σ = L11 for
the conductivity,

κ =
1
T

(
L22−

L2
12

L11

)
for the thermal conductivity, and

α =
1

eT

(
L12/e
L11/e2 −µ

)
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for the Seebeck coefficient.
The analysis of thermoelectric effects simplifies if we write the charge and heat

currents as[5],
J(x) = σ(Ē−α∇T ) (30)

JQ(x) = ΠJ(x)−κ∇T, (31)

where Π = αT is the Peltier coefficient and κ = αβ − κ̄ is the thermal conductivity.

Thermoelectric heat. The total energy generated per unit volume and unit time is
u̇ =−∇ ·Ju. Using JQ = Ju− φ̄J, together with Eqs.(31) and (30), gives

u̇ =
J2

σ
+div(κ∇T )−T J∇α. (32)

The first term gives the rate at wich the heat is produced by the Joule heating, the second
term gives the change due to the heat flowing down the temperature gradient, and the
third part gives the change due to the thermoelectric heating u̇T E = jT ∇α . In a stationary
flow, u̇ = 0, the above equation determines the temperature profile in the sample.

Ohm’s law. In the absence of the temperature gradient, the current flowing in a
homogeneous sample, such that ∇α = 0, obeys the Ohm’s law J =−σ∇φ . The current
flowwing in an external field gives rise to the energy dissipation which is given by
the Joule heat q̇ = J2/σ . Unless taken away by an energy current, this heating would
increase the local temperature.

Thermal conductivity in an open circuit. I the absence of the charge current, Eq.(31)
gives

JQ(x) =−κ∇T (x),

which is the Fourier’s law for the heat flow due to temperature gradient. In a homoge-
neous sample, this flow generates the energy dissipation div(κ∇T ). For a linear tem-
perature profile in a uniform sample, such that ∇2T = 0, and q̇ = div(κ∇T ) = 0. linear
temperature profile leads to the heat conduction which does not change the entropy of
the electron gas.

Thomson heat. In a uniform conductor the coefficient α depends on x only through
temperature, so that ∇α = (dα/dT )∇T . Thus, the current flowing through a uniform
conductor in the presence of a temperature gradient ∇T generates the Thomson heat,

q̇T =−Jρ∇T. (33)

where the Thomson coefficient ρ =−T dα/dT . Contrary to the irreversible Joule heat,
the Thomson heat is linear in J and can be either positive or negative.
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Peltier heat. The Peltier effect is produced when the current crosses an interface
between two different materials, say 1 and 2. In the absence of a temperature gradient
Eq.(32) shows that the heat dissipated on the interface is

q̇Π =−T J ·∇α, (34)

where we neglected J2 with respect to J. Integrating over an infinitesimally thin volume
element that contains the interface, and using Gauss theorem, gives the heat density
generated by the current passing through the interface,

JΠ = JΠ12 (35)

where
Π12 =−T (α2−α1) (36)

is the Peltier coefficient, and α(2) and α(1) are the Seebeck coefficients of the material
to the left and to the right of the interface. Since the sign of J is arbitrary, the current
flowing through a thermoelectric element at a constant temperature will dissipate or
absorb the heat as it crosses the interface. Eq. (36) follows from the Onsager’s relation.
The Peltier and Thomson coefficients are related,

ρ2−ρ1

T
=−d(Π12/T )

dT
. (37)

The Peltier heat is due to the fact that the entropy of n electrons which cross the
interface is not the same on the two sides. Even for non-interacting electrons, the
structure of the energy levels is different in two metals, so that the partition functions
and the entropies of n electrons crossing from one metal to the other, in unit time, are
different on two sides. Thus, the electrons or holes absorb or emit some heat as they
cross the interface and get thermally distributed over available energy levels.

What happens if the heat current flowing through the interface and ∇T 6= 0? Because
the temperature, the electrochemical potential, the normal components of the heat cur-
rent and electrical current, are all continuous at the interface, Eq.(32) gives in a stationary
state,

JxT (α2−α1)−κ
dT
dx

∣∣∣∣2

1
= 0. (38)

If we neglect the Thompson and Joule heat, the heat current entering the interface is
κ

dT
dx

∣∣
1 and the heat current leaving the interface is κ

dT
dx

∣∣
2. The heat current densities at

the two sides of the interface differ by κ(dT/dx|2− dT/dx|1) = jxΠ12, i.e., they differ
by the Peltier heat given away or taken at the interface in unit time.

Thermoelectric power. In the stationary state, the temperature distribution in the
sample is obtained from the condition J2/σ + div(κ∇T )− T J∇α = 0, the electrical
field E(x) follows from the transport equation, and the total potential drop across the
sample is given by the integral

∆V =
∫ a

0
dx E(x) =

∫ a

0
dx [

J
σ

+α∇T (x)]. (39)
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In an open thermoelectric circuit, as the one used for measuring the Seebeck coefficient,
we have J = 0 and obtain the electromotive force between the end-points a and b as,

ET =
∫ b

a
dxα(T )

dT
dx

=
∫ T (c)

T (a)
dT α2(T ) −

∫ T (c)

T (b)
dT α1(T ). (40)

α1(T ) and α2(T ) are the Seebeck coefficients of metals 1 and 2, and T (a), T (b), and
T (c) are temperatures at the points a, b, and c, respectively. If T (a) = T (b) = T and
∆T = T (c)−T (a) is small, then

ET =
∫ T+∆T

T
dT (α2−α1)' ∆T (α2(T )−α1(T )). (41)

The Seebeck coefficient is defined by the ratio ∆V/∆T , where ∆V = ET . For constant
α(x), we have simply ∆V = α∆T . In a thermoelectric power generator one has to
consider the case J 6= 0.

The Seebeck voltage appears because the charged particles diffuse from the hot to
the cold end and the imbalance of charge gives rise to a potential gradient across the
sample. In a quasiparticle picture, the electrical energy required to transfer n electrons
from the hot end to the cold end against the voltage ∆V is balanced by the change in
thermal energy (that is, the heat). Neglecting the shift of the quantum states due to the
external potential, we approximate ne∆V ' S∆T , where n is the particle density and S the
entropy density of the charge carriers. This gives the approximate relationship between
the Seebeck coefficient and the entropy as

α(T ) =
S(T )

en
. (42)

SOLUTION OF PHENOMENOLGICAL TRANSPORT
EQUATIONS

The heat and charge transport in a given thermoelectric device are described by the
phenomenological transport equations

J = σE−σα∇T, (43)

JQ = αT J−κ∇T, (44)

that have to be solved together with the continuity equations for the charge and energy
densities,

dn
dt

=−∇ ·J (45)

du
dt

=−∇ ·Ju, (46)

and Maxwell equations for the electrical and magnetic fields. The particular solution of
these equations describes a thermoelectric device that can operate as a refrigerator or a
power generator, depending on the boundary (or the initial) condition.
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Simple thermoelectric device. Consider, as an example, a stationary state of a
system shown in the figure. We want the distribution of temperatures, electrical field, and
the currents in the sample of length a and unit cross-section A, which is connected to the
heat and charge reservoirs at points x = 0 and x = a. The first reservoir is at temperature
T0, and the second one at TA. The sample is characterized by transport coefficients σ , α ,
and κ . The boundary between the sample and the reservoirs is considered to be ’ideal’,
i.e., without any effect on thermal transport. Magnetic effects are neglected.

For a given current J, temperature TA and T0, we find T (x), E(x), and the heat current
JQ(x) in the sample. If we specify the cooling rate at the source (the heat leaving the
source in unit time defines JQ in Eq.(44), we can determine T0 for each J and TA.

T0 TAA

0 a
q, j

-

Temperature distribution. In a stationary state, the energy produced in unit time in
volume d3x around point x is transported out of that volume by the energy current.
The temperature profile of the stationary state is defined by the continuity equation
−∇Ju =−∇JQ +J ·E = 0. This leads to the Domenicali equation,

div(κ∇T )+
J2

σ
−T J∇α = 0, (47)

which has to be solved together with the boundary condition T (0) = T0 and T (a) = TA.
In a uniform system α(x) depends on x only through temperature, such that ∇α =

(dα/dT )∇T , which simplifies Eq.(47) to

−div(κ∇T ) =
J2

σ
−J

dα

dT
T ∇T. (48)

The last term is the Thompson heat generated in unit time and dα/dT is the Thompson
coefficient. The integration of Eq.(48) gives, for constant σ ,

−κ∇T (x) =
J2

σ
x+F− J

2
dα

dT
T 2(x) (49)

and, for constant κ ,

−κT (x) =
J2

σ

x2

2
+F x+G− J

2
dα

dT

∫ x

0
T 2(x), (50)

where the integration constants in Eq.(48) are to be determined from the boundary
condition for T (x) at x = 0 and x = la. In what follows, we consider two limiting cases,
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which can be solved analytically. First, we keep the Joule heat and neglect the Thompson
heat. Second, we neglect the Joule heat and keep the Thompson heat. In the general case,
the T (x) can be obtained by iteration, and the lowest order iterative solution is quite
simple.

If we neglect the Thompson heat, the boundary values T (0) = T0 and T (a) = TA give

G =−κT0

and

F =−K(TA−T0)−R
J2

2
,

where K = κ/la and R = la/σ are the thermal conductance and electrical resistance,
respectively. (The sample is of a unit crossection.) From Eqs.(44) and (49), we can find
the cooling rate at the source for given J and ∆T = T0−Ta.

Alternatively, rather that using the boundary value for T (x), we can use the initial
condition for the thermal current, JQ(x)|x=0 = q0, and find F from Eqs.(44) and (49) at
x = 0,

F =− κ∇T |x=0 = (q0−αT0J).

Together with T (x)|x=a = Ta and Eq.(50) this provides temperature T0 at the source.
The slope of T (x), for 0≤ x ≤ la, is given by the expression,

κ∇T (x) =−R J2 x
la

+
R
2

J2 +K(TA−T0), (51)

which shows that ∇T (x) is enhanced with respect to (TA−T0)/la for 0≤ x≤ la/2 and is
reduced for la/2 ≤ x ≤ la. Since temperature is constant at the source and the sink, and
T (x) has a finite slope at T0 and TA, temperature is a continuous function with a kink at
T0 and TA.

Thermal current. Substituting ∇T (x) given by Eq.(51) into Eq.(44) gives at the
source (x = 0, T (0) = T0),

JQ|x=0 = αT0J−K(TA−T0)−
RJ2

2
. (52)

The first term is the Peltier heat generated by the electrical current at point x = 0 where
the sample is attached to the reservoir, the second term is the heat flux diffusing from the
source to the sink due to the temperature difference (TA−T0), and the last term is 1/2 of
the Joule heat generated by constant current J in the sample of length a. Interestingly,
one half of Joule heat generated in the sample is returned to the source. For TA > T0, the
heat is taken out of the source, provided the Peltier heat overcomes the diffusion heat
and 1/2 of the Joule heat.

The thermal current arriving at the sink, is

JQ|x=a = αTAJ−K(TA−T0)+
RJ2

2
, (53)
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which shows that one half of Joule heat generated in the sample is taken away by the
outgoing heat current and dumped into sink.

For given temperatures of the source and the sink, the heat current JQ(T0), defined by
(52), is pumped out of the source in order to maintains the stationary state. The parasitic
heat which enters the source, say, because of poor thermal insulation, is removed by the
thermoelectric device which operates between T0 and TA at current J. The accompanying
thermal field T (x) is defined by Eq.(50). If the current is switched on when the source
and sink temperature are equal, the heat current JQ = αJTA−RJ2/2 starts flowing out of
the source. As long as the parasitic heat which is entering the source is less than JQ(T0)
(the heat current pumped out of the source in a stationary state), heat will be removed
from the source and its temperature will drop. The stationary state is established at T0,
when the heat removed from the source matches the parasitic heat.

Figure of merit. For a given TA and T0, the heat current pumped out of the source
in a stationary state depends on J, as shown by Eq.(52). The maximum cooling power at
the source is obtained for dJQ/dJ = 0, which defines the optimal current,

Jopt =
αT0

R
,

and gives,

Jmax
Q =

α2T 2
0

2R
−K(TA−T0),

But running the device with Jopt and removing the heat at the rate Jmax
Q is not the most

efficient mode of operation.
If the source is thermally isolated, the device will keep removing the heat and reducing

T0, as long as JQ(T0)≥ 0. For given temperature of the sink TA, the lowest T0 (maximum
of ∆T = TA − T0) is reached when the thermoelectric reaches the state JQ = 0, which
gives,

(TA−T0) =
αT0J

K
− RJ2

2K
.

The maximum ∆T which one can achieve using a given thermoelectric material is
obtained for J = jopt , such that

(TA−T0)Max =
1
2

ZT 2
0 ,

where, Z = σα2/2κ is the figure-of-merit of a given thermoelectric.

Coefficient of performance. When the device operates as a fridge, the coefficient
of performance is defined by the ratio of the heat taken from the source and the power
supplied by the battery. This power has to maintain the heat flow from T0 to TA ≤ T0
and compensate the Joule losses and is given by the difference between the outgoing
(source) and the incoming (sink) heat currents, W = [JQ]x=0− [JQ]x=a. Using Eqs. (52)
and (53) we find,

W = α(TA−T0)J+RJ2, (54)
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so that the coefficient of performance is

Φ =
qc

W
=

αT0J−K(TA−T0)−RJ2/2
α(TA−T0)J+RJ2 . (55)

The optimal performance follows from dΦ/dJ = 0, which gives the optimal current

JΦ =
α(TA−T0)

R[(1+ZTM)1/2−1
, (56)

where TM = (T1 +T2)/2. The best efficiency is,

Φmax =
T0

TA−T0

(1+ZTM)1/2−TA/T0

1+ZTM)1/2 +1
. (57)

Φ approaches the Carnot efficiency for Z → ∞.

Efficiency coefficient. When the device is operating as a generator, the efficiency
coefficient is defined by the ratio of the useful power of the external load, W = J2RLoad ,
and the heat taken from the source. (We now have, TA < T0.) The efficiency η is defined
as,

η =
W
JQ

=
J2RLoad

αT0J−K(T0−TA)−RJ2/2
(58)

The current is driven by the Seebeck voltage and given by J = α(T0−TA)/RLoad , where
we neglected the resistance of the thermoelectric with respect to RLoad . As shown by
Ioffe[6], maximizing with respect to RLoad/R gives,

η =
(T0−TA)

T0

√
1+ZTM −1√

1+ZTM +TA/T0
(59)
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Hetero-structures

Suppose we consider the device consisting of a thermoelectric B of length b con-
nected to the thermoelectric A of length a. The transport coefficients are σA, αA, κA, and
σB, αB, κB, and the cross-sections are Aa and Ab. The thermoelectric A extends from
x = 0 to x = a, where it connects to the sink at temperature TA, and the thermoelectrics B
extends from x = 0 to x =−b, where it connects to the source at TB. The contact between
the two thermoelectrics, at x = 0, does not impede the heat and charge transport, and
temperature at the contact is T0.

TB TAB A

-b a0

T0

- -

We consider the stationary state with constant electrical current, with the sink at
temperature TA, and the source at TB. The heat JB

Q is taken out of the source by the
thermoelectric B and the heat JA

Q dumped in the sink by A. The previous analysis shows
that the cooling power of B depends on TB and T0, and of A on TA and T0. Assuming a
stationary state and constant current we can find T0, performing the analysis of the heat
and charge transport in A and B in the same way as before. The boundary conditions
are shown in the figure above.

The Domenicali equations for A and B are the same as before, and all the results are
obtained by using Eqs. (47) to (51) with σA, αA, κA for A, and by σB, κA, κB for B, and
by taking care of temperatures at the source, at the sink and at the boundary between A
and B. For a general point x∈ (0,a) in A and x∈ (−b,0) in B the solution can be written
as,

−κA,B∇T (x) =
J2

σA,B
x+FA,B, (60)

and

−κA,BT (x) =
J2

σA,B

x2

2
+FA,B x+GA,B, (61)

where the integration constants follow form the boundary condition for the thermal field.
From Eq.(61) and T (−b) = TB, T (0) = T0, which holds in B, we find GB =−κBT0, and

FB =−KB(T0−TB)+RB J2/2,

while from T (0) = T0, and T (a) = TA, which holds in A, we find GA =−κAT0, and

FA =−KA(TA−T0)−RA J2/2,
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where KA,B and RA,B are the thermal conductance and the electrical resistance in A and
B, respectively. Note, the opposite sign of the Joule term in FA and FB. However, the
problem is not solved unless we specify T0.

Temperature at the boundary follows from the condition that the heat current us
continuous from A to B. Using Eq.(60) for ∇T (x) we calculate JQ(x) = αT J−κ∇T (x),
at x = 0 in B and A, which gives,

JB
Q
∣∣
x=0 = αBT0J+FB, (62)

and
JA

Q

∣∣∣
x=0

= αAT0J+FA, (63)

where FA and FB are the integration constants of Deminicalli equations in segments A
and B, respectively. Matching the heat currents gives an equation for T0,

αBT0J−KB(T0−TB)+
RBJ2

2
= αAT0J−KA(TA−T0)−

RAJ2

2
. (64)

which takes into account that 1/2 of the Joule heat generated in B is transferred at the
boundary to A, and that 1/2 of the Joule heat generated in A is returned to B. In the
absence of electrical current, we have KB(T0−TB) = KA(TA−T0), which gives

T0 =
KATA +KBTB

KA +KB
,

so that ∇T (x) has a break at T0 unless KA = KB. If J = 0, the heat flows in the stationary
state without any losses. But if J 6= 0, the temperature profile is parabolic in each seg-
ment and the difference in the heat current entering at B and leaving at A is R2

A/2+R2
B/2.

Similarly, using the condition that the heat current leaving the source is equal to the
heat current in the thermoelectric B at point x =−b, JB

Q = αBTBJ− κB∇T |x=−b, we get
an equation for TB,

JB
Q0 = αBTBJ−KB(T0−TB)− J2RB

2
, (65)

if we specify the cooling rate at the source. Eqs.(64) and (65) provide a set of linear
equations for TB and T0.

We can now calculate the maximum temperature difference, ∆T , the coefficient of
performance and the efficiency coefficient, and find the currents which maximize these
coefficients. We can then express these maximal values in terms of effective figures of
merit Z∗

Φ
and Z∗η , which are defined by expressions (57) and (59). If Z∗

Φ
and Z∗η are

not too different, they can be used to specify the heterostructure in terms of material
constants, and initial conditions.

N segments. The generalization to N segments, shown in the figure below, is
straightforward. In the i-th segment of length li, the solution of the Domenicali equation
for ∇T (x) and T (x) is given by Eqs.(61) and (60), where, say, TB, αB, σB, κB and T0 are
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replaced by Ti−1, αi−1, σi−1, κi−1 and Ti, and x is measured with respect to the initial
point of the segment xi−1. That is,

−κi∇T (x) =
J2

σi
x+Fi for xi−1 ≤ x ≤ i (66)

and

−κiT (x) =
J2

σi

x2

2
+Fi x+Gi for xi−1 ≤ x ≤ i , (67)

and the corresponding integration constants are Gi =−Ti and

Fi =−Ki(Ti−Ti−1)+Ri J2/2,

The solution has to satisfy the condition that temperature, electrochemical potential, and
normal components of heat current and electrical current, are continuous at every point,
which gives,

lim
δ→0

[αi−1Ti−1J−κi−1∇Ti−1|xi−δ
= lim

δ→0
[αiTiJ−κi∇Ti]xi+δ

(68)

T0 TN1

0

T1

2

a

T2 TN−1

2a (N−1)a

· · · N

Na- -

The boundary conditions at x = 0, . . ., x = N(a−
1), provide N equations for temperature field defined at points t = {T0, . . . ,TN−1}.
Assuming we know TN and J0

Q, Eq.(68) give the set of equations,

−α1T0J+K1(T1−T0) = −(J0
Q +

J2

2
R2

1)

α1T1J−K1(T1−T0)−α2T1J+K2(T2−T1) = −J2

2
(R2

1 +R2
2)

α2T2J−K2(T2−T1)−α3T2J+K3(T3−T2) = −J2

2
(R2

2 +R2
3)

· · · · · · · · ·

αi−1Ti−1J−Ki−1(Ti−1−Ti−2)−αiTi−1J+Ki(Ti−Ti−1) = −J2

2
(R2

i−1 +R2
i )

· · · · · · · · ·

αN−1TN−1J−KN(TN−1−TN−2)−αNTN−1J+KN(TN −TN−1) = −J2

2
(R2

N−1 +R2
N)

which is an array with elements on the main diagonal and two principal sub-diagonals,

−(α1J−K1)T0 +K1T1 = −(J0
Q +

J2

2
R2

1)
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K1T0 +[(α1−α2)J− (K1 +K2)]T1 +K2T2 = −J2

2
(R2

1 +R2
2)

K2T1 +[(α2−α3)J− (K2 +K3)]T2 +K3T3 = −J2

2
(R2

2 +R2
3)

· · · · · · · · · (69)

Ki−1Ti−2 +[(αi−1−αi)J− (Ki−1 +Ki)]Ti−1 +KiTi = −J2

2
(R2

i−1 +R2
i )

· · · · · · · · ·

KN−1TN−2 +[(αN−1−αN)J− (KN−1 +KN)]TN−1 = −J2

2
(R2

N−1 +R2
N)−KNTN

or in the matrix form

Mt =−c− J2

2
(r+R)

where c = {q0J2/2,0, . . . ,0,KNTN}, r = {R2
0,R

2
1, . . . ,R

2
N−1}, and R = {R2

1,R
2
2, . . . ,R

2
N}.

The matrix elements of M are defined as M11 =−α1J+K1, and
Mi j = [(αi−1−αi)J− (Ki−1 +Ki)]δi j +Kiδi, j−1 +Ki−1δi, j+1 for i, j ≥ 1.

Provided detM 6= 0 we can find the solution

t = M−1[−c− J2

2
(r+R)]

for a given set of material constants, A = {α1, . . . ,αN}, K = {κ1, . . . ,κN}, R, and for a
given value of TN , J, and the heat current at the source q0.

Alternatively, we can rewrite the first equation as

J0
Q +K1T1 =−J2

2
R2

1)+−(α1J−K1)T0

and invert new matrix matrix M′ to find J0
Q and {T1, . . . ,TN−1} in terms of T0 and TN .

If the material-specific constants are strongly temperature dependent, the calculations
have to be performed self-consistently. That is, we start with some initial value of A, K,
and R, calculated for the linear temperature dependence of T (x) between T0 and TN . We
then solve Eq.(70) to find T (x), ∇T (x) and the heat current in each segment. Then we
recalculate A, K, and R, and iterate unless the result converges.

The same procedure has to be performed for the Seebeck effect, when J = 0 and we
know ∆T = T0−Ta. Eventually, we obtain the electrical field E(x) = α(x)∇T (x), eval-
uate ∆V =

∫ l
0 dx E(x), and define the effective Seebeck coefficient of the heterostructure

at (T0 +T )N)/2 as S∗ = ∆V/∆T .

LINEAR RESPONSE THEORY

The coefficients appearing in the transport equations can either be treated as phenomeno-
logical parameters taken from the experiment on a given sample or calculated for a
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microscopic model that we use to describe this sample. Here, we follow Luttinger’s
approach[2] to calculate the transport coefficients for a given Hamiltonian

The macroscopic values of the charge and heat currents densities are defined as the
statistical averages

J = Tr{ρφ ĵ}, (70)

Ju = Tr{ρφ ĵu}, (71)

where ĵ and ĵu are the charge current density and the energy current density operators,
respectively. The Hamiltonian is

Ĥφ = Ĥ +∆Hφ (t) = Ĥ + eωt F̂ , (72)

where Ĥ defines the dynamics of interacting particles in the absence of the external field
and ∆Hφ (t) = eωt F̂ is the perturbation. The operator

F̂ =
∫

d3xφ(x)en̂(x)

provides the coupling of the charge density en̂(x) to the external potential which is
gradually turned on, as described by the exponential factor eωt . The coupling is absent at
t =−∞ and is fully turned on at t = 0. Note, a completely different behavior is obtained
for ’slow’ and ’rapid’ switching-on of the perturbation. (The time-scale for the ’slow’ and
’rapid’ perturbation is set by the characteristic time-scales of the unperturbed system.) In
the ’slow’ case, the electron wavefunctions adjust to the new potential and the stationary
state corresponds to thermal equilibrium, where no currents flow. In the ’rapid’ case, the
wave functions are not modified by the perturbation; the additional potential generates
the currents which flow so as to establish the equilibrium. For a potential characterized
by a single spatial Fourier component φq, the switching is rapid if q/ω → 0 which
describes a uniform system perturbed by a time-dependent potential (the limit q → 0
is taken before ω → 0). The switching is slow if ω/q → 0, which describes a static
perturbation of a spatially modulated system without any currents (the limit ω → 0 is
taken before q→ 0).

The density matrix ρφ is defined by the equation

i
∂ρφ

∂ t
= [Ĥφ ,ρφ ] (73)

and the initial condition ρφ (−∞) = ρ0. The unperturbed density matrix is ρ0 and we
want the lowest order correction to ρ0 due to ∆H(t). Writing

ρφ (t) = ρ0 + f (t)

we obtain from the equation of motion

i
∂ f (t)

∂ t
= [Ĥ,ρ0]+ [Ĥ, f ]+ [∆Ĥφ ,ρ0]+ [∆Ĥφ , f ], (74)
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which has to be solved for the boundary condition f (−∞) = 0. Using [Ĥ,ρ0] = 0 and
neglecting the non-linear term gives

i
∂ f (t)

∂ t
− [Ĥ, f ] = [∆Ĥφ ,ρ0]. (75)

The identity

i
∂ f (t)

∂ t
− [Ĥ, f ] = e−Ht i

{
∂

∂ t
eHt f (t)e−Ht

}
eHt , (76)

allows us to write

i
∂

∂ t
eHt f (t)e−Ht = eHt [∆Ĥφ ,ρ0]e−Ht = [∆Ĥφ (t),ρ0], (77)

such that
eHt f (t)e−Ht = f (−∞)− i

∫ t

−∞

dt ′[∆Ĥφ (t ′),ρ0]. (78)

Using f (−∞) = 0 obtains and

f (t) =−i
∫ t

−∞

dt ′[∆Ĥφ (t ′− t),ρ0] =−i
∫

∞

0
dt ′e−ωt ′[F(−t ′),ρ0]. (79)

In the last equation we shifted the integration variable by t and used F(z) =
eiHzF(t)e−iHz for z in the complex plane. We now show that f (t) is proportional
to the gradient of the external potential. The identity

[F(−t ′),ρ0] =−iρ0

∫
β

0
dβ

′∂F(−t ′− iβ ′)
∂ t ′

(80)

gives

f =−ρ0

∫
∞

0
dt ′e−ωt ′

∫
β

0
dβ

′∂F(−t ′− iβ ′)
∂ t

(81)

and form the definition of the operator F̂ and the continuity equation for the number
density operator we find

∂F(−t− iβ )
∂ t

=
∫

d3xφ(x)eβH ∂ n̂(−t)
∂ t

e−βH =
∫

d3xφ(x)∇ · ĵ(x,−t− iβ ). (82)

Finally, the integration by parts gives

∂F(−t− iβ )
∂ t

=−
∫

d3x′ĵ(x′,−t− iβ ) ·E(x′), (83)

where E(x) =−∇φ(x). Thus, the lowest order correction to ρφ (t) is proportional to the
applied field and given by

f = +ρ0 ∑
γ

∫
d3x′

∫
∞

0
dt ′e−ωt ′

∫
β

0
dβ

′Eγ(x′)ĵγ(x′,−t ′− iβ ′). (84)
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Since no current flows for E(x) = 0, the current density induced by the field is

Jα(x) = Tr{ f ĵα}= ∑
γ

∫
d3x′Eγ(x′)

∫
∞

0
dt ′e−ωt ′

∫
β

0
dβ

′ < ĵγ(x′,−t ′− iβ ′)ĵα(x) >0,

(85)
where 〈· · ·〉0 denotes the thermodynamic average with respect to ρ0 and the α,γ label
the spatial directions.

The above expression gives the thermodynamic average of the current density at point
x induced by a spatially varying electrical field. To compare with the phenomenological
equations discussed in the first part of these lecure notes we shoud make an additional
averaging of the current given by Eq. (85) over a macroscopic region aroud x. Thus, we
introduce the Fourier transform of the current density,

Jα(q) =
1
V

∫
d3xeiq·xJα(x), (86)

denote by ĵγ(q) the Fourier component of current density operator, and consider the
external potential with a single Fourier component,

φ(x) = φqeiqx. (87)

The electrical field is
Eγ(x) = Eγ(q)eiq·x, (88)

where
Eγ(q) =−iqγφq. (89)

The only non-vanishing Fourier component of the macroscopic current density is then

Jα(q) = ∑
γ

Eγ(q)
∫

∞

0
dt ′e−ωt ′

∫
β

0
dβ

′ < ĵγ(−q,−t ′− iβ ′)ĵα(q) >0 (90)

and to compare with the phenomenological expression for the current density we should
now take the limit q,ω → 0. If the limit ω → 0 is taken with finite q, the above expression
describes the electrons moving in a static periodic potential and Jα(q) should vanish. In
general, the correlator in Eq.(90) does not have to vanish in that limit, which means that
the above result is unphysical in that limit. The reason is that the physical zero-current
state corresponds to a balance between the electrical force, which is due to the potential
gradient, and the diffusion force, which is due to the concentration gradient. Since the
diffusion force cannot be included in the Hamiltonian, Eq.(90) does not give the correct
result, if the limit ω → 0 is taken before q → 0.) However, if q → 0 is taken before
ω → 0, we find the current that is flowing in response to the external field that has been
gradually turned on. The average current obtained by the linear-response theory in such
a way should coincide with the phenomenological current written for the sample without
the thermal force and the diffusion force. Writing

Jα = lim
q→0

Jα(q) = lim
q→0

∑
γ

σγαEγ(q), (91)

Correlated thermoelectrics March 16, 2008 21



we define the static conductivity by the expression

σγα = lim
ω→0

∫
∞

0
dt ′e−ωt ′

∫
β

0
dβ

′ < ĵ0γ(−t ′− iβ ′)ĵ0α >0, (92)

where Jα and ĵ0γ denote the q = 0 Fourier components of Jα(q) and ĵγ(q), respectively.
Equating Jα with the macroscopic current density in Eq. (19) or (21), we relate the
phenomenological transport coefficient L11 to the correlation function for the static
conductivity σγα .

In real space, the static conductivity is defined by the expression

Jα(x) = ∑
γ

∫
d3x′Eγ(x′)σγ,α(x,x′), (93)

where

σγ,α(x,x′) = lim
ω→0

∫
∞

0
dt ′e−ωt ′

∫
β

0
dβ

′ < ĵγ(x′,−t ′− iβ ′)ĵα(x) >0 . (94)

This expression should be used for inhomogeneous materials. In translationally invariant
systems, the Fourier transform of (94) gives the same results as obtaioned before.

The uniform static conductivity given by expression Eq. (92) agrees with the usual
Kubo formula obtained by calculating the ω → 0 limit of the dynamical conductivity. In
the basis which diagonalizes H, we have

< n|ĵ0γ(−t− iβ )|m > = < n|eiH(−t−iβ )ĵ0γ(0)e−H(−t−iβ )|m >

= e−i(En−Em)(−t−iβ ) < n|ĵ0γ(0)|m > .

Then, taking the trace with respect to ρ0 we obtain from Eq. (92) the static conductivity

σγα = Re
{

∑
mn

e−Emβ < n|ĵ0γ |m >< m|ĵ0α |n >

}∫
∞

0
dteit(En−Em+iω)

∫
β

0
dβe(En−Em)β ).

The limit
lim
ω→0

Re
∫

∞

0
dteit(En−Em+iω) = πδ (En−Em) (95)

and

δ (En−Em)
∫

β

0
dβe(En−Em)β ) = βδ (En−Em) (96)

provide the uniform conductivity matrix

σγα = πβ ∑
mn

e−Emβ < n|ĵ0γ |m >< m|ĵ0α |n > βδ (En−Em), (97)

that coincides with the spectral representation obtained from the Kubo expression for
the dynamical conductivity.
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In Kubo formalism, the transport coefficients appearing in the phenomenolog-
ical equations are expressed in terms of appropriate zero-frequency “polarization
operators”[4]. For the coeficients in Eq. (21) we have[4],

L̄γα

11 = T σγα (98)

such that

L̄γα

11 = lim
ν→0

Re
i
ν

L γα

11 (ν),

L γα

11 (iνl), = πT
∫

β

0
dτeiνlτ〈Tτ j†

0α
(τ) j0γ(0)〉, (99)

where νl = 2πT l is the Bosonic Matsubara frequency, the τ-dependence of the operator
is with respect to the full Hamiltonian in Eq. (183), and we must analytically continue
L γα

11 (iνl) to the real axis L γα

11 (ν) before taking the limit ν → 0.
The derivation of the coefficient L̄γα

21 that gives the energy current density induced by
an applied electrical field, proceeds in the same way and one easily finds[4],

L̄γα

21 = lim
ν→0

Re
i
ν

L γα

12 (ν),

L γα

21 (iνl) = πT
∫

β

0
dτeiνlτ〈Tτ j†

0Qα
(τ) j0β (0)〉. (100)

However, the derivation of L̄γα

12 and L̄γα

22 coefficients that describe the currents induced by
the thermal gradient is more complicated, because the ’thermal force’ (like the ’diffusion
force’) does not appear in the Hamiltonian. The details are given in Ref. [2] and we just
quote the results,

L̄γα

22 = lim
ν→0

Re
i
ν

L γα

22 (ν),

L γα

22 (iνl) = πT
∫

β

0
dτeiνlτ〈Tτ j†

0Qα
(τ) j0Qβ (0)〉. (101)

and L̄γα

12 = L̄γα

21 , in agreement with the Onsager relation. In all of these equations,
the subscripts α and β denote the respective spatial index of the current vectors and
subscript 0 denotes the q→ 0 Fourier component.

In terms of transport coefficients L̄γα

i j we then have

α =− kB

|e|T
L̄γα

12

L̄γα

11
, (102)

for the thermopower and

κ =
k2

B
T 2

[
L̄γα

22 −
L̄γα

12 L̄γα

21

L̄γα

11

]
. (103)

for the thermal conductivity.
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CURRENT OPERATORS

The linear response theory expresses the transport coefficients in terms of the thermal
averages of the current operators. In this Section we calculate these operators for a
given Hamiltonian using the conservation laws for the local charge and energy density.
That is, we define the divergence of the current densities by the rate of change of the
corresponding densities. The current density operators obtained in such a way give the
macroscopic current densities that satisfy the continuity equations (EOC),

∂ < en̂(x, t) >

∂ t
=−< div ĵ(x, t) >, (104)

and
∂ < ĥφ (x, t) >

∂ t
=−< div ĵφ

E(x, t) > . (105)

Here, < n̂(x; t) >= Tr
{

ρφ n̂(x)
}

, < ĥφ (x; t) >= Tr
{

ρφ ĥφ (x)
}

and the averaging is
with respect to the Hamiltonian Ĥφ =

∫
d3x ĥφ (x, t). The energy density operator is

ĥφ (x) = h(x)+∆ĥφ (x), and the perturbation is ∆ĥφ (x) = φ(x)en̂(x).

Charge current. The equation of motion for the density matrix Eqs. (73) and the
charge conservation expressed by (104) give

∂ < n̂(x, t) >

∂ t
= Tr

{
∂ρφ

∂ t
n̂(x)

}
=

〈
i[Ĥφ , n̂(x)]

〉
, (106)

where the last equation follows from the cyclic invariance of the trace. Thus, the current
density operator defined by the equation

−div ĵφ (x, t) = i[Ĥφ ,en̂(x)]. (107)

gives the macroscopic current density which satisfies the EOC. In the steady-state,
reached at t = 0, the flow is divergence-less: div < ĵφ (x, t) >= 0.

The q = 0 Fourier component of the current density operator ĵφ =
∫

d3x ĵφ (x, t) is
obtained by commuting the Hamiltonian with the charge polarization operator

Pc(t) = e
∫

d3xx n̂(x, t) (108)

We find, using (108), (107) and integrating by parts, the result

i[Ĥφ ,Pc] =
∫

d3xx i[Ĥφ , en̂(x)] =−
∫

d3xxdiv ĵφ (x, t) =
∫

d3x ĵφ (x, t) = ĵφ . (109)

The current density operator is defined by the commutator

ĵφ (x, t) = i[Ĥφ ,xen̂(x)]. (110)

For scalar gauge, such that Ĥφ = Ĥ + e
∫

d3xφ(x)n̂(x), the current density operator
defined by Eq. (110) is unaffected by the potential term of the Hamiltonian and we
have ĵφ = ĵ.
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Energy current. The energy current density operator follows in the same way. The
local energy conservation gives

∂ < ĥφ (x, t) >

∂ t
= Tr

{
∂ρφ

∂ t
ĥφ (x)

}
=< i[Ĥφ , ĥφ (x)] > (111)

which we use to define the divergence of the energy current density

−div ĵu(x, t) = i[Ĥφ , ĥφ (x)]. (112)

The q = 0 Fourier component of the energy current density operator ĵu =
∫

d3x ĵu(x, t) is
obtained by commuting the Hamiltonian with the energy polarization operator

Pu(t) =
∫

d3xx ĥφ (x). (113)

This gives

i[Ĥφ ,Pu] =
∫

d3xx i[Ĥφ , ĥφ (x)] =−
∫

d3xxdiv ĵu(x, t) =
∫

d3x ĵu(x, t) = ĵu, (114)

and we take the commutator

ĵu(x, t) = i[Ĥφ ,x ĥφ (x)] (115)

as the definition of the energy current density operator. This operator has contributions
coming from

i[Ĥφ , ĥφ (x)] = i[Ĥφ , ĥ(x)]+ i[Ĥ, ∆hφ (x)]+ i[∆H, ∆hφ (x)]. (116)

The last term in (116) vanishes and the contribution of the middle term to the total energy
current is

ĵφ
u = i[Ĥ, Pφ

u (t)] (117)

where we introduced
Pφ

u (t) = e
∫

d3xx φ̂(x)n(x, t). (118)

Eqs. (108) and (110) give

ĵφ
u =

∫
d3x eφ(x) i[Ĥ, n̂(x)] =−

∫
d3xxφ(x)div ĵ(x, t). (119)

which becomes by partial integration

ĵφ
u =

∫
d3xφ(x)ĵ(x, t), (120)

where we neglected ∇φ with respect to φ . Thus, ĵφ
u (x) = φ(x)ĵ(x). Performing similar

analysis for the first term in Eq. (116), and neglecting again the gradient terms, gives

−div ĵφ

E '−div ĵE , (121)

Correlated thermoelectrics March 16, 2008 25



where
ĵE = i[Ĥ,PE ], (122)

defines the energy current in the absence of the field and

PE(t) =
∫

d3xx ĥ(x, t). (123)

is the field-free energy polarization operator. The full energy current density operator
which satisfies the continuity equation is

ĵu(x) = ĵE(x)+φ(x) ĵ(x). (124)

In a stationary state, the rate of change of the total energy density around point x is
zero, such that u̇ = −div < ĵu(x) >= 0. However, the internal energy is not conserved
and −div < ĵE(x) >6= 0. None-the-less ĵE(x) = ĵu(x)−φ(x) ĵ(x) is convenient for cal-
culations, because the external perturbation appears only in ρφ , which simplifies the
perturbation theory for JE =Tr{ρφ ĵE(x)}. The statistical averaging of the last term in
Eq. (124) gives rise to the Joule heat, which ensures the proper temperature distribution
in a stationary flow[3]. We cannot neglect this term, because no matter how small ∇φ(x),
the value of φ(x) is arbitrary large for x →±∞.

Examples of current operators

As a case study we take the Falicov-Kimball model, Hubbard model and periodic An-
derson model with on-site hybridization, Vi j = V δi j. The Hamiltonians for the Falicov-
Kimball and Hubbard models can be summarized by the following form:

H =−∑
i j

ti jc
†
i c j−∑

i j
t f
i j f †

i f j +U ∑
i

c†
i ci f †

i fi. (125)

In Equation (125), we have fermionic creation (annihilation) operators c†
i (ci) for con-

duction electrons, and U is the on-site Coulomb repulsion. In the Falicov-Kimball
model, we have t f = 0 and the f -electrons are localized on the lattice. In the Hubbard
model, we have t = t f and we identify the c electrons as the up-spin electrons and the f
electrons as the down-spin electrons. Equation (125) interpolates continuously between
the Falicov-Kimball and Hubbard models.

The periodic Anderson model is written in a standard form,

H = −∑
i jσ

ti jc
†
iσ c jσ + f †

iσ fiσ )+E f ∑
i

f †
iσ fiσ

+ ∑
iσ

(Vic
†
iσ fiσ + f †

iσ ciσ )+U ∑
iσ

f †
i↑ fi↑ f †

i↓ fi↓. (126)

The conduction and localized electrons as the same as in the Falicov-Kimball model,
except now they have spin (E f is the localized electron site energy). The parameter V is
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the on-site hybridization between conduction and localized electrons on the same site,
and U is the on-site Coulomb repulsion between f -electrons with different spin.

The Hamiltonians become quite simple in momentum space:

H = ∑
k

ε (k)c†
kck +∑

k
ε

f (k)+U ∑
p,k,q

c†
k−qck f †

p+q fp, (127)

for the Falicov-Kimball-Hubbard model, where the fermionic creation and annihilation
operators now create or annihilate electrons with well-defined momentum. The periodic
Anderson model becomes

H = ∑
kσ

ε (k)c†
kσ

ckσ +E f ∑
kσ

f †
kσ

fkσ

+ V ∑
kσ

(c†
kσ

fkσ + f †
kσ

ckσ )+U ∑
p,k,q

f †
p+q↑ fp↑ f †

k−q↓ fk↓.

To find the q = 0 component of the charge-current operator we define the polarization
operator Pc = e∑i Ric

†
i ci, with the obvious generalization if we need to include spin,

and and evaluate the commutator [H ,Pc]. Since the potential energy depends only on
the number operators the charge polarization operator commutes with the U-term and
we need evaluate only the commutator with the kinetic-energy piece of the Hamiltonian,
which is straightforward in real space. Converting to a momentum-space representation
gives

j = e∑
k

v(k)c†
kck, (128)

where v(k) = ∇ε(k) is the unrenormalized velocity.
The non-local hybridization would generate the additional term,

j = e∑
k

v(k)c†
kck + e∑

pq

[
∇pVpc†

p+q fq +∇pV ∗
p f †

q cp+q

]
(129)

The energy-current operator is more complicated to construct. The energy-
polarization operator is PE = ∑i Rihi, and its proper definition requires assigning
an energy operator hi to each lattice site i (H = ∑i hi). For a local potential energy,
such an assignment is completely straightforward, but the hopping terms in the kinetic
energy are more complicated — the standard procedure is to associate one half of
the operator that connects sites i and j to the local energy operator at site i and at
site j. Once hi has been defined, we can calculate the commutator [H ,PE ] and find
the energy-current operator. Unlike the charge current operator, which was essentially
independent of the model considered, the energy current operator is different for each
Hamiltonian considered. So we summarize the results for each case considered here.
For the Falicov-Kimball and Hubbard models, the energy-current operator becomes

jFK
E = ∑

k
ε(k)v(k)c†

kck +
U
2 ∑

kqq′
[v(q)+v(q′)] f †

k fk+q−q′c
†
qcq′. (130)
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For the Hubbard model it is

jH
Q = ∑

kσ

ε(k)v(k)c†
kσ

ckσ +
U
2 ∑

kqq′
[v(q)+v(q′)]c†

q↑cq′↑c
†
k↓ck+q−q′↓.

For the periodic Anderson model we have to evaluate (in obvious notation)

jE = i∑
i j

R j[H T
i +H V

i +H U
i ,H T

j +H V
j +H U

j ] = jT T
E +(jTV

E + jV T
E ), (131)

where the last equation holds because [H T
i ,H U

j ] = 0 and

jVU
E + jUV

E = i∑
i

Ri
{
[H V

i ,H U
i ]+ [H U

i ,H V
i ]

}
= 0.

The kinetic term
jT T
E = i∑

i
Ri[H T

i ,H T
i ]

is the same as for the Falicov-Kimbal model and we only have to calculate

jTV
E + jV T

E = i∑
i

Ri[H T
i ,H V

i ]+ i∑
i

Ri[H V
i ,H T

i ].

Direct evaluation in the site representation gives

jTV
E + jV T

E =−i
W
2 ∑

iδσ

{
Vi+δ (Ri+δ −Ri)c†

iσ fi+δσ
+V ∗

i+δ
(Ri+δ −Ri)ciσ f †

i+δσ
.
}

In the momentum representation this term can be written as

jTV
E + jV T

E =−1
2 ∑

pqσ

vp

{
Vq−pc†

pσ fqσ +V ∗
p−q f †

qσ cpσ

}
. (132)

For the constant hybridization the q = 0 Fourier component of the energy density
operator is

jE = ∑
k

ε(p)v(p)c†
pcp−

V
2 ∑

pσ

vp

{
c†

pσ fpσ + f †
pσ cpσ

}
(133)

This energy current operator, together with the charge current operator defined by
Eq. (128) enters the correlation functions for thermal transport.

MAHAN-JONSON THEOREM

The Jonson-Mahan[7, 8, 9] theorem provides a simple relation between the transport
coefficient for the electrical conductivity and that needed for the thermopower and
thermal conductivity. The relation is that the integral for the L12 coefficient has an
extra power of frequency in the integrand than the L11 coefficient and that L22 has
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one more power of frequency than L21. This result has been known for many years
for a noninteracting system— the Jonson-Mahan theorem generalizes this result for a
wide class of many-body systems (including the Falicov-Kimball model, the Hubbard
model, and the periodic Anderson model. We provide the proof for infinite dimensional
lattices[? ].

We begin with the generalized two-particle correlation function

Fαβ (τ,τ ′,τ ′′,τ ′′′) = ∑
qq′σσ ′

vqαvq′β 〈Tτc†
qσ (τ)cqσ (τ ′)c†

q′σ ′(τ ′′)cq′σ ′(τ ′′′)〉, (134)

where c†
qσ and cqσ denote the creation and the annihilation operators for conduction

electrons and the averaging is with respect to the interacting Hamiltonian. This function
provides all the relevant “polarization operators”, which can be shown by a method
based on the Heisenberg equation of motion. Using

i
d
dt

OH(t) = [OH(t),HH(t)] (135)

we find the time-dependence of the fermionic creation and annihilation operators (in the
momentum basis and on the imaginary time-axis). The commutators are straightforward
to calculate and become

[c†
k(τ),H ] =−ε(k)c†

k(τ)−U ∑
p,q

f †
p+q(τ) fp(t)c

†
k−q(τ), (136)

for the Falicov-Kimball-Hubbard model and

[c†
kσ

(τ),H ] =−ε(k)c†
kσ

(τ)−∑
p

V ∗
p f †

k−pσ
(τ) (137)

for the periodic Anderson model. Note, [c†
k,HU ] = 0 for PAM. The commutator for the

c operators is similar to evaluate. This shows that

lim
τ ′→τ−

1
2

(
∂

∂τ
− ∂

∂τ ′

)
∑
qσ

vqc†
qσ (τ)cqσ (τ ′) = jQ(τ). (138)

The Jonson-Mahan theorem will hold for any Hamiltonian that satisfies Eq. (138).
In particular, it holds true for the Falicov-Kimball-Hubbard model and the periodic
Anderson model[9] and allows us to express the “polarization operators” in terms of
the generalized function F and its time-derivatives. We obtain

L11 = πTe2
∫

β

0
dτeiνlτF(τ,τ−,0,0), (139)

for the conductivity,

L12 = πTe
∫

β

0
dτeiνlτ

1
2

(
∂

∂τ
− ∂

∂τ ′

)
F(τ,τ ′,0,0), (140)
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(in the limit where τ ′→ τ−) for the thermopower, and

L22 = πT
∫

β

0
dτeiνlτ

1
4

(
∂

∂τ
− ∂

∂τ ′

)(
∂

∂τ ′′
− ∂

∂τ ′′′

)
×F(τ,τ ′,τ ′′,τ ′′′), (141)

(in the limit where τ ′→ τ−, τ ′′′→ τ ′′−, and τ ′′→ 0+) for the thermal conductivity.
The analytic continuation to the real axis is quite complicated in general[? ] and we

restrict our considerations to the infinite-dimensional limit. In that case the two-particle
correlation function is expressed by just its bare bubble because the irreducible charge
vertex has a different symmetry than vq. Hence, we immediately learn that

Fαβ (τ,τ ′,τ ′′,τ ′′′) =−∑
qσ

v2
qαδαβ Gqσ (τ ′′′− τ)Gqσ (τ ′− τ

′′)., (142)

where Gqσ (τ) = −〈Tτcqσ (τ)c†
qσ (0)〉 is the imaginary time Green’s function of con-

duction electrons. Next, we need to determine a spectral representation for the Green’s
function. Using the fact that

Gqσ (z) =− 1
π

∫
dω

ImGqσ (ω)
z−ω

, (143)

with z in the upper half plane (which can be shown by using the Lehmann representa-
tion), we find that

Gqσ (τ) =− 1
π

∫
dωT ∑

n

e−iωnτ

iωn−ω
ImGqσ (ω). (144)

Now we convert the sum over Matsubara frequencies into a contour integral (that
surrounds each Matsubara frequency, but does not cross the real axis—the contour is
then deformed into two contours, one running just above and the other just below the
real axis), but we must be careful to ensure that the procedure is well-defined. If τ < 0,
then

T ∑
n

e−iωnτ

iωn−ω
= − i

2π

∫
C

dz
e−zτ

z−ω
f (z),

= − i
2π

∫
∞

−∞

dze−zτ f (z)
[

1
z+ i0+−ω

− 1
z− i0+−ω

]
,

= −e−ωτ f (ω). (145)

This result is well-defined because the Fermi factor provides convergence (asymptoti-
cally like exp[−β z]) for z→∞ and the exp[−zτ] term provides boundedness for z→−∞

when τ < 0. Since 1− f (z) has the same poles as f (z) on the imaginary axis, with
residues that have the opposite sign, and it behaves like exp[β z] for z→−∞, one finds

T ∑
n

e−iωnτ

iωn−ω
= e−ωτ [1− f (ω)], (146)
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for τ > 0. The results in Eqs. (145) and (146) can then be substituted into Eq. (144) to
get the final formula for the Green’s function

Gqσ (τ) =
{ ∫

dωAqσ (ω)e−ωτ [1− f (ω)], τ > 0∫
dωAqσ (ω)e−ωτ [− f (ω)], τ < 0.

(147)

where Aqσ (ω) = −ImGqσ (ω)/π is the spectral function. Substituting into Eq. (142),
then yields

Fαβ (τ,τ ′,τ ′′,τ ′′′) = δαβ

∫
dε v2

ε ρ(ε)
∫

dω

∫
dω

′

× A(ε,ω)A(ε,ω ′)eω(τ−τ ′′′)−ω ′(τ ′−τ ′′) f (ω)[1− f (ω ′)], (148)

where we replaced the q-summation by an integral over the non-interacting density of
states. Because of Eq. (148), the analytic continuation of the correlation function given
by Eq. (139) is trivial (one first converts from imaginary time to Matsubara frequencies
and then performs the Wick rotation to the real frequency axis), and if we note the
identity

f (ω)− f (ω +ν) =− f (ω)[1− f (ω +ν)][e−βν −1], (149)

then we can easily compute that

L̄11 = Te2〈v2
k〉FS

∫
dω

∫
dερ(ε)

(
−d f (ω)

dω

)
A2(ε,ω), (150)

for the conductivity,

L̄12 = Te〈v2
k〉FS

∫
dω

∫
dερ(ε)

(
−d f (ω)

dω

)
A2(ε,ω)ω, (151)

for the thermopower, and

L̄22 = T 〈v2
k〉FS

∫
dω

∫
dερ(ε)

(
−d f (ω)

dω

)
A2(ε,ω)ω2, (152)

for the thermal conductivity. Here, 〈v2
k〉FS denotes the square of conduction electron’s

velocity averaged over the renormalized Fermi surface (FS). This pre-factor has been
taken out of the integral because (−d f (ω)/dω) restricts the integration region in the
q-space to the vicinity of the Fermi surface. This proves Mott’s form for the thermal
transport.

For the degenerate models with N conduction channels it is convenient to rewrite
the above expressions in terms of the Luttinger’s coefficients L12 = L̄12/T defined by
Eq. (21). This gives σ(T ) = e2NL11 for the charge conductivity, α(T )|e|T =−L12/L11
for the thermopower, and κ(T )T = N(L22−L2

12/L11) for the electronic contribution to
thermal conductivity, where

Lmn = 〈v2
k〉FS

∫
dω

(
− d f

dω

)
ω

m+n−2
Λ(ω,T ). (153)
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f (ω) = 1/[1 + exp(βω)] is the Fermi-Dirac distribution function, ω is measured with
respect to the chemical potential µ , and Λ(ω,T ) is the frequency-dependent correlation
function

Λ(ω,T ) =
∫

dερ(ε)A2(ε,ω) (154)

calculated for a single channel. For the infinite-dimensional Falicov-Kimball-Hubbard
model and the Anderson model with the Gaussian non-interacting density of states the
transport relaxation time can be given an explicit form. Using the Dyson equation for
the conduction electrons Green’s function

Gqσ (ω) =
1

ω + µ−Σ(ω)− ε(q)

and the fact that the self energy is momentum independent we can evaluate the integral
in Eq. (154) with the result

Λ(ω) =
ImG(ω)
ImΣ(ω)

+2−2Re{[ω + µ−Σ(ω)]G(ω)}. (155)

This expression simplifies at low temperatures, where the frequency integration in
Eq. (153) is restricted by (−d f /dω) to the Fermi window, |ω| ≤ kBT . In the T → 0
limit we can write Eq. (154) as

Λ(ω,T ) = Nc(ω)τ(ω,T ) (156)

where Nc(ω) = ∑k Ak(ω) is the renormalized DOS of conduction electrons, and
τ(ω,T ) the transport relaxation time

τ(ω,T ) =
−1

Im Σc(ω+,T )
(157)

which is given by the momentum-independent self energy of c electrons. In deriving
Eq. (156) we included only the divergent term in Λ(ω,T ), and dropped the finite
term which contributes to the full DMFT expression but does not affect the T,ω → 0
results. To calculate the renormalized expressions for v2

kF
, Nc(ω) , τ(ω), we make the

approximations which are consistent with this derivation.

MICROSCOPIC SOLUTION FOR TRANSPORT COEFFICIENTS

We now discus the thermoelectric properties of intermetallic compounds with Cerium,
Europium or Ytterbium ions using the theoretical methods explained in the previous
sections. We summarize, first, the transport properties of heavy fermions and valence
fluctuators and, then, describe the anomalies observed in YbInCu4-like systems which
show a valence-change transition. The thermal transport of heavy fermions and valence
fluctuators is explained by the periodic Anderson model and that of the YbInCu4-like
systems by the Falicov-Kimball model.
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Experimental summary

The experimental data on heavy fermions and valence fluctuators can be summarized
as follows. The thermoelectric power α(T ) exhibits the characteristic features that allow
the classification of these compounds into several distinct groups[10, 11, 12]. In the
case of Cerium ions, the compounds belonging to the first group (type (a) systems)
have the thermopower with a deep negative minimum at low temperatures [10, 11, 13,
14, 15] and a high-temperature maximum, typically between 100 K and 300 K. At
the maximum, α(T ) could be either positive or negative. At very low temperatures,
the type (a) systems order magnetically or become superconducting. The compounds
of the second group (type (b) systems) have a negative low-temperature minimum
and a positive high-temperature maximum but, in addition, the thermopower shows a
smaller positive peak at lowest temperatures.[16, 17, 10, 18, 19] This second peak is
sometimes concealed by a low-temperature phase transition; for example, in CeCu2Si2 it
becomes visible only in an external magnetic field which suppresses the superconducting
transition,[13] and in CeRu2Ge2 it shows up when the external pressure suppresses
the magnetic transition.[20] The experimental evidence is now accumulating that the
initial slope of the thermopower α(T )/T is positive for this class of (heavy fermion)
materials, provided the measurements are performed at low enough temperature and
with sufficient accuracy.[18, 19, 15, 21] In the third group (type (c) systems), the low-
temperature peak is well pronounced and shifted towards the high-temperature peak.
The main difference with respect to the type (b) systems is that the sign-change of
α(T ) does not occur.[22, 23, 24, 25] Finally, in some cases (type (d) systems) the
thermopower grows monotonically towards the high-temperature maximum, and the
low-temperature structure appears only as a shoulder on a broad peak, or is not resolved
at all. [26, 23, 27, 19]

The clue to these various types of behavior comes from the high-pressure[28, 29,
20, 30, 11] and doping studies, [10, 23, 24, 31, 32, 33, 34, 35] which show that the
thermopower of Cerium compounds changes continuously from type (a) to type (d).
A typical example is provided by the shape of α(T ) observed in CeRu2Ge2at various
pressures.[20] At ambient pressure, CeRu2Ge2 is a type (a) system with a magnetic
ground state and negative thermopower below 300 K. An increase of pressure leads to
a thermopower with a small positive peak at low temperatures and an enhanced peak
at high temperatures. A further increase of pressure enhances both peaks, shifts the
low-temperature peak towards the high-temperature one, and makes the thermopower
at intermediate temperatures less negative. For large enough pressure, the sign-change
does not occur at all and for very high pressure the low-temperature peak merges with
the high-temperature one, and transforms into a shoulder. The high-temperature peak
grows continuously but its position remains more or less constant, as α(T ) changes
from type (a) to (c). Eventually, for pressures above 10 GPa, the α(T ) assumes the (d)
shape. Here, the initial slope of α(T ) decreases and the position of the maximum shifts
to higher temperatures, but its magnitude does not change as pressure increases. Similar
behavior is also seen in the high-pressure data of, CeCu2Si2,[28] CeCu2Ge2,[30, 36] or
CePd2Si2.[37] As regards doping, the chemical substitutions which reduce the volume
and make Ce ions less magnetic, transform α(T ) from type (a) to type (b),[31] from
(b) to (c),[23, 24] or from (a) to(c),[32, 33, 34] while the substitutions which expand
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the volume and make the Ce more magnetic, transform the thermopower from, say, type
(d) to type (c) or from type (c) to type (b).[35] This variation of shape is an indication
that the local environment plays an important role in determining the magnetic character
of Ce and Yb ions. Even at high temperatures, where each 4f ion is an independent
scatterer, the thermopower of a sample with a high concentration of 4f ions cannot be
obtained by rescaling the low-concentration data.

The Ytterbium intermetallics can be classified using the mirror-image analogy with
Cerium systems. This holds because the Yb ions fluctuate between 4f13 and 4f14, while
the Ce ions fluctuate between 4f1 and 4f0 configurations, and the dynamics of a single
f hole and a single f electron is the same. A well-defined local moment leads in Yb
systems to the type (a) behavior, such that the thermopower has a negative minimum at
high temperatures and a positive maximum at low temperatures;[38, 39] the size of the
minimum is about the same as the size of the maximum. The thermopower of (b)-type
Yb systems[40, 41, 42] mirrors the (b)-type Ce systems. Here, one finds two negative
minima separated by a small positive maximum. The type (c) Yb systems have a non-
monotonic thermopower with a large (negative) minimum at high temperatures and a
smaller one at low temperatures, but there is no sign-change.[40, 42, 38, 41] Finally,
the thermopower with a single negative peak centered around 100 K [43, 40, 27, 38]
mirrors the type (d) behavior of Ce systems. The reduction of volume by pressure or
doping[42, 38] stabilizes the magnetic 4f 13 configuration of Yb ions, and transforms
α(T ) from, say, type (b) to type (a), from (c) to (b), or from (c) to (a).

The experimental results show that 4f systems with similar thermopowers exhibit
similarities in other thermodynamic[44] and transport[45, 46, 47] properties, and there
is an obvious correlation between the shape of α(T ) and the magnetic character of the
4f ions. The thermopower measurements[48] provide a simple and sensitive tool for
characterizing the magnetic state of a 4f ion in a given metallic matrix: the shape of
α(T ) changes from the (a)-type in the case of magnetic Ce (Yb) ions with stable f1 (4f13)
configuration to the (d)-type for non-magnetic Ce (Yb) ions which fluctuate between the
4f1 (4f13) and 4f0 (4f14) configurations.

At very low temperatures one finds additional interestig features. The data show [21,
49] a striking correlation between the low-temperature Seebeck coefficient α and the
specific heat coefficient γ = CV /T ; the ratio q = |e| limT→0 α/γT is nearly constant,
although the absolute values of γ and α/T vary by orders of magnitude. The q ratio
increases as the number of conduction electrons nc decreases and becomes large in bad
metals[21, 49]. The Kadowaki-Woods (KW) ratio [50] which is defined as ρ(T )/(γT )2,
where ρ(T ) is the electrical resistivity, exhibits similar universal features, if one takes
into account the effective low-temperature degeneracy of the f states [51, 52]. The near
constancy of the KW and q ratios suggests a ‘universal law’ for the low-temperature
power factor P = α2/ρ and brings to the fore the validity of the Wiedemann-Franz
(WF) law, κρ/T = L0, and a possibility of enhancing the electronic thermoelectric
figure-of-merit in strongly correlated materials, ZT = α2T/κρ , where κ is the electronic
contribution to the thermal conductivity and L0 = π2k2

B/3e2 the Fermi liquid (FL)
Lorenz number. When the WF law holds, metals must have a thermopower larger
than 155 µV/K to achieve ZT > 1; to date no metal has been found with so large a
thermopower. In the temperature window where the effective Lorenz number (L =
κρ/T ) is reduced, one can achieve ZT > 1 with substantially lower thermopowers,
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which might make it possible to find strongly correlated metals that can be used for
cooling applications at low temperature.

Finally, we mention a new class of materials in which the transition between the
high-entropy phase and the low-entropy does no follow the usual “Kondo route” but
is driven by the valence-change transition, as observed in EuCu2Ni2, YbIn1−xAgxCu4
or YbInCu4[53, 54]. The main features of these systems are best revealed by taking
YbIn1−xAgxCu4 as an example. Indium doping expands the lattice and increases the
weight of Yb2+ with respect to Yb3+ configuration[55] by transferring the electrons
from the conduction band to the 4f-state. Thus, chemical pressure reduces the number of
f-holes and increases the Kondo coupling which makes the compound less magnetic and
increases charge fluctuations. For x ≥ 0.5, the compound is a typical heavy fermion
in which the substitution of the monovalent Ag by the trivalent In compensates the
chemical pressure effects, such that the total number of conduction electrons increases.
For for x ≤ 0.5, the Ag-In substitution brings eventually µ and E f in the vicinity of the
band edge Ec which gives rise to completely new features. In this concentration range
YbIn1−xAgxCu4 is already a valence fluctuator with temperature dependent nh

f (T ), such
that the temperature-induced transfer of f-holes in the conduction band can reduce µ−Ec
and E f − Ec to zero. Once µ is within the gap of the density of states, the effective
hybridization is switched off and the magnetic moment of the f-ions cannot be quenched
by Kondo screening. Thus, the transition from the low-temperature coherent FL state
to the high-temperature disordered paramagnetic state cannot follow the usual ‘Kondo
route’, taken by the heavy fermions. The valence fluctuators like YbIn1−xAgxCu4 for
x ≤ 0.5, belong to a new class of materials in which the transition between the low-
and high-entropy phase is driven by the Falicov-Kimball interaction. This gives rise, at
the temperature TV , to a change in the relative occupancy of the f and the conduction
states and an abrupt modification of the properties of the system. The valence change
transition is clearly seen in the XPS data; above TV , the spectra indicate a stable 4 f 13

configuration of Yb ions and below TV one has a mixture of 4 f 13 and 4 f 14 states. The
magnetic character of the Yb ions changes at TV , as indicated by an abrupt change of
the susceptibility from Pauli-like to Curie-like. In the high-temperature phase, the Curie
constant is close to the free ion value of Yb3+. The conduction states are also modified
at TV , as indicated by a drastic change of the frequency dependence of the optical
conductivity and by a large increase in the resistivity[55]. The electrical resistance
and the Hall coefficient of the high-temperature phase of YbIn1−xAgxCu4 are typical
of narrow-band semiconductors, or semi-metals with a very low carrier density, and
neither the transport nor the thermodynamic properties show any sign of the Kondo
effect. The proximity of µ to Ec is indicated in YbInCu4 by the Hall data and band-
structure calculations[55].

Periodic Anderson model

We now discuss the thermoelectric properties of heavy fermions and valence fluctua-
tors using the periodic Anderson model. In the first part of this subsection we derive the
Fermi liquid laws and explain the universal low-temperature behavior. In the second part
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we discuss the anomalies that one finds in the thermopower of heavy fermions above the
Kondo temperature.

Fermi liquid solution

The coherent thermal transport of heavy fermions and valence fluctuators is explained
at low temperatures by the periodic Anderson model with SU(N) symmetry in infinite
dimensions. We consider the model with the on-site hybridization,Vi j = V δi j, such that
the charge current operators are given by Eqs. (128) and (133). This model satisfies the
Jonson-Mahan theorem. Since the integral in Eq. (153) is restricted by (−d f /dω) to
|ω| ≤ kBT , we write in the T → 0 limit Λ(ω,T ) = Nc(ω)τ(ω,T ) and calculate the
renormalized density of states Nc(ω) and the transport relaxation time τ(ω,T ) by the
dynamical mean field approximation (DMFT).

The renormalized c and f Green’s functions of the periodic Anderson model satisfy
the Dyson equations [56, 57]

Gc(k,z) =
z− ε̃ f (ω,T )+ µ

[z− εk + µ][z− ε̃ f (ω,T )+ µ]−V 2 , (158)

and
G f (k,z) =

z− εk + µ

z− ε̃ f (ω,T )+ µ
Gc(k,z), (159)

where ε̃ f (ω,T ) = E f + Re Σ f (ω+,T ) is the renormalized position and Σ f (z) the
DMFT self-energy f electrons, which is momentum-independent. The retarded (ad-
vanced) Green’s functions are defined for z in the upper (lower) part of the complex
plane. The c electrons self-energy on the real ω-axis is

Σc(ω+) =
V 2

ω+− ε̃ f (ω,T )+ µ− Im Σ f (ω+,T )
, (160)

where ω± = limδ→0(ω± iδ ).
The singularities of the of Gc(k,z) and G f (k,z) are defined by the equation

(ω− εk + µ)[ω− ε̃ f (ω)+ µ]−V 2 = 0, (161)

which gives the QP excitations and provides for ω = 0 the renormalized FS of hybridized
states. Since Σ f (ω+,T ) is momentum independent in the DMFT approximation, the
shape of the FS is determined by the non-interacting dispersion of c states. Using
the Luttinger’s theorem, which requires that the k-space volume enclosed by the FS
yields the total concentration of electrons n = nc + n f in each channel, we obtain the
FS from the equation εk = µ0, where µ0 is the solution of n =

∫ µ0
−∞ dε N 0

c (ε). Thus,
the renormalized FS coincides with the non-interacting one corresponding to nc + n f c
electrons and the FS average of v2 is given by the integral

v2
kF

=
∫

ddk δ (εk−µ0) v2
k. (162)
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The numerical calculations for the 3-dimensional periodic Anderson model with the
nearest-neighbor hopping on a simple cubic lattice give v2

kF
= (tal/h̄)2v2 where v2 ' 1.4

for n' 1/2 and v2 � 1 for n' 1.
The renormalized spectral properties around the Fermi level are obtained from the

Luttinger theorem. First, following [56], we expand Re Σ f (ω+,T ) up to the terms
linear in ω which gives ω − [ε̃ f (ω)− µ] ' (ω − ω̃ f )Z−1

f . Here, ω̃ f is the solution of
the equation ω̃ − [ε̃ f (ω̃)− µ] = 0 and Z−1

f = [1− ∂Σ f /∂ω]ω=0 is the enhancement
factor. For k close to the FS and small ω , Eq.(161) gives the QP excitations ω = Ω

±
k ,

where

Ω
±
k =

1
2

[
(εk−µ + ω̃ f )±

√
(εk−µ− ω̃ f )2 +4Ṽ 2

]
, (163)

and Ṽ = V
√

Z f denotes the renormalized hybridization. To describe the excitations in
intermetallic compounds with Ce (Yb) ions we put the chemical potential in the lower
(upper) QP branch. The singular parts of the spectral functions can be written as

Ac(εk,ω) ' ac
k(Ω

±
k ) δ (ω−Ω

±
k ), (164)

A f (εk,ω) ' a f
k(Ω±

k ) δ (ω−Ω
±
k ), (165)

where the coefficients are the residues of the QP poles,

ac
k(ω) =

[
1+Z−1

f
V 2

ω− ε̃ f (ω)+ µ

]
ω=Ω

±
k

,

and

a f
k(ω) =

(ω− εk + µ)2

V 2 ac
k(ω)

The renormalized c and f DOS are given at low energies by the expressions [58, 59]

Nc(ω) ' N 0
c (ω + µ− V 2

ω− ε̃ f (ω)+ µ
), (166)

N f (ω) '
µ− εkF

µ− ε̃ f (0)
Nc(ω) (167)

where kF is Fermi momentum and N 0
c (ω) is the unrenormalized c-DOS, taken as a

symmetric function of half-width D. Using Eq. (161) this can also be written as,

N f (0) =
V 2

[µ− ε̃ f (0)]2
N 0

c (εkF). (168)

The total DOS is obtained by multiplying the above expressions by the degeneracy N.
The physical interpretation of ω̃ f = [ε̃ f (0)− µ]Z f follows from the DMFT require-

ment that the local Green’s function of the Anderson lattice coincides with the Green’s
function of an auxiliary Anderson impurity, such that

∑
k

G f (k,z) =
1

z−E f + µ−∆(z)−Σ f (z)
= Gaux

f (z). (169)
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The auxiliary model describes f electrons distributed over N states and hybridized with
an effective c band, The effective hybridization ∆(z) follows from the condition that
the self energy of the lattice and the impurity defines the same functional Σ f [G f (z)].
The unrenormalized impurity f level is at E f and in the ω,T → 0 limit we approximate
∆(ω)' ∆(0) = i∆0 with ∆0 < 0. The DMFT solution requires N f (ω) = A f (ω), where
A f (ω) =−Im Gaux

f (ω+)/π is the auxiliary spectral function. Keeping only the real part
of Σ f (ω,T ) we write the low-frequency limit of the renormalized f-DOS as

N f (ω) =
1

π|∆0|
(∆̃ f )2

(ω− ω̃ f )2 +(∆̃ f )2
, (170)

where ∆̃ f ' −∆0Z f . The above expression, which holds for ω � ω̃ f , shows that the
lattice f-DOS can be approximated by the Kondo resonance centered at ω̃ f and of the
width ∆̃ f .

Luttinger’s theorem and the DMFT self-consistency condition can now be used to re-
late ω̃ f or ∆̃ f to N f (0). The QP branches Ω

+
k and Ω

−
k are separated by the hybridization

gap 2Ṽf . Close to the Brillouin zone boundary (ZB) and the zone center (ZC), we have
Ω

+
k −Ω

−
k ' D[1 + 2(Ṽ/D)2] ' D. At the FS we have Ω

−
kF

= 0 or Ω
+
kF

= 0, depending
on the value of nc + n f . Close to the FS, the QP dispersion is very weak and Ω

±
k de-

scribe two heavy QP bands of half-width Ṽ 2
f /D. Taking n << 2 for Ce and Eu systems,

such that the chemical potential is close to the top of the lower QP branch, we find from
Ω
−
kF

= 0 that kF is close to the ZB, such that εkF −µ 'D and N 0
c (εkF )D' nc/aπN. The

factor aπ in the denominator, approximately accounts for the fact that the unperturbed
c-DOS near the edge of the band is smaller than the average unperturbed DOS over the
whole energy interval under consideration. For Yb compounds, we restrict nh

f << 1 and
assume that the system is more than half-filled, such that the lower QP branch is full and
the upper branch is fractionally occupied. The equation Ω

+
kF

= 0 gives kF close to the
zone center, such that εkF − µ ' −D and N 0

c (εkF )(εkF − µ) ' −nc/aπN. Eqs. (167)
yields

NN f (0)Z−1
f =± nc

aπ

1
ω̃ f

, (171)

where the upper (lower) sign applies to Ce and Eu (Yb) compounds in which ω̃ f > 0
(ω̃ f < 0) and the Kondo resonance is above (below) the chemical potential.

Since the specific heat coefficient of the periodic Anderson model in the QP approxi-
mation is given by

γ = N
π2k2

B
3 ∑

k
δ (µ−Ω

±
k ) = N

π2k2
B

3
[Nc(0)+N f (0)Z−1

f ]

we have the FL relationship

γ =
π2k2

B
3

1
TK

' π2k2
B

3
nc

aπω̃ f
, (172)
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where we assumed that the enhanced f contribution dominates. The Kondo temperature
TK ' 1/γ is thus related to the center of the Kondo resonance ω̃ f . The numerical
coefficient a can be obtained from the NRG solution of the DMFT equations, which
can provide the numerical values of γ and ω̃ f .

The width of the Kondo resonance ∆̃ f . can be related to γ by using Eqs. (170) and
(171) which give at ω = 0,

aN
nc

= |
ω̃ f

∆̃ f
|+ |

∆̃ f

ω̃ f
|. (173)

Thus, |ω̃ f /∆̃ f | = (aN/2nc)±
√

(aN/2nc)
2−1 = C. The negative sign gives ∆̃ f '

(Nπk2
B)/[3γ(1+C2)], such that for N/nc � 1 and C ' nc/aN we have ∆̃ f ' Nπk2

B/3γ .
To estimate the imaginary part of Σ f (ω), which is also needed for thermal trans-

port, we use the diagrammatic analysis. In infinite dimensions this gives the FL expres-
sion [56, 51]

−ImΣ f (ω,T )' π

2
[ω2 +(πkBT )2](N−1)N 3

f (0)Γ2
f , (174)

where Γ f is the irreducible 4-point scattering vertex for electrons with different flavors.
Eq. (174) is a straightforward generalization of the result given by the 2nd order per-
turbation theory in which the bare interaction U f f is replaced by the Γ-vertex. In the
limit of large correlations, when the charge fluctuations are suppressed, the Ward iden-
tity [56, 57] gives Z−1

f = (N− 1)N f (0)Γ f , such that γ = (π2k2
B/3)N(N− 1)N 2

f (0)Γ f
and

−(N−1)N f (0)Im
[

∂ 2Σ f (ω)
∂ω2

]
ω=0+

' 9γ2

π3k4
BN2 '

1
π∆̃2

f
. (175)

The transport relaxation time can now be obtained by substituting Σc(ω+,T ) in
Eq. (157) which yields

τ(ω,T )'
[ω− ε̃ f (ω,T )+ µ]2 +[Im Σ f (ω+,T )]2

V 2[δ − Im Σ f (ω+,T )]
. (176)

The singularity at T = 0 is avoided by taking the limit ω → 0 before δ → 0.
The transport coefficients of the periodic SU(N) Anderson model in the FL regime are

obtained by making the lowest order Sommerfeld expansion of Eq. (153), which gives

Lmn =
[
ω

m+n−2
Λ(ω,T )

]
ω=0 +

π2k2
BT 2

6

{
∂ 2

∂ω2

[
ω

m+n−2
Λ(ω)

]}
T,ω=0

.

The correlation function Λ(ω) is obtained by substituting for Nc(ω) and τ(ω,T ) the
expressions derived above. Neglecting the energy dependence of N 0

c (ω) for ω ' 0 we
obtain for the electrical resistance of N parallel channels the result,

ρ(T ) ' (1+C2)2

(N−1)N
3V a2D2

5h̄e2v2
kF

n2
c

(
3γT
πkB

)2

, (177)
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where we approximated NNc(0) ' nc/πaD in Eq.(168) or (167) and used for
Im Σ f (ω,T ) the expression Eq. (174). When N/nc � 1 and C � 1, the FL law
reads[51]

ρ(T )' A
γ2T 2

(N−1)Nn2
c

(
3

πkB

)2

=
Aπ2

(N−1)N

(
T
TK

)2

, (178)

where A = 3V D2/(5h̄e2v2
kF

).
The Seebeck coefficient is given by

α(T )
T

=−π2

3
k2

B
|e|

{
1

Nc(ω)
∂Nc(ω)

∂ω
+

1
τ(ω)

∂τ(ω)
∂ω

}
ω,T=0

(179)

and we shall neglect the first term assuming d[lnNc(ω)]/dω � d[lnτ(ω)]dω

for a slowly varying N 0
c (ω). Equations (167), (171), (174), and (176) give

d[lnτ(ω)]/dω|
ω=0 ' ∓2aπNN f (0)/ncZ f , such that the low-temperature Seebeck

coefficient becomes [60, 61]

α(T ) =±2aπ

|e|
γT
nc

=±2π2

3
kB

|e|
T
TK

. (180)

The upper (lower) sign applies to Ce and Eu (Yb) systems and TK/kB = aπω̃ f /nc defines
the lattice Kondo scale.

The Sommerfeld expansion also gives L22/L11 = π2k2
BT 2/3 and L12/L11 =

∓2aπγT 2/nc, so that the thermal conductivity becomes

κ(T ) = L0 T σ(T )

[
1− 4π2

3

(
T
TK

)2
]

, (181)

The square bracket provides corrections to the WF law. In normal metals, TK should be
replaced by EF/kB � T and the WF law holds. In correlated systems, TK can be small
and the deviations from the WF law can be large (although Eqn. (181) only holds for
T << TK).

The renormalization of the average velocity in Eq.(178) offers a possible explanation
of the sharp and asymmetric maximum of the A coefficient which is observed in resis-
tivity measurement of Ce intermetallics under pressure [62]. Consider, for example, the
PAM with 3 doublets split by the CF. At low temperatures the scattering of c-electrons
on two lowest doublet gives rise to the Kondo resonances which accommodate most of
the f-charge, i.e., there are n ' nc +1/2 electrons in each of the resonant channels. The
4 excited f states give rise to simple scattering with constant phase shift. These non-
resonant channels have n ' nc electrons; they contribute to the residual resistivity but
not to the temperature dependent part of the resistivity.

The heavy mass is found in two resonant channels with n = nc + 1/2 electrons,
provided kF is close to the edge of the BZ. But this makes v2

KF
quite small and gives rise

to the T-dependent resistivity, ρ(T )' ρ0 + ÃT 2. In Ce compounds, heavy mass is seen in
systems with large Ã. In these systems, pressure gives rise to a further increase of Ã(P),
which might be due to the reduction of v2

kF
, because pressure increases hybridization and
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shifts the QP bands further apart. Since kF is fixed by the Luttinger theorem, pressure
reduces the dispersion and v2

kF
. Of course, the reduction of n f enhances TK but for µ

close to the band edge, the change in n f cannot be large and TK might not increase
sufficiently to compensate the reduction of v2

kF
. This might explain the initial increase of

Ã with pressure.
Above some critical pressure, the system becomes a valence fluctuator, i.e., the degen-

eracy of the f-state increases and the CF excitations vanish. All the f-channels are now
equivalent and single f-electron is distributed over 6 channels. There are nc + 1/6 elec-
trons in each channel and kF is shifted away from the edge of the BZ. The FS average of
v2

KF
and the characteristic energy are both enhanced, which reduces the coefficient Ã, as

seen in Wilhelm’s data [46]. A further increase of pressure increases the characteristic
temperature, without changing v2

KF
, i.e., above the critical pressure A decreases. Thus,

Ã(P) exhibits an asymmetric maximum.

The high-temperature ’poor man’s’ solution

At elevated temperature, the FL laws breaks down and to obtain α(T ) we need the full
solution of the periodic Anderson model with the CF splittings and/or large degeneracy.
Such a solution is not available at present and to estimate α(T ) we use a ’poor man’s’
approach. We assume that the conduction electrons scatter incoherently on the 4f ions
and calculate the transport relaxation time in the T-matrix approximation. We write
Σc(k,ω+) ' niTkk(ω+), where Tkk(ω+) is the single-ion scattering matrix on the real
axis, and for the stoichiometric compounds set the concentration of 4f ions to ni = 1.
Since transport integrals are restricted to the Fermi window, we average Tkk(ω+) over
the FS and calculate τ(ω) using Eq. (157). However, for a complete description, the
crystal field (CF) splitting has to be taken into account.

In the case of a single scattering channel (no CF splitting) the vertex corrections to
the T-matrix vanish by symmetry and the conduction electron’s self energy in Eq. (157)
is given by Σc(ω+) = V 2G f (ω+), where G f (ω+) is the retarded Green’s function of
the effective N-fold degenerate single impurity Anderson model. When the degeneracy
is lifted by the CF splitting the vertex corrections do not vanish but we neglect them
anyway and use

Σc(ω+) = ∑
Γ

VkF ΓGΓ(ω+)VΓkF , (182)

where VΓkF = 〈Γ|V |k〉 is the FS average of the matrix element for the scattering between
the c-electrons (in the k-state) and the f-state (belonging to the irrep Γ) and GΓ(ω+)
is the corresponding Green’s function of the single impurity Anderson model with CF
splitting.

As regards the validity of the ’poor man’s’ approach we point out that the
DMFT+NRG solution[63] of the spin-1/2 Anderson lattice shows that the electri-
cal resistance ρ(T ) increases rapidly and is very large at temperature TK where α(T )
has a maximum. For T ≥ TK/2, the thermopower of the lattice model[63] is very similar
to the exact results[64] obtained for the spin-1/2 Anderson impurity. This indicates that
the ’poor man’s’ approach can be used to describe the stoichiometric compounds at
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temperatures above TK/2, provided the single impurity scattering is solved by methods
which can deal with large Coulomb correlation and the CF splitting.

The experimental results on the heavy Fermion and valence fluctuators provide ad-
ditional support for the ’poor man’s’ approach. The data show that the residual resis-
tance of ternary and quaternary compounds like EuCu2(Ge1−xSix)2, CePt1−xNix and
YbIn1−xAgxCu4 grows rapidly with x and for 0.3 ≤ x ≤ 0.8 the mean free path is re-
duced by disorder to about a single lattice spacing. In these random alloys the electron
propagation is incoherent even at T = 0 and the single impurity model should apply
down to the lowest temperatures. At low doping and in stoichiometric compounds, the
impurity description breaks down at low temperatures where ρ0 is small. However, in
these systems ρ(T ) and α(T ) grow rapidly with increasing temperature (RT) and attain
large maxima at T ρ

K and TK , respectively. In the case of degenerate f-states or small CF
splitting, the data show[65, 66, 67] T ρ

K < TK < RT and for T ≥ T ρ

K /2 there is not much
difference between the stoichiometric compounds and doped systems, i.e., the impurity
model applies. For large CF splitting, ρ(T ) has two maxima: a low-temperature one at
T ρ

K and a high-temperature one at Tρ . The thermopower also exhibits two maximal: a
low-temperature one at TK > T ρ

K and a high-temperature one at TS. For T ≥ TK/2, where
the mean free path is short, the thermopower of periodic systems exhibits the same quali-
tative features as in random alloys, and can be explained in terms of impurity scattering.
The experimental data show that the functional form of α(T ) is strongly affected by
pressure or chemical pressure. The fact that all the qualitative features of the pressure-
induced variations of α(T ) can be successfully explained by impurity scattering justifies,
a posteriori, the ’poor man’s’ approach.

The thermoelectric properties of the single impurity Anderson model with the CF
split f-states are obtained by the NCA, which is explained in detail in Refs. [68] and
[69]. In the limit of large asymmetry and infinite f-f correlation, the Kondo temperature
TK , obtained from the low-energy peak of the spectral function[70], agrees with the exact
result[71], TK = 3γ/πkB. γ = (π2k2

B/3)NN f (µ)Z−1
f is the impurity contribution to the

specific heat coefficient, N f (µ) = (1/πΓ)sin2(πn f /N) is the f-DOS at the Fermi level,
and Z f is the renormalization factor. For a structureless c-DOS, the NCA shows that TK
depends sensitively on the degeneracy of the f-state. A small TK is found for small N
and large ∆CF , while a large TK is found for large N and small ∆CF . For a given N and
∆CF , the Kondo scale is a monotonic function of n f . It has a minimum at n f = 1 and
increases rapidly as n f is reduced. In what follows, we discuss the behavior of α(T )
assuming that pressure or doping increase the coupling constant g and reduce n f but do
not change ∆CF .

We consider first a N-fold degenerate f-state and show typical NCA results[68, 69, 61]
in Fig. 1, where thermopower is plotted as a function of temperature for several values of
E f . The calculations are performed for a half-filled, semielliptic c-band, no CF splitting
(N=8), and a constant hybridization Γ. A decrease of E f gives rise to an increase
of g, which mimics the effect of pressure in Eu intermetallics. The thermopower is
characterized by the Kondo maximum αS at temperature TS ' TK . The high-temperature
behavior depends strongly on the value of n f . [Since n f can be temperature-dependent
we characterize the system by n f (TK)]. For n f ' 1, the thermopower has a large high-
temperature slope, changes sign at T0 > TK and assumes large negative values above
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S(T) is much larger than in normal 
metals. 

S(T) changes with pressure.

At each pressure S(T) assumes a  
typical shape. 

Evolution of S(T):

(a)  for P < 2 GPa   (low pressure)
(b)  above  2 GPa  (intemediate P)
(c)  above  4 GPa  (high pressure)
(d)  above  8 GPa  (verz high P).

FIGURE 1. Thermopower of the single impurity Anderson model of a 8-fold degenerate f-state calcu-
lated by the NCA for fixed hybridization Γ = 0.015 eV is plotted as a function of temperature for several
values of E f , as indicated in the figure. The values of n f (TK) are 0.76, 0,81, 0,.86 0.91, and 0.93 for
−E f =0.12, 0.15, 0.18, 0.22, and 0.25, respectively.

T0. The TS and T0 increase, and the high-temperature slope of α(T ) decreases with
decreasing n f . For n f < 0.7, we still find a shallow maximum of α(T ) below RT but
the high-temperature slope is very small and the sign-change does not occur. A similar
behavior is obtained if the coupling constant g is reduced by increasing Γ. For smaller N,
we find the same qualitative features but αS and TS are reduced; for N = 2 and n f ' 1, the
asymmetry of the model is much reduced and the Kondo maximum is almost completely
suppressed.
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The CF splitting leads to additional features which we explain by the example of an f-
ion with two CF states separated by ∆CF . The respective degeneracies of the ground
and the excited state are M and M′, where M + M′ = N. The system now has two
characteristic low-energy scales: the Kondo temperature TK and a larger scale T N

K � TK
which comes into play[72] when the excited CF states become significantly populated
at temperature T∆ ' ∆/2. For T ≥ T∆, the thermopower can be approximated by the
function αN(T ) which describes an effective N-fold degenerate f-state with Kondo
temperature T N

K and exhibits all the features discussed in the previous paragraph. For
T < T∆, the excited CF states are unoccupied and the properties are determined by the
lowest CF state which is M-fold degenerate (typically, M �N). Thus, the thermoelectric
response of a CF split f-level is described at low temperatures by an effective M-fold
degenerate Anderson model with Kondo scale TK . All other parameters being the same,
the main difference between this effective model and a simple M-fold degenerate model
with Kondo scale T M

K = lim∆→∞ TK is that TK � T M
K . The enhancement of TK is due

to the virtual transitions from the ground to the excited CF states. The function αM(T )
which approximates α(T ) at low temperatures exhibits all the usual Kondo features. For
n f ' 1, it has a Kondo maximum at TK and changes sign at T0 > TK; in the case of a
doublet ground state the Kondo maximum is very small and α(T ) is negative down to the
lowest accessible temperatures. For 0.7 ≤ n f ≤ 0.95, the Kondo maximum is enhanced
with respect to n f ' 1, the high-temperature slope of α(T ) is reduced, and the sign-
change shifted to T0 � TK . For n f ≤ 0.7 the maximum of α(T ) is further enhanced but
the sign-change is absent. Of course, for T ≥ T∆ the excited CF states come into play
and αM(T ) ceases to be physically relevant.

These effects are illustrated for a ground state doublet and an excited quartet in Fig. 2,
where α(T ) is plotted as a function of temperature for various values of Γ(p). The CF
spitting ∆CF is the same for all the curves. An increase of pressure increases Γ(p) and
g(p), and reduces n f , which has a drastic effect on the functional form of α(T ). We
assume at ambient pressure n f ' 1 and choose Γ(0) and g(0) such that α(T ) < 0 at
RT. The corresponding NCA spectral function has well defined CF excitations[68, 69]
which show that the low-energy scales satisfy TK � T N

K � T∆. >From the previous
discussion we expect α(T ) with a very weak Kondo maximum at TK , a sign-change
at T0 > TK , and large negative values for T � T0. Nothing particular happens at T '
T N

K , where the excited CF states are still unoccupied. At T∆, the excited CF states
become thermally populated and the functional form of α(T ) changes from αM(T ) to
αN(T ). Thus, a system with a low Kondo scale and large CF splitting has α(T ) with a
negative maximum around T∆ and a deep negative minimum at low temperatures. The
thermopower of that shape is illustrated by Γ = 0.08 and Γ = 0.10 curves in Fig. 2,
classified[11, 69] as type (a).

If Γ(p) and g(p) increase, such that 0.8 ≤ n f ≤ 0.95, the NCA shows that the low-
energy CF excitations are still resolved and TK(p) < T N

K (p) < T∆. In this parameter range
the Kondo maximum of α(T ) is enhanced and shifted to higher temperatures, such that
αM(p,T ) > αM(T ) for T ≥ TK(p). The values of TK , T0(p) and T N

K (p) are much closer
to T∆ than at ambient pressure, and T N

0 (p) is now above T∆. Thus, at the crossover we
have αM(p,T ) < 0 and αN(p,T ) > 0. Since αN(p,T∆) is enhanced with respect to the
p = 0 values, pressure enhances the Kondo maximum and brings it closer to the CF
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FIGURE 2. Thermopower of an f-ion with the ground state doublet and excited quartet calculated by
the NCA for the CF splitting ∆ = 0.07 eV is plotted as a function of temperature for several values of the
hybridization strength Γ, as indicated in the figure. The two bottom curves describe the type (a) Kondo
system, the third curve from the bottom is type (b), the two middle curves are type (c) and the third
one from the top describes the type (d) Kondo systems. The two upper curves are type (e) and describes
valence fluctuators.

maximum. The temperature interval in which α(T ) < 0 shrinks with pressure, while TS
does not change. These features are demonstrated by the Γ = 0.12 curve in Fig. 2, which
is classified as type (b).

In the pressure range such that 0.75≤ n f ≤ 0.8 the sign-change of αM(T ) is pushed to
even higher temperatures and at large enough pressure (Γ) we have eventually T0(p) ≥
T∆. The doublet-sextet crossover starts from αM(T∆)≥ 0 and α(T ) still exhibits two well
resolved peaks but is always positive. These features are demonstrated by the Γ = 0.14
and Γ = 0.16 curves in Fig. 2, which are classified as type (c). A further increase of
pressure gives 0.7 ≤ n f ≤ 0.75, which brings TK(p) so close to T∆ that the Kondo
and the CF peak cannot be resolved any more. The α(T ) exhibits a single peak with
a shoulder on the low-temperature side, as shown by the Γ = 0.18 curve in Fig. 2, which
is classified as type (d). Note, as long as the low-energy CF excitations are well defined,
the thermopower has a peak at temperature TS ' T∆ and the magnitude of this peak
increases with pressure.

If Γ(p) and g(p) become very large and n f drops below 0.7, the spectral function does
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not show the CF excitations any more. The thermopower acquires a single maximum
at TS which is unrelated to ∆CF . The difference with respect to Kondo systems is
that pressure shifts this thermopower peak to higher temperatures without changing its
magnitude. Such behavior is typical of valence fluctuators and is demonstrated by the
Γ = 0.20 and Γ = 0.25 curves in Fig. 2, which are classified as type (e). The curves
in Fig. 1, which describe the system without the CF splitting such as Eu intermetallics,
are also of this type. The Yb systems are characterized by an f-hole and the qualitative
features of α(T ) are obtained by reflecting (’mirror imaging’) the curves in Figs. 1 or 2
on the temperature axis.

Falicov-Kimball model

The thermoelectric properties, the anomalous magnetic response of f-electrons and the
metal-insulator transition of the conduction states that accompanies the valence-change
transition in YbInCu4-like intermetallic compounds are very well described by the spin-
degenerate Falicov-Kimball model. The model considers a lattice of localized f-sites,
which can be either occupied or empty, and conduction states which are delocalized
via a nearest-neighbor hopping. The two types of electrons interact via a short-range
Coulomb interaction and share a common chemical potential, which controls the total
number of electrons n = nc +n f . The occupation of the f-states, which can be split into
several CF levels, is restricted to n f < 1. For a given total number of electrons, thermal
fluctuations can change the average f-occupation by transferring electrons or holes from
the conduction band to the f-states and vice versa. The interaction has to be large enough
to open a gap in the conduction band. We also assume that at low temperatures µ is
within the lower (or upper) Hubbard band, so that the ground state is metallic. Since the
model neglects quantum fluctuations, the ground state has no f-holes and the conduction
electrons are essentially free.

The Hamiltonian of the spin-one-half Falicov-Kimball model can be written as[73]

H =− t∗

2
√

d
∑
〈i, j〉σ

c†
iσ c jσ +E f ∑

i
wi +U ∑

iσ
wic

†
iσ ciσ , (183)

where c†
iσ (ciσ ) is the electron creation (annihilation) operator for an electron at site i

with spin σ , E f is the energy level of the localized electrons, wi is a variable that equals
zero or one and corresponds to the localized electron number, and U is the interaction
strength. The hopping integral is scaled with the spatial dimension d so as to have a
finite result in the limit [74] d → ∞; we measure all energies in units of t∗ = 1. We
work on a hypercubic lattice where the noninteracting density of states is a Gaussian
ρ(ε) = exp(−ε2)/

√
π .

The Falicov-Kimball model can be solved exactly by employing dynamical mean
field theory [75, 76, 77]. Because the self energy Σ(z) is local, the local Green’s function
satisfies

G(z) =
∫

dερ(ε)
1

z+ µ−Σ(z)− ε
, (184)
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with z anywhere in the complex plane (we suppress the spin index here). The self energy,
local Green’s function, and effective medium G0 are related by

G−1
0 (z)−G−1(z) = Σ(z), (185)

and the Green’s function also satisfies

G(z) = (1−w1)G0(z)+w1
1

G−1
0 (z)−U

. (186)

Here w1 is the average concentration of localized electrons,

w1 = 2exp[−β (E f −µ)]Z↑(µ−U)Z↓(µ−U)/Z, (187)

with Z = Z↑(µ)Z↓(µ)+2exp[−β (E f −µ)]Z↑(µ−U)Z↓(µ−U) and

Zσ (µ) = 2eβ µ/2
∏

n

iωn + µ−λσ (iωn)
iωn

. (188)

The factor of two arises from the spin degeneracy of the f-electrons and the constraint
that no more than one f-electron is allowed on any site. The symbol λσ (z) is defined
from the effective medium via λσ (iωn) = iωn + µ −G−1

0σ
(iωn), ωn = πT (2n + 1) is

the fermionic Matsubara frequency, and β = 1/T . The algorithm for determining the
Green’s function begins with the self energy set equal to zero. Then Eq. (184) is used to
find the local Green’s function. The effective medium is found from Eq. (185) and the
localized electron filling from Eq. (187). The new local Green’s function is then found
from Eq. (186) and the new self energy from Eq. (185). This algorithm is repeated until
it converges. The transport coefficients are obtained in the limit of infinite dimensions by
substituting the exact conduction electron Green’s function into Eq. (154) and evaluating
the integrals for transport coefficients numerically[78, 77].

The properties of the model exhibit all the features seen in the high-temperature
phase of the intermetllic with the valence-change transition. The calculations show that
the degenerate f-states become fractionally occupied at finite temperature and that the
additional paramagnetic entropy of these excited states competes for the free energy with
the excitation energy, the kinetic energy of the conduction electrons, and the interaction
energy[77]. This gives rise to a valence transition at a temperature TV , such that a
substantial number of electrons (in Eu compounds) or holes (in Yb compounds) are
transferred from the conduction band to the 4f ions. The onset of the 4f paramagnetism
is accompanied by the reconstruction of the interacting density of conduction states and
the shift of µ into the gap. Below TV the entropy of the system is given by the entropy
of the conduction states. Above TV the entropy is dominated by the contribution of the
localized, paramagnetic states. At intermediate temperatures the behavior can be quite
complex[78, 77], because both the degeneracy of the f-states and the number of charge
carriers change at TV . The large reduction of the α/S ratio at TV is an indication of the
reduction of Fermi volume.

As regards the thermal transport, the calculations show[78, 77] that the electrical
resistance of the paramagnetic phase is large and has a maximum at a temperature
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T ∗ � TV , which is of the order of the gap, or the pseudo-gap in the density of states.
The thermopower obtained by the DMFT is weakly temperature dependent and its sign
depends on the band filling. The maximum of α(T ) is also at T ∗. The dc-conductivity,
thermopower, and electronic contribution to the thermal conductivity, obtained by the
DMFT solution for U = 2 and five different w1 values are shown in Fig. 3 (for details
see [77]). For these parameters, there is always a region of exponentially small DOS
near the chemical potential at low temperature [but in this region τ(ω) decreases only as
a power law]. As the localized electron concentration w1 moves away from 0.5, the
high-temperature thermopower increases in magnitude due to the asymmetry in the
DOS (it must vanish at 0.5 due to particle-hole symmetry) and the low-temperature
thermopower shows a sharp peak for fillings close to half filling (the sign is hole-like,
because the DOS from the lower Hubbard band dominates the transport coefficients at
low temperature); the dc conductivity and thermal conductivity both vanish at low T due
to the “gap” as well. The thermoelectric figure-of-merit ZT = T σdcS2/κel is plotted in
Fig. 4—we find it is larger than one at high T for w1 < 0.22, and for fillings close to
half filling, there is a low-temperature spike in ZT that can become larger than one over
a narrow temperature range. The spike at low T is due to the large peak in S and the
small thermal conductivity; but the phonon contribution to the thermal conductivity can
sharply reduce ZT if the phonon thermal conductivity is much larger than the electronic
thermal conductivity (this all electronic calculation provides only an upper bound to ZT ).
The Lorenz number is also plotted in Fig. 4. It gets huge at half filling, but becomes more
metallic (≈ π2/3) as the filling moves further away from half filling. It is not a constant
even at low temperature because the system is not a Fermi liquid.

The above discussion shows that the DMFT calculations for a parameter set which
yields the valence change transition at TV = 50 K and opens a pseudo-gap of the order
of T ∗ ' 500 K, explains the main features of the magnetic susceptibility, the XPS data,
and the optical conductivity of the stoichiometric compound YbInCu4 at temperatures
above TV . The calculated thermopower[78] is of the order of a few µV/K, and its
sign is either positive or negative, depending on the band filling and the shape of the
conduction band. The proximity of µ to the pseudo-gap would lead (in a non-interacting
system) to a shallow minimum of α(T ) at a temperature of the order of T ∗, but in an
interacting system, the valence-change transition destabilizes the semiconducting phase,
and gives rise to a discontinuity of α(T ) at TV . The low-temperature FL state has a large
characteristic temperature and |α(T )| is a linearly increasing function of temperature.
Thus, a cusp or even a discontinuity appears in α(T ) at TV , in good agreement with the
experimental data.

FIGURE 3. (a) DC conductivity, (b) thermopower, and (c) electronic contribution to the thermal
conductivity, for the spinless FK model with ρe = 1−w1 and U = 2. Five fillings are shown: (i) w1 = 0.5
(solid line); (ii) w1 = 0.4 (dashed line); (iii) w1 = 0.3 (chain-dotted); (iv) w1 = 0.2 (dotted); and (v)
w1 = 0.1 (chain-triple-dotted). From Freericks and Zlatic, 2003 [77]
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FIGURE 4. (a) Lorenz number L k2
B/e2 = κel/σdcT and (b) electronic thermoelectric figure of merit

ZT = T σdcS2/κel for the spinless FK model with ρe = 1−w1 and U = 2. Five fillings are shown: (i)
w1 = 0.5 (solid line); (ii) w1 = 0.4 (dashed line); (iii) w1 = 0.3 (chain-dotted); (iv) w1 = 0.2 (dotted); and
(v) w1 = 0.1 (chain-triple-dotted). From Freericks and Zlatic, 2003 [77]
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70. B. Horvatić, and V. Zlatić, Phys. Rev. B 30, 6717–6731 (1984).
71. A. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, 1993.
72. K. Hanzawa, K. Yamada, , and K. Yosida, J. Magn. Magn. Mater. 47 & 48, 357 (1985).
73. L. M. Falicov, and J. C. Kimball, Phys. Rev. Lett. 22, 997 (1969).
74. W. Metzner, and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
75. U. Brandt, and C. Mielsch, Z. Phys. B 75, 365 (1989).
76. U. Brandt, and C. Mielsch, Z. Phys. B 79, 295 (1990).

Correlated thermoelectrics March 16, 2008 50



77. J. K. Freericks, and V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003).
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