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ABSTRACT 
 This paper firstly sums up some of the views on structural 
redundancy with particular emphasis on ship and marine 
structures. Next, it places the engineering decision process in 
the event space and, consequently, applies the representation 
of operational modes by systems of events. Furthermore, the 
paper takes some of the relations from the entropy concept in 
information theory. The entropy concept in probability theory 
is employed in the paper to redefine the structural redundancy 
in terms of conditional entropy of operational modes. The 
redundancy modeling is presented by systems of operational 
modes in which some of the transitive events may lead to new 
operational states. Finally, a ship substructure example of a 
stiffened panel with a girder is elaborated. The conclusion 
supports the thesis that the efficient structural redundancy can 
be comprehended as the most uniform distribution of the 
operational modes probabilities. Moreover, the efficient 
structural redundancy can be maximized. 
 
1  INTRODUCTION 
 A majority of the engineering objects intended to be 
economical and reliable in service act at least as 'fail-safe' 
systems also described as damage tolerant systems or 
redundant systems. The traditional probabilistic system 
analysis of lasting interest in engineering of ship and marine 
structures based on physical and/or technical components of a 
system ([1], [2], [3]), may be extended by an event oriented 
system analysis (EOSA) [4]. When an engineering object, 
operating in an uncertain environment, is subjected to event-
oriented system analysis, the system redundancy relates to the 
conditional entropy of the probability distribution of 
operational modes [5]. Event oriented system analysis in the 
paper is applied in order to assess the probabilities and 
uncertainties of different functional states and modes of 
action. This paper argues possible benefits of representing 

ship structural components by systems of events. It describes 
how the conditional entropy of operational subsystem of 
events can model important property of ship structures, the 
redundancy. Redundancy is recognizable property of the 
complex engineering objects such as ship and marine 
structures ([6], [7], [8]). It can be considered as the capacity of 
a system to operate even when some of the physical 
components have failed; therefore it is a desired capability of 
all structures that tend to be reliable in service. Redundancy is 
usually related to system reliability and the optimization of 
system redundancy has been recognized as an effective 
method in reliability improvement ([9], [10], [11]). The 
redundancy can be quantified in deterministic [12], semi-
probabilistic terms [13] and probabilistic terms. The main 
disadvantage of deterministic measures of redundancy is that 
they do not take into consideration the statistical uncertainties 
of the system. The semi-probabilistic methods in redundancy 
assessment benefit from first order reliability analysis ([1], [2], 
[3]). The most widely used probabilistic measure of system 
redundancy is based on the conditional probability of systems 
survival given if one failure occurs ([14], [15]). 
A rational and objective probabilistic evaluation of 
redundancy includes statistical uncertainties of the considered 
system through an event-oriented system analysis [4]. In the 
EOSA the system uncertainty analysis is based on the concept 
of entropy as defined firstly in information theory ([16], [17]) 
and lately applied to probability theory ([21], [22]). The 
conditional entropy of failure modes provides insight in 
system’s robustness [5] and on other of operational modes 
provides insight in system’s redundancy ([18], [19]). A 
probabilistic model of geometrically over-determinate 
structures with transitive events provides an analogy to time-
variant redundant systems in engineering. 
Determination of the overall residual system capacity (residual 
strength) alone is not sufficient to assess the system 
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redundancy. It is necessary to consider the distribution of the 
residual strength among the remaining non-failed components 
since the remaining components of redundant systems, after 
some component has failed, may be able to sustain applied 
loads. In event-oriented system analysis the redundancy is 
viewed as a capability of a system to continue operations by 
performing different random operational modes of given 
probabilities in case of random failures of components. 
Performing another operational mode, the system may be 
brought on equal or on the reduced operational capacity. The 
operational capacities can be viewed either as the probabilities 
of operational modes or as the physical or technical working 
capacities of a damaged system.  
This paper briefly describes practical modeling of the 
reliability accompanied by redundancy of ship structures by an 
event-oriented system analysis [20]. The redundancy analysis 
in the example demonstrates that the conditional entropy of 
redundant structures is quantifiable and useful in 
understanding of behavior of ship structural systems in 
damaged conditions. Moreover, it appeared that the 
redundancy of structures can be maximized ([18], [20]). 
 
2  THEORETICAL BACKGROUNDS 
 Every engineering object can be viewed as a system S, of 
events Ei with probabilities p(Ei) = 1,2,…,N, where N is the 
total number of events. By operational modes and effects 
analysis, all, or at least all observable and important events in 
a lifetime service of a system, can be determined. Their 
probabilities can be calculated by quantitative methods. 
Beside events, a description of every system includes 
functional levels, functional states and functional modes. 
Since events, modes, states and levels can be of a different 
functional status, the EOSA requires somewhat complex 
notation to model the behavior of a redundant system [18]. 
The following designations for a functional status 's' are used: 
i-intact, c-collapse, t-transitive, n-non-transitive, o-
operational, f-failure, d-damage, s-serviceability and 
combinations. A functional level is a system of events 
comprising of all functional states of an object. Redundant 
structures are modeled by systems that have 2 or more 
functional levels. Initial intact structure is described on the 
first functional level. After failure of one or more structural 
components, the system transits from the first level to the 
second level. Further failure causes the system to transit on the 
third level, and so on. Furthermore, on every level system can 
have one or more functional states, which are systems 
composed of modes and represent distinguished independent 
ways the object performs its functions with full or with 
reduced operational capacity. Finally, functional modes are 
subsystems of events with a common status 's'. 

l s

j i
E  is an event of status 's', where l = 1,2,…, n is a functional 

level and 1,2,..., l
j n=  is a functional state of a level, 

1,2,..., l s

j
i N= , and l s

j
N  is the number of events within a 

functional level, state or mode. Systems and subsystems of 
events are usually presented as finite schemes [21]: 

1
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j
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j j i j N
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where s is a functional mode of a status 's'. 
Events can be appropriately grouped according to their 
functional status and then adequate subsystems of events can 
be formed. Thus the system of events can be presented as a 
sum of subsystems. For redundancy calculation the 
subsystems of interest are intact, transitive and collapse: 

( ) ( )1 1 1 1 1
1 1 1 1

i t c
S S S S S= = + +  

where ( ) ( )
l s
j

l s l s

j j

allE E

p S p E
∈

= ∑ . 

Systems are either complete when Σp(Ei)=1 or incomplete 
when Σp(Ei)<1. 
 
2.1 General relations among the probabilities, 
uncertainties and entropy 
 EOSA applies the entropy concept to assess the effects of 
the number of events and dispersion of their probabilities, as 
well as the possible redistribution of loads after failures. The 
concept of entropy is known in the information theory ([16], 
[17], [21], [22]) entropy is a simple logarithmic function that 
measures uncertainty related to the occurrence of some event, 
i.e. a function that measures the information yielded by the 
event. The entropy of a single stochastic event E is thus 
defined as ( ) ( )logH p p E= −  and corresponding uncertainty 

of a system of events denoted as the Shannon's entropy is [16]: 

 
1

( ) log
n

i i

i

H S p p
=

= −∑  (1) 

For incomplete systems of events more appropriate is the 
Renyi's entropy [17]. 
The most important properties of the entropy are: 
– increases with the increasing number of events in the 

system, 
– maximum value is attained when probabilities of all events 

are equal, 
– entropy is zero if there is no uncertainty, i.e. one event has a 

probability of occurrence 1, 
– it does not depend on the sequence of the events and 

represents the only rational measure of uncertainty 
(uniqueness theorem) 

Since events of a system can be grouped into adequate 
subsystems according to their operational or failure statuses, 
the system S can also be presented as a summa of operational 
and failure subsystem [4] as shown: 

( ) ( )
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...
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where So and Sf  are operational and failure subsystems: 
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N = No+Nf is the total number of events in the system S. 
The reliability of a system is equal to the probability of 
occurrence of the subsystem of operational events: 

 ( ) ( ) ( )
1

oN

o o

i

i

R S p S p E
=

= =∑  (2) 
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The probability of failure of a system is equal to the 
probability of a failure subsystem: 

 ( ) ( ) ( )
1

o f

o

N N

f f

f i

i N

p S p S p E

+

= +

= = ∑  (3) 

With presented schemes is possible to model any engineering 
object, including components of ship structures. EOSA can be 
applied to any relations among subsystems, inclusive or 
exclusive and with dependent or independent events under the 
condition of adequate partitioning of a system of events.  
 
2.2  Redundancy definition 
 A system of events can be viewed conditionally, i.e. under 
a condition that it is operational: 

 ( )
( )

( )
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   where ( )o i t
S S S= + . 

The conditional entropy of a system is defined by using (1) as: 

 ( )
( )
( )
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/ log
o

o
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One can notice that entropy of an operational subsystem does 
not depend on the probability of a system p(S) and also it does 
not depend whether the system is complete or incomplete. In 
EOSA the efficient redundancy of a system of events is 
comprehended as capability of a system to continue operations 
by performing different random operational modes of given 
probabilities in case of random failure of components. The 
redundancy is related only to the uncertainty of the operational 
subsystem [4] and it is defined (measured) as conditional 
entropy of a subsystem of operational events: 

 ( ) ( ) ( )/ /
o

o o

NRED S S RED S H S S= =  (5) 

 
2.3. Modeling redundant systems 
A general procedure below, analogous with multi-level 
systems of events ([18], [19], [20], [23]), presents how to 
perform EOSA on redundant objects: 
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where 1l l t

j i
S E

−∩  is a compound functional state, i.e. a 

subsystem of those events on a considered level, which 
represent an emerged fully functional and independent state in 
a case that a specific transitive event occurred on the previous 

functional level. Transitive events on level  l will cause 
emergence of new states on the level l+1 to emerge, transitive 
events on level  l+1 will cause emergence of new states on the 
level l+2 to, and so on. On every level a system is analyzed: 
all the events are enumerated and sorted according to their 
functional modes into adequate subsystems. 
 
3  EXAMPLE 
 The paper considers a part of longitudinally stiffened 
structure located at deck amidships of a double-hull tanker, 
(Fig.1), with following general characteristics: length between 
perpendiculars 174,8m; beam 31,4m; draught at full load 
12,2m; Cb = 0,82; depth 17,5m; height of neutral axis from 
bottom 7,552m; displacement (full load draught) 47400tons 
[19]. 
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Figure 1.  Part of the deck structure with marked structural 

elements (1 – 7), (Level 1 structural configuration) 
 
The part of the deck consists of 3×bulb longitudinal (HP), one 
T-longitudinal and 3×plates between longitudinals. Generally, 
the finite element method (FEM) can be applied to predict the 
behavior and determine the strength of stiffened panels of ship 
structures. Although FEM will yield fairly accurate results, the 
analysis is time consuming and hence has not been adopted in 
this study. The example employs the DNV Rules for Ships for 
load and strength analysis ([24], [25]). Structural analysis 
approved that the considered structural configuration remained 
operational even when some components have failed, i.e. the 
remaining components were able to sustain redistributed load. 
Each level of functioning as well as individual operational 
states on each level was modeled by systems of events and 
redundancy calculation was carried out. All longitudinals and 
plating between longitudinals were involved in redundancy 
calculation as load carrying elements giving the total number 
of seven structural elements on the first functional level, six 
elements on the second functional level (Fig. 2) and five on 
the third functional level (Fig. 3). 

    
Figure 2.  Level 2 configurations 

 

 
Figure 3.  Level 3 configuration (non-redundant structure) 
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There is 11 failure modes associated with the seven structural 
elements considered, thus the first functional level has n=11 
basic events designated l

j i
A , i = 1, 2,…11. Reliability indexes 

are calculated by [26]: 

 
2 2

l l
j i j i

l l
j i j i

C Dl

j i

C D

µ µ
β

σ σ

−
=

+
 (6) 

where l
j iC

µ  represent the mean values of stress random 

variables. In the cases of yield failure mode of longitudinals 
the mean values were taken as 60% of the material yield 
stress. In the cases of a buckling failure mode the mean values 
were taken as calculated from the DNV formulas for critical 
buckling stress ([24], [25]) for the corresponding structural 
element. l

j iD
µ represent the mean values of load stresses 

determined in structural analysis. l
j iC

σ and l
j iD

σ  represent 

corresponding standard deviations of the variables. We 
assume here that all the stress random variables are 
independent and uncorrelated with linear safety margins for all 
functional levels and states. Also all stress variable are log-
normally distributed with coefficient of variation (COV) of 
0,7 ([27], [28]). Reliabilities and collapse probabilities are 
calculated respectively: 

( ) ( )1 1i

j i j iR p A β= = Φ −    and   ( ) ( )1 11c i

f j i j ip p A p A= = −  

where Φ is the standard normal density function. For levels 
with only one state j index can be omitted for simplicity. The 
results for the first functional level are given in Table 1. 
The buckling of plates between longitudinals, the torsional 
buckling of longitudinals and the yielding of longitudinals due 
to deck design load may lead in total to 11 failure modes at the 
first functional level.  
The mean values of the wave induced bending moments and 
design pressure on deck were taken as calculated according to 
the DNV Rules. The mean values of the still-water bending 
moments were taken as given in the trim and stability book for 
the full load state. Statistical properties of random variables 
were chosen from literature, tables 2-6, ([27], [29], [30]). 
 
Table 2. Material characteristics (mild shipbuilding steel) 

 Mean value Distribution COV 

Yield stress 235,0 N/mm2 Log-normal 0,06 
Modulus of elasticity 206000N/mm2 Normal 0,01 

 

Table 3. Loads 
 Mean value Distr. COV 

Stillwater B.M.(sag.) 296252 kNm Normal 0,4 
Stillwater B.M.(hog.) 244690 kNm Normal 0,4 

Wave Induced B.M.(sag.) 1533336 kNm Gumbel 0,09 
Wave Induced B.M.(hog.) 1428791 kNm Gumbel 0,09 

Design pressure(deck) 13,6 kN/m2 Normal 0,09 
 

Table 4. Geometry (random variables) 
 Mean value Distribution COV 

Width of effective plate 
flange 

800,0mm Normal 0,01 

Section modulus 
(longitudinals and plate 

flange bi) 
326,3cm3 Log-normal 0,04 

Midship section 
modulus at deck 

16,14 m3 Log-normal 0,04 

 
Table 5. Properties of the deck structure (all levels) 

 
Level 

l=1 

Level 

l=2 

Level 

l=3 

Panel cross sectional area in cm2 392 360 327 
Panel neutral axis in cm 9,3 8,9 8,4 
Panel moment of inertia in cm4 74021 71021 67785 

 
Table 6. Geometry (deterministic variables) 

Thickness of plating, tp 14,0 mm 
Bulb longitudinals HP 220 ×11,5 
Span of longitudinals, l 5,08 m 
Spacing of longitudinals, s 0,8 m 
Web height (T-profile), ht 450 mm 
Web thickness (T-profile), tt 14 mm 
Flange width (T-profile), bt 100 mm 
Flange thickness (T-profile), tb 14 mm 

 
The number of compound events 1

l

j N
E on the first functional 

level is: 1
N = 2n = 211 = 2048. There is only one intact 

functional state represented by the event 1
1
iE . Collapse of 

either one of the longitudinals HP2 or HP3 causes transition 
from the first functional level (Fig.1) to the second functional 
level (Fig.2). There is 1

N
t = 15 transitive events on the first 

functional level, denoted l t

j
E . The remaining 1

N
c=2032 events 

on the first level represent collapse of the structure. 
 

Table 1. EOSA results for the first functional level l = 1, j = 1, intact mode 

Basic event l i

j i
A  i µC N/mm2 µD N/mm2 σC N/mm2 σD N/mm2 β R pf 

Buckling of plating 1 1 181,7 127,9 12,7 12,7 2,98265 0,99859 0,00141 
Buckling of plating 2 2 181,7 127,9 12,7 12,7 2,98265 0,99859 0,00141 
Buckling of plating 3 3 181,7 127,9 12,7 12,7 2,98265 0,99859 0,00141 
Yielding of T longitudinal 4 141,0 63,7 9,87 12,7 4,79648 0,99999 0,00001 
Buckling of T longitudinal 5 192,1 127,9 13,4 12,7 3,45939 0,99972 0,00027 
Yielding of HP1 longitudinal 6 141,0 74,8 9,87 14,9 3,69367 0,99988 0,00011 
Yielding of HP2 longitudinal 7 141,0 74,8 9,87 14,9 3,69367 0,99988 0,00011 
Yielding of HP3 longitudinal 8 141,0 74,8 9,87 14,9 3,69367 0,99988 0,00011 
Buckling of HP1 longitudinal 9 179,4 127,9 12,5 12,7 2,87316 0,99797 0,00203 
Buckling of HP2 longitudinal 10 179,4 127,9 12,5 12,7 2,87316 0,99797 0,00203 
Buckling of HP3 longitudinal 11 179,4 127,9 12,5 12,7 2,87316 0,99797 0,00203 
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Events are appropriately grouped according to their functional 
mode and the structure is modeled by the system of events 
with three subsystems: intact, transitive and collapse. 

The system can be written as ( )1 1 1 1 1
1 1 1 1= = + +i t c

S S S S S . 

The probability of occurrence of intact state on the first 
functional level is calculated as: 

( ) ( ) ( )
11

1 1 1
1 1 1 1

1=

= = =∏i i i

i

i

p E p S p A 0,9752. 

The probabilities of transitive can be calculated likewise: 

( ) ( ) ( ) ( )
6 11

1 1 1 1
1 7

1 8= =

= ⋅ ⋅ =∏ ∏t i c i

z z

z z

p E p A p A p A 0,1853×10-3 

( ) ( ) ( ) ( )
7 11

1 1 1 1
2 8

1 9= =

= ⋅ ⋅ =∏ ∏t i c i

z z

z z

p E p A p A p A 0,1853×10-3 

( ) ( ) ( ) ( )
9

1 1 1 1
3 10 11

1=

= ⋅ ⋅ =∏t i c i

z

z

p E p A p A p A 0,5985·10-2 

The results for the remaining events are given: 

( )1
4
t

p E = 0,5985·10-2, ( )1
5
t

p E = 0,3522·10-7, 

( )1
6
t

p E = 0,1137·10-5, ( )1
7
t

p E = 0,1137·10-5, 

( )1
8
t

p E = 0,1137·10-5, ( )1
9
t

p E = 0,1137·10-5, 

( )1
10
t

p E = 0,3673·10-4, ( )1
11
t

p E = 0,2162·10-9, 

( )1
12
t

p E = 0,2162·10-9, ( )1
13
t

p E = 0,6981·10-8, 

( )1
14
t

p E = 0,6981·10-8, ( )1
15
t

p E = 0,1327·10-11 

Probability of the subsystem of transitive events is: 

( ) ( )
15

1 1
1

1=

= =∑t t

j

j

p S p E 0,0124. 

The subsystem of transitive events can be considered as the 
residual strength of a redundant structure in case of failure of 
some components. The probabilities of individual collapse 
events are not listed here due to large number of events. 
Probability of the subsystem of collapse events is: 

( ) ( )
2032

1 1
1

1=

= =∑c c

j

j

p S p E 0,0125. 

The second functional level occurs when the one of 
longitudinal, HP2 or HP3, collapses. The remaining structure 
is still operational but with reduced carrying capacity. It is 
assumed that collapsed longitudinal has no carrying capacity 
at all. The load is then redistributed to the remaining elements 
of the deck and the new values of reliability and probability of 
failure must be calculated. When one longitudinal fails the 
structural configuration reduces to 6 carrying elements: 
3×plating, T longitudinal and remaining HP longitudinals. 
Hence, the system of events on the functional level l=2 has 9 
basic events with probabilities calculated in a same way as for 
the first functional level: 

( )2
1 1

i
p A = 0,9955, ( )2

1 2
i

p A = 0,9955, ( )2
1 3

i
p A = 0,9955, 

( )2
1 4

i
p A = 0,9999, ( )2

1 5
i

p A = 0,9960, ( )2
1 6

i
p A = 0,9999,  

( )2
1 7

i
p A = 0,9999, ( )2

1 8
i

p A = 0,9855, ( )2
1 9

i
p A = 0,9855. 

Probabilities of occurrence of compound events 2
j i
E can easily 

calculated as for the first level. For example, the probability of 

intact event is: ( ) ( )
9

2 2
1 1 1

1

i i

i

i

p E p A
=

= =∏ 0,9541. 

The second level also includes three subsystems: intact, 
collapse and transitive, since there are events on this level that 
can cause emergence of the third functional level (failure of 
HP2 or HP3 longitudinal). The second level can be modeled 
by following system of events: 

( )1 1

2 1 2 1 2 1 2 1 1
1 1, ,..., ,..., ,t t

i t t t c

j j N N
S S S E S E S E S= ∩ ∩ ∩ . 

This level consist of non-transitive events from the first level 
(intact, collapse) and new states that emerge due to occurrence 
of some transitive event on the previous level (compound 
events 2 1

1 1 ,...tS E∩ ). From 15 transitive event on the first level 

the 15 compound states j=1,2,…,15 will emerge on the second 
level, but only six of those are transitive. Every transitive 
compound state has 3 transitive events causing emergence of 
18 new states on the third level (Fig.4). The probabilities of 
occurrence of transitive state j=1 on the second level are 
calculated as follows: 

( ) ( ) ( ) ( ) ( )
6

2 2 2 2 2
1 1 1 1 7 1 8 1 9

1

t i c i i

i

i

p E p A p A p A p A
=

= ⋅ =∏ 0,9555·10-5 

( ) ( ) ( )
8

2 2 2
1 2 1 1 9

1

t i c

i

i

p E p A p A
=

= ⋅ =∏ 0,1407·10-1 

( ) ( ) ( ) ( ) ( )
6

2 2 2 2 2
1 3 1 1 7 1 8 1 9

1

t i c i c

i

i

p E p A p A p A p A
=

= ⋅ =∏ 0,1408·10-6 

Probabilities of the remaining 15 transitive events and 
compound collapse events can be calculated in a same way 
Since the total number of compound events on the second 
level is 2N = 9713 the probabilities of remaining events are not 

listed here. The reliability ( )2 i
p S  and probability of 

failure ( )2 c
p S  for the second functional state are: 

( ) ( ) ( ) ( ) ( )
21 1

2 1 2 1 2

1 1 1

it t
j NN N

i t i t i

j j i j j

j i j

p S p E p E p E p S
= = =

= = =∑ ∑ ∑ 0,0118 

( ) ( ) ( ) ( ) ( )
21 1

2 1 2 1 2

1 1 1

ct t
j NN N

c t c t c

j j i j j

j i j

p S p E p E p E p S
= = =

= =∑ ∑ ∑ =5,6·10-4 

The cumulative (overall) reliability of the system includes all 
the probabilities of intact states on the first level as well as all 
the probabilities of compound intact states on the second level 
and transitive states on the first level: 

( ) ( ) ( )2 1 2o i i
p S p S p S= + = 0,9869. 

Adequately, the total probability of failure is then: 

( ) ( ) ( )2 1 2f c c
p S p S p S= + = 0,0125 + 5,689·10-4 = 0,0131. 

The third functional level l = 3 arises when failure of both 
longitudinals, HP2 and HP3, occurs and not necessarily 
simultaneously. On the third level there is 5 structural 
elements remained to carry the load (Fig. 3): 3 × plating, T 
longitudinal and HP1 longitudinal. That structural 
configuration represents non-redundant structure, since further 
damage of any element will cause the entire structure to 
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collapse. The number of basic events on the third level is 
connected to the number of possible types of failure of the 
elements hence giving 7 basic events 3 7

j
n = . 

There are 18 operational states at this level emerging from 
j=1,2,…,18 compound transitive events on the second 
functional level. Each of the 18 operational states on the third 
level has one intact state. The remaining events are all 
collapse events, i.e. there are no transitive events on the third 
level.  
The total number of events on the third level is 3N=12017. The 
probabilities of the events for the j = 1 are: 

( )3
1 1

i
p A =  0,9874, ( )3

1 2
i

p A = 0,9874, ( )3
1 3

i
p A = 0,9874, 

( )3
1 4

i
p A = 0,9999, ( )3

1 5
i

p A = 0,9887, ( )3
1 6

i
p A = 0,9999, 

( )3
1 7

i
p A = 0,9660 

Probabilities of intact and collapse states are:  

( ) ( ) ( )
7

3 3 3
1

1

Si i i

j j j i

i

p p E p A
=

= = ∏ 0,919547,   j = 1,2,...,18 

( )3Sc

jp = 0,0804, j = 1,2,...,18. 

The third level is modeled as the system of events consisting 
of the non-transitive events on the second level together with 
the new states on the third level (compound events): 
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Compound probabilities on the third level are equal to the 
probabilities of the transitive events on the previous levels: 

( ) ( ) ( ) ( )3 2 1 3 2 1t t t t

j j k j j k
p S E E p S p E p E ∩ ∩ =  . 

Reliabilities ( )3 i
p S and probabilities of failure ( )3 c

p S  are: 
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The third functional level can be also viewed as a system 

compound of subsystems ( )3 3 3o f
S S S= + , 

where the subsystem of operational states is 

( )3 1 2 3o i i i
S S S S= + + and subsystem of failure states is 

( )3 1 2 3f c c c
S S S S= + + . 

The overall reliability includes all probabilities of intact states 
of the first level as well as compound probabilities of 
transitive and intact states on the second and the third level is: 

( ) ( ) ( ) ( )3 1 2 3o i i i
p S p S p S p S= + + = 0,9870. 

The total probability of collapse includes all probabilities of 
collapse states on the first level as well as compound 
probabilities of transitive and collapse states on the second 
and third level: 

( ) ( ) ( ) ( )3 1 2 3f c c c
p S p S p S p S= + + = 0,0130. 

One can see that ( ) ( )3 3o f
p S p S+ = 0,9870 + 0,0130 = 1, i.e. 

the system of events that models the structure is complete. 
 
3.1 Redundancy calculation 
The maximum entropy of the system of events on the first 
functional level is log (1

N)=log (2048) = 11,0 [19]. The 
conditional entropy of the first functional level with respect to 
the operational modes denoted as redundancy with respect to 
the operational mode is according to (4) and (5): 
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The conditional entropy of the system of events for the second 
level is then: 
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Redundancy of the system of events after inclusion of the third 
level in the model is calculated by: 
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( )3Si
RED = 1,1971 and ( )3

max
SiRED = 4,1699. 
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Figure 4. EOSA model of multi-level system of events that represents part of the deck structure 

 
3.2 Redundancy analysis 
The starting configuration, Fig. 1, is modified by changing 
spacing between longitudinals. The structural redundancy is 
investigated for spacing b1 and b2 ranging between 63cm and 
97cm (initial spacing is 80cm). For a number of obtained 
systems of events the redundancies as well as the reliabilities 
and probabilities of failure of the systems are calculated. The 
following requirements have to be satisfied in the analysis: 

a) The reliability of a modified structure must be equal or 
larger than the reliability of the initial structure. 

b) The weight of a modified structure has to be equal to 
that of initial structure, i.e. the increase of the system's 
redundancy is not gained by increasing the strength of 
the existing structural elements or by introducing 
additional elements to the structure. 

The results of the analysis are presented in Fig.5 and Table 7. 
 

 

Figure 5. Redundancy based design - results 

Table 7. Results of the redundancy analysis 
Spacing 
between 

longitudinals in 
cm 

Reliability 
Prob. of 
failure 

 

( )3 o
p S  ( )3 c

p S  ( )3 i
RED S  

b1=63; b3=97 0,954 0,045 1,1663 
b1=65; b3=95 0,967 0,033 1,4705 
b1=67; b3=93 0,975 0,025 1,6959 
b1=68; b3=92 0,978 0,022 1,7553 
b1=69; b3=91 0,981 0,019 1,7769 
b1=70; b3=90 0,983 0,017 1,7621 
b1=71; b3=89 0,984 0,120 1,7214 
b1=72; b3=88 0,985 0,013 1,6607 
b1=73; b3=87 0,986 0,013 1,5924 
b1=74; b3=86 0,987 0,013 1,5199 
b1=75; b3=85 0,987 0,013 1,4486 
b1=78; b3=82 0,987 0,013 1,2774 
b1=79; b3=81 0,987 0,013 1,2362 
b1 = b3 = 80 0,987 0,013 1,1971 

b1=81; b3=79 0,987 0,013 1,1502 
b1=85; b3=75 0,982 0,018 1,0957 
b1=89; b3=71 0,971 0,022 1,0573 
b1=95; b3=65 0,928 0,082 1,0342 

 
The following points are outlined from this analysis: 

• The study presented herein allows design selection 
based on maximal redundancy, for different levels of 
primary, secondary and overall reliability. 

• For a number of considered structural configurations 
reliability changes only slightly while the redundancy 
has clearly expressed maximum. 

• The maximal redundancy, is attained for b1=69cm 

and b3=91cm, indicating the most uniformly 
distributed compound probabilities of intact modes 
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for each structural element. Maximum redundancy is 
achieved without incrasing the weight of the 
structure. 

• For b1=74cm and b3=86cm, the redundancy of 
reconfigured deck structure is larger than that of the 
intial structural configuration while at a same time 
the reliability remains unchanged. This shows that 
EOSA can be used to indicate a different design 
solutions without affecting existing criteria. 

 
CONCLUSION 
 This paper indicates that the event-oriented analysis of 
redundant ship structural components exposed to successive 
component failures, which change the system configuration 
and provoke a redistribution of loads and capabilities, is a 
complicated but feasible task. The event-oriented analysis is 
performed entirely in the event space where different types of 
events can be identified and involved in the analysis. The 
relation between the event space and the physical world can be 
defined empirically by statistical methods, theoretically by 
employing random variable models or by their combinations. 
Ship structural components acquire new functional states after 
reconfiguration due to element failures and a redistribution of 
loads. Minimal probabilistic safety requirements are 
considered by employing reliability methods. The applied 
redundancy measure accounts for a number of events as well 
as for probability distributions and is expressed by the 
conditional entropy of transitive and operational functional 
modes, independent of the system reliability and residual 
strength. EOSA provides probabilities of successive 
operational levels and functional states, regardless of the 
ordering and succession of events. High redundancy indicates 
a uniform distribution of probabilities, as well as more 
economical allocation of system capabilities with respect to 
the system performance. 
 An example of a part of longitudinally stiffened structure 
located at deck amidships of a double-hull tanker under 
random loads demonstrates application of EOSA in 
description of multi-level transitive behavior of redundant ship 
structural components. The part of the deck is modeled by 
systems of events on three functional levels. Typical types of 
failure of considered structural elements are included in the 
analysis. Intact, transitive and collapse event sequences, 
independent of a time, are appropriately grouped into 
subsystems of different functional modes. The proper 
partitioning of systems allows measuring redundancy as 
conditional entropy of operational subsystem of events. The 
example indicates that for the complete insight into redundant 
system behavior all functional levels should be considered. 
The check of reliability of operational states on the second and 
third level, which emerge after failure of structural element 
occurs, are important for assessing the overall system 
redundancy. The redundancy analysis showed how design 
variables influence reliability and redundancy. A detailed 
numerical investigation illustrates the results of redundancy 
analysis in order to demonstrate benefits of the EOSA. It is 
demonstrated that it is possible to maximize redundancy 
without increasing the weight of a structure. Moreover, it is 
possible to detect a structural configuration with higher 
redundancy without affecting existing design criteria like 

reliability of the structure. The example confirmed that 
components of ship structures can be modeled by systems of 
events and that redundancy of ship structures can be 
quantified in a different and useful manner. 
 Possible problems in application of EOSA to ship 
structures should also be pointed. EOSA of complex parts of 
ship structures involves grueling counting and grouping of a 
large number of events. Also, highly-redundant parts of ship 
structures are multi-level operational with possible complex 
interactions between functional levels provoking considerable 
increase of computational efforts. These problems can be 
partially reduced by careful partitioning of systems of events 
and separate calculations for subsystems on different 
functional levels due to additivity property of entropy. The 
numerical difficulties can be overcomed by powerful 
computational means. 
 But regardless of some difficulties this paper points out 
that EOSA approach may contribute to design improvement 
and assure more appropriate lifetime service of ship structural 
components under uncertain circumstances. 
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