
An Application Generator Based on UML Specification

KREŠIMIR FERTALJ, MARIO BRČIĆ
Department of Applied Computing

University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, Zagreb 10000

CROATIA

Abstract: - This paper presents a proprietary application generator based on UML specification. The tool is
designed for generating the source code in various programming languages from the same specification. The
main characteristics of the existent tools are explained in brief. Main generator capabilities and merits are
presented as well as an example of usage based on a relatively simple scenario.

Key-Words: - UML, CASE, application generator, source code templates

1 Introduction

At present and in the future, the technology
development is accompanied by an increase in
applications’ complexity. Code generators are used to
increase code quality and decrease development time,
since their goal is to generate repetitive source code
while maintaining a high consistency level of the
generated program code.

Code generation assumes the mission of writing
repetitive code parts, leaving to programmers more
time to concentrate on specific code. The generators
provide more productivity; generate great volumes of
code, which would take much longer if coded
manually. Consistent code quality is preserved
throughout the entire generated part of a project.
Required coding conventions are consistently
applied, unlike handwritten code, where the quality is
subject to variation. In case of finding errors in
generated code, the errors can be corrected in short
time through revising of templates and re-running the
process of code generation [1].

Code generators are delivered with limited set of
solutions for common problems in a target domain
and allow only limited possibility for extension.

Some tools generate only parts of applications
while the others generate whole applications. Code
generators are especially suited for database-founded
applications where large number of forms with
similar functionality are needed.

The source code generator presented in this paper
is based on UML specifications and on templates
written in XML/XSL. UML specifications are greatly
enriched with calls to parameterized snippets whose
implementation is delegated to the templates while
they are carrying semantic description of the model’s
requisites. The generator is relying on an existing
UML tool for delivery of UML capabilities and on its

extendible architecture [2]. The most important
characteristic of the generator is the preserved
flexibility towards the target programming language,
accomplished by code generation through two
transformations; first into an intermediate code and
then into the code of a selected target language. Since
the complexity of UML model can vary from simple
to highly complex, the tool provides wizards for
creation of the most common complex model parts
based on input settings.

2 Existing commercial tools

Many commercial products of different
applications and approaches to generation are
available on the market. In this paper, the
categorization based on inputs and outputs [1] is
used.

In the first category, code mungers, there are many
tools. Graphic languages, such as UML, can be used
as input language. Most of UML based generators do
not have their own UML development environment.
Instead, they use UML specifications made in other
tools as input in the form of XMI or some other
interchangeable format. Such working mode,
although exceptionally flexible, can face the problem
in extraction of all the data from specification due to
different UML tools’ particularities and varieties. On
the other hand, the UML development environment
can be a better option because it offers improved
control over the whole process and avoids
compatibility issues between the specification and
the code generator. Again, the code generating
functionality, configurability, flexibility and
extendibility are generally less extensive than those
of the aforementioned {code mungers without UML
IDE}. Sybase PowerDesigner is an example for such
a tool. Tools with specifications in non-graphic

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 379 ISBN: 978-960-474-028-4

languages also belong to this category. Their
disadvantage, besides the use of non-graphic
language for specification definition, is the reduced
control over specification deriving from smaller
manageability and intuitivity. MyGeneration is an
example for such tool.

Inline code expanders have proven to be rather
efficient in web applications with expanded code
written in a server-side script language. While these
tools can be efficient in their limited application area,
they are less extendible than the first category, since
the mere choice of an expandable language reduces
our possibilities. An example of inline code expander
is Iron Speed Designer which expands HTML code
with ASP tags and code-behind files.

Tool categorization as a partial class generator or a
tier generator depends on its templates. Tools in this
category are template –based and flexible. They
rarely provide a graphical language for specification
definition and instead they rely on database metadata
and tabular metadata inputs, making them non-
intuitive and awkward. MyGeneration and
CSLA.NET demonstrate these characteristics.

Fig.1 Main working principle

3 The main principle
The main idea of the tool presented in this paper is

code generation based on UML specifications, where
specifications are expected to be as rich as possible
and elastic with regard to the target language. Model
descriptions can be target language dependant or
target language independent. Target language
independent descriptions are stored in attributes
defined in shared profiles while target language

dependant ones are saved in attributes defined in
profiles specific for the target language.

Code generating is conducted through two chained
transformations. The first transformation is similar to
UML model XMI serializer [3] with the difference
that the intermediate code file is generated for each
model element. This model element is then defined
as a separate-file entity. All data stored in the UML
model are rewritten in the form of an XML file of
predefined format, called platform independent code
(PIC). Templates for the first transformation are
independent and invariant in respect to the target
language.

A second transformation follows. It is
accomplished by using the XSLT processor and
modularly written XSLT templates for each target
language. The input in this transformation is the PIC
file and the templates applied to it. The output of
XSLT processor is the target language source code
file as the result of template’s specifications. The task
of code munging is performed in the final phase as
the PIC is being transformed into the target language
via XSLT templates.

Considering that the two transformations are
concatenated, where the result of the first
transformation is the input to the second, it can be
formulated that a transformation pipeline has been
established.

4 UML specification

The tool in this paper is based on UML system
description. Model complexity can vary from simple
to highly complex with rich descriptions by means of
stereotypes and tagged values. The generator relies
on existing StarUML tool [2] for manipulation over
UML specifications through its open Application
Programming Interface (API).

4.1 Expressing actions

Actions can be expressed in the target language
code, as in the case of PowerDesigner, but the
preferred way is through a platform independent
language in the form of snippet calls. An element's
actions are specified by hand-coding in tagged value
BodyPICFragment, which expects the intermediate
code in XML format.

Snippets participate as model parameters,
semantically required to realize action, while the
details of realization are delegated to the snippet's
realization in the target language. This approach has
shown to be most effective as it is a high-level
description of an action, leaving enough freedom for
the optimal implementation on the target platform. If
it were using a lower level to describe an action, such

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 380 ISBN: 978-960-474-028-4

a description would be too closely bound to a specific
platform and it would reduce the specification
portability.

The next fragment presents
InsertIntoSelectedTableForm snippet call
within a method:

<cdgn:InsertIntoSelectedTableForm>
 <!--Calling insert form for selected table-->
<cdgn:ParamIndexes>
 <cdgn:ParamIndex Value="0" Ordinal="0" />
</cdgn:ParamIndexes>
</cdgn:InsertIntoSelectedTableForm>

From the example, it is evident that the object

parameter’s indices are the parameters to snippets.
Indices relate to parameters bound to a model’s
element (in this case operation), and they are
assigned to it through the SnippsParams tagged
value in the UML specification. The tagged values
make a collection of the model’s elements required
for all snippet calls from that object. Now the
parameter indices in the collection are the parameters
supplied to calls of snippets. The intermediate code
where the object’s parameters have been specified is
given in the following fragment:

<cdgn:SnippsParams>
<cdgn:Element Name="SelectForm.tableCB"

Path="::Design
Model::proj2::Controls::SelectForm.tableCB"
Stereotype="ControlInstance" Ordinal="0" />
</cdgn:SnippsParams>

In the case of an illustrative snippet generation into

C#, we get the following code:

Type form = Type.GetType("proj2.Promjenaproj2_"

+ tableCB.SelectedValue.ToString());
object forma= Activator.CreateInstance(form,

bind.DataSource);
MethodInfo method = form.GetMethod("Show", new

Type[0],null);
method.Invoke(forma, null);

From the presented code, it becomes obvious that

the snippet implementation in C# relies on .NET
platform specific features. If it were for some other
platform, the solution could turn quite different. If a
lower level specification of actions were used, it
would be detrimental to the platform independency,
because the formulations of solution to the same
problem, can differ in basic concepts due to different
platforms.

If the action code were intended to be written in a
specific target language, the code should be placed
inside XML tags specifying that language.

The C# example is given in the following

fragment:

<cdgn:TargetCode Language=”Cs”>
…
C# code
…
</cdgn:TargetCode>

5 Intermediate code

The first step of generation process is the PIC
generation. PIC is the code notation comparable to
pseudo-code. It is a set of XML directions for
transformations to generate the final target code.

PIC is a hybrid of:
• XMI-like form, giving the description of
pertinent UML specification in XML.
• Intermediate code of the programming

language, because UML component descriptions
contain coded snippets' calls and the target language
code fragments.

The code level is variable. In some occasions, it

can be low, resembling to the target language due to
general characteristics of the object-oriented
languages. However, the level can be high when
implementation details are delegated to a target
language prone to optimization. In all the cases all
metadata have to be supplied.

6 Templates

The templates are written in XSLT/XML. Their
task is the transformation of intermediate code into
the target language code. Currently, only the
templates for C# and MSSQL have been produced.
The templates for other languages can be written
easily. The requirement on a template is to be stored
inside its own subfolder of the generator's folder. The
subfolder name must match the pattern:
<LanguageName>Templates (e.g. the existing
subfolders are: CsTemplates, MSSQLTemplates). The
starting point for the second transformation is
basic.xslt, unless stated otherwise via specified
tagged values.

Template folders also contain XML files with data
type mapping and configuration data.

6.1 Metadata

The user can define her/his own metadata for each
transformation with the only constraint that it must
be in XML form. Metadata for a single template must
be enlisted in parameter file, which contains all the
inputs to the template and also a list of locations for
other pertinent metadata files. Location of the
parameter file is supplied to the relevant element
through the ParameterFile tagged value. The
location of a special starting point template can be

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 381 ISBN: 978-960-474-028-4

supplied to the element, if it is not the standard
basic.xslt.

7 Preservation of user added code

Preserving of the code added by a user is achieved
by using special, for that purpose intended regions in
the code. Existence of the regions is specified already
in UML specification by tagged values tied to
elements of the model. Regions can be the following:

• BeforeNamespace
• BeforeCode
• NoStartCode
• EndCode
• AfterCode

A region is defined by its beginning and end, and

the code within it becomes secured from possible
future erasure by the generator since the code had
been saved. Boundaries are marked by specially
formatted comments for the beginning and for the
end, formulated as follows:

startGenComment-elementGUID-regionName-{B for

region start | E for region end }-endGenComment

The elements written in italics are changeable.
The semantics of the changeable elements:

• startGenComment – denotes the beginning
of a comment in selected language. Preferably the
comment should span a row, but if the target
language does not support it then it serves as a simple
designation for the comment begin.

• elementGUID_– every element in StarUML
has its own GUID, a unique identifier that univocally
ties each element to its regions.

• regionName – is one of the following:
BeforeNamespace, BeforeCode, StartCode,
EndCode, AfterCode

• endGenComment – signs the end of the
comment. This element is optional since many
languages provide comments that span the row.

Example of a region in C#:

//ZIRgen-kesIeuSudU+DKDixbzkXkQAA-

StartCode-B
//ZIRgen-kesIeuSudU+DKDixbzkXkQAA-

StartCode-E

When a code is generated anew in the same

language, the generator extracts those regions and
inserts them in the newly generated code. Currently,
user added code preservation has been achieved only

for C#, and only for the elements of the model that
cause the generation of just a single file in the target
language.

8 Wizards

UML models can become very complex when it
comes to describing details of the parts of the system,
demanding a lot of metadata in the form of marked
values. These metadata usually have to adhere to
certain rules, therefore demanding that the user
knows the elements of the profile. Due to this
complexity, the tool includes wizards that use the
input settings to generate complex models for often-
used concepts, such as forms of user interface and
business objects.

The following are the wizards offered:
• DBReverse – wizard for reverse engineering

of database
• DBAccess – wizard for systems used for data

manipulation; input, alternation and erasing data in
the database
• UIDesigner – wizard for user interface.

Definitions of the user interface are generated based
on definition in the interface designer
• DBConceptTransform – wizard for

transformation of conceptual model into the physical
model.

9 Example of usage

In this section, an example of using the tools is
shown. The example of usage shows the construction
of a complex application with minimal effort due to
usage of the wizard, although the same could have
been done by manual designing. Resulting
specification is available for manual changes. With
minimal additional adjusting, the project can be
generated in languages for which patterns had been
written.

For UML specifications, StarUML tool is used and
the generator is connected via an open API. The
generated specification has to be located within the
model ”Design model“ of the UML specification.

9.1 Creation of the database model

The database model can be created from scratch, or
it can be created by reverse engineering of the
existing database using the DBReverse wizard. In our
case, we start with conceptual description of a
completely new database.

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 382 ISBN: 978-960-474-028-4

Fig.1 Conceptual database description

After having been conceptually described, the
database should be transformed into the relational
scheme, suitable for generating. It does not include
N:N relationships or associative classes, because they
are transformed into simpler forms. Conversion from
the conceptual to relational form is done using the
DBConceptTransform wizard.

Tables of the UML class are stereotypified by
„Table“. In this phase the profile ZIRgenDB, that
contains all the platform-independent elements of the
description of the database, is the mostly used. It is
possible to use the platform-dependent profiles with
additional descriptions of the database.

At the end of this phase, the layer of data storage is
ready to be generated in some of the languages of the
database management systems for which patterns are
avalable.

9.2 Constructing the database founded
application model

When constructing a model of multi-layer
application, the goal is to create an application of
similar functionality as offered by Iron Speed
Designer and MyGeneration with basic patterns.
UML model of such an application is extremely
complex with a lot of data and extensive usage of
different profiles provided. In order to manually
construct the model, the abilities of the generator
should be well known, as should be the profiles that
contain instruments for expression of the necessary
concepts.

In this case, the complexity and great demands on
the programmer are bridged by DBAcess wizard that
creates entire aforementioned architecture, starting
with the layer for accessing data through stored
procedures and business objects to user interface.

When starting the wizard, one of the databases
from current specification is selected, and then the
tables whose data are to be manipulated are chosen
from it via interface. Elements of the layers for data
access and business logic for all tables are then
created as specifications and user interface is created
only for the selected tables.

The new user interface can be accessed with
UIDesigner that enables graphical editing of the
form; adding of new controls, defining of their
features.

Fig.2 Generated UI for OrgUnit table

ZIRgen and ZIRgenUI are the most used profiles,
both with platform independent features. ZIRgen
profile features basic characteristics of the generator,
while ZIRgenUI features the characteristics needed
to describe the user interface. It is possible to use
platform dependant profiles for more precise
specification in wanted platforms.

The next layer to be generated from this part of the
model should access the data within CRUDQ stored
procedures that handle direct work with tables: insert,
reading, changing, erasing and listing.

Fig.3 CRUDQ stored procedures in UML

specification

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 383 ISBN: 978-960-474-028-4

The next paragraph shows a PIC code fragment
aimed for data inserting via stored procedures:

<cdgn:BodyFrag

xmlns:cdgn="http://www.fer.hr/ZIRgen"><cdgn:Creat
eStoredProcedure /></cdgn:BodyFrag>

which is further expanded with metadata in the first
transformation, i.e. the creation of complete PIC
system description.

The next layer is the layer of business objects
generated based on some of the existing architectures
written for the platform. Business objects contain a
part of the layer for accessing data as well as
business logic. Often, they also contain a part of
functionality tied to user interface. In case of this
generator, everything depends on implementation of
the patterns. For C# they currently do not contain
functionality that would be part of the user interface.
When selecting an OO language as target, from the
model of the database, basic abstract classes of
business objects are generated within the space of the
base name. They are created from the elements of the
tables and views that hold all business objects
necessary metadata. Also, as described in the model,
user business object classes are generated in the
UserOpen namespace. These classes inherit the base
classes, expanding their basic functionality, mainly
business logic, with user-added code.

Finally, the last layer of our multi-layer application
is the layer of user interface and presentation. These
two layers are usually joined in one, in a form such
as windows forms. However, for web pages they
remain separated, since the presentation is a part of
the web browser. For example, in the case of
Windows forms, event handling code and business
object binding code are generated in whole from the
user interface model elements.

When generating all the layers, except the one of
business objects, the generator behaves like a layer
generator. An entire layer is generated and it can
function even without the user code. When
generating business objects, the tool acts like a
generator of partial classes. Basic classes with basic
functionality are generated, while the rest of the
functionality and the business logic are left for the
programmer to implement within inherited classes.

10 Conclusion

Functionality of the presented generator acting
from UML specification, has its advantages over
typical patterns-based generation. Among advantages
are robustness of the system, configurability via
different, elaborate system descriptions and improved
manageability. On the other hand, the shortcoming is
greater complexity due to increased configurability

that causes generator and patterns written for it
dealing with great number of cases in order to secure
consistent and functional generated code.

According to code generator categorization [1], this
generator does not exclusively fit in either of the
categories, but it is a hybrid, featuring characteristics
of several types. Wizards that use input settings to
generate UML models are passive generators. Since
during generating translation is performed, in the first
phase, from UML to intermediate code, and then
from the intermediate code to the target language
code, using patterns written in XSLT, the generator
obviously features characteristics of the code-
translating generator too. There is a similarity with
generators of mixed code in regard of the regions
intended for preserving user code. It also features
characteristics of partial class generator due to the
way it generates business objects. On the other hand,
entire layers of user interface as well as data layer
can be generated which qualifies it as layer generator
too.

A very robust, powerful generator adaptable to user
demands has been created; with an ability to generate
in every language for which it has written patterns.
However, potential users are facing a long learning
process if they want to use all the abilities of the
program since extensive possibilities necessarily
incur complex specifications.

References:

[1] Herrington, J., Code Generation in Action,
Manning, 2003.

[2] Lee, M., Kim, H., Kim, J., Lee, J., StarUML 5.0
Developer Guide (PDF),
http://staruml.sourceforge.net, 2005.

[3] Object Management Group, MOF 2.0/XMI
Mapping, Version 2.1.1,
http://www.omg.org/docs/formal/07-12-
02.pdf, 2007.

[4] Dollard, K., Code Generation in Microsoft
.NET, Apress, 2004.

Proceedings of the 8th WSEAS International Conference on APPLIED COMPUTER SCIENCE (ACS'08)

ISSN: 1790-5109 384 ISBN: 978-960-474-028-4

