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INFERENCE PROCEDURES FOR FUZZY KNOWLEDGE
REPRESENTATION SCHEME

Slobodan Ribarić1 and Nikola Pave�ssić2
1Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
2Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

& This article presents a formal model of the knowledge representation scheme based on the fuzzy
Petri net (FPN) theory. The model is represented as a 13-tuple consisting of the components of the
FPN, two functions that give semantic meanings to the scheme and a set of contradictions. For the
scheme, called the knowledge representation scheme based on the fuzzy Petri nets theory (KRFPN)
the fuzzy inheritance and fuzzy recognition-inference procedures based on the dynamical properties
of the FPN, are described in detail. The upper-time complexity of both the proposed inference algo-
rithms is O(nm), where n is the number of places (concepts) and m is the number of transitions
(relations) in the scheme. Illustrative examples of the fuzzy inheritance and the fuzzy recognition
algorithms for the knowledge base, designed by the KRFPN, are given.

INTRODUCTION

The crucial component of an intelligent agent is its knowledge base.
Informally, a knowledge base is an abstract representation of a working
environment or a world in which the agent (or agents) has to solve tasks.
It contains collections of (uncertain) facts and objects (in an abstract
sense) and their relationships; vocabulary definitions; disjunctive facts,
and constrains; descriptions of typical situations and the agent’s behavior;
the rules of the world; common-sense knowledge; decision rules; hypoth-
eses; heuristics and problem-solving methods and procedures; knowledge
about states, the actions, motivations, and goals of the agent; and knowl-
edge about knowledge (meta-knowledge).

For more than 30 years one of the central problems of artificial intelli-
gence is the development of a sufficiently precise and efficacious notation
for the knowledge representation and reasoning, called a knowledge
representation scheme (KRS) (Zeigler 1987; Garcia and Chien 1991;
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Aiello and Nardi 1991). The major classes of KRS, according to the tax-
onomy based on object-relationship, the true assertion about states and
state-transformations criteria, are network (Quillian 1967; Findler 1979),
logical (Israel and Beranek 1983; Dahl 1983; Bobrow 1985), and procedural
schemes (Newell and Simon 1972), as well as schemes based on the frame
theory (Minsky 1975).

In many real-world tasks, knowledge is based on imprecise, uncertain,
incomplete, or even vague, and=or fuzzy information, and agents have to
deal with the information in such a form. Therefore, in order to properly
represent real-world knowledge and support vague, uncertain, and fuzzy-
knowledge representation, reasoning, learning, and decision-making, dif-
ferent knowledge schemes were developed: scheme based on subjective
Bayesian probabilities (so-called Prospector approach) (Duda, Gaschnig,
and Hart 1979), rule-based system with certainty factors (MYCIN approach)
(Buchanan and Shortliffe 1984), Bayesian or belief networks (Pearl 1988),
schemes based on Dempster-Shafer calculus (Shafer 1976), and fuzzy logic-
based schemes (Zadeh 1983). Among knowledge representation schemes
that support uncertain and fuzzy knowledge representation and reasoning,
there is a class of schemes based on the theory of fuzzy Petri nets (FPNs)
(Cardoso and Camargo 1999): Looney (1988) and Chen, Ke, and Chang
(1990) proposed FPNs for rule-based decision-making; Scarpelli, Gomide,
and Yager (1996) described a reasoning algorithm for a high-level FPN;
Chen (2002) introduced a weight FPN model for rule-based systems; Li
and Lara-Rosano (2000) proposed a model based on an adaptive FPN,
which is implemented for knowledge inference, but it also has a learning
ability; Looney and Liang (2003) proposed the fuzzy belief Petri nets
(PNs) as a combination of the bi-directional fuzzy propagation of the fuzzy
belief network and modeling flexibility of the FPN; Lee, Liu, and Chaing
(2003) introduced a reasoning algorithm based on possibilistic Petri nets
as a mechanism that mimics human inference; Canales, Liand, and Yu
(2006) described a method of fuzzy-knowledge learning based on an adapt-
ive FPN; Ha, Li, Li, and Wang (2005) described knowledge representation
by weighted fuzzy production rules and inference with generalized FPN;
and Guo-Yan (2006) proposed a hybrid of the PN and the fuzzy PN to sup-
port an inference procedure for the natural extension of fuzzy expert sys-
tems. Shen (2006) presented the knowledge representation scheme
based on a high-level FPN for modelling fuzzy IF-THEN and IF-THEN-
ELSE rules. Based on the high-level FPN model, an efficient algorithm is
proposed to automatically reason about imprecise and fuzzy information.

The main inference procedures, as the act of automatic reasoning from
factual knowledge, in the network-based knowledge representation sche-
mas are: inheritance, intersection search, and recognition. Inheritance is
a form of reasoning that allows an agent to infer the properties of a concept
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on the basis of the properties of its ancestors in the network hierarchical
structure (Touretzky 1986). An inference procedure, called the intersection
search (Quillian 1967), allows relationships to be found among facts by
‘‘spreading activities’’ in semantic networks. The recognition (Shastri
1988) is the dual of the inheritance problem and it can be viewed as a
general form of pattern-matching.

In this article, the original inference procedures—inheritance and
recognition—for a network-based fuzzy knowledge representation scheme,
called KRFPN, based on the fuzzy Petri net theory, are proposed.

A KNOWLEDGE REPRESENTATION SCHEME BASED ON FUZZY
PETRI NETS

A network-based fuzzy knowledge representation scheme called KRFPN
uses the concepts of fuzzy Petri net theory to represent vague and=or fuzzy
information obtained from modelled real-word situations. In this section,
we first define a marked FPN, describe the execution of an FPN, and then
introduce the graphical representation of an FPN. After that, by using
additional components and functions that provide semantic interpreta-
tions, we introduce the formal definition of the knowledge representation
scheme based on the fuzzy Petri nets theory (KRFPN).

A Fuzzy Petri Net

A marked fuzzy Petri net structure can be defined as 10-tuple:

FPN ¼ ðP; T; I; O; M; X; l; f ; c; kÞ; ð1Þ

where

P¼ {p1, p2,. . ., pn} is a finite set of places,
T¼ {t1,t2,. . ., tm} is a finite set of transitions,
P\T¼Ø,
I: T ! P1 is an input function, a mapping from transitions to bags of

places,
O: T ! P1 is an output function, a mapping from transitions to bags of

places,
M¼ {m1, m2,. . ., mr}, 1� r<1, is a set of tokens,
X : P ! PðMÞ is a mapping, from P to PðMÞ, called a distribution of tokens,

where PðMÞ denotes the power set of M. Using X0 we denote the initial
distribution of tokens in the places of a FPN.

l: P ! N is a marking, a mapping from places to non-negative integers,
N. A mapping l can be represented as an n-component vector
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l ¼ (l1, l2,. . ., ln), where n is a cardinality of the set P. Obviously,
l(pi)¼ li, and l(pi) denotes the number of tokens in the place pi.
An initial marking is denoted by the vector l0.

f: T ! [0, 1] is an association function, a mapping from transitions to real
values between zero and one.

c: M ! [0, 1] is an association function, a mapping from tokens to real
values between zero and one.

The complete information about the token mi2 M is given by a pair
(pj, c(mi)), where the first component specifies the location of the token,
and the second one, its value. k 2 [0, 1] is a threshold value related to the
firing of an FPN.

Graphical Representation of an FPN

A marked FPN can be represented by a bipartite directed multi-graph
containing two types of nodes: places and transitions. Graphically, the
circles represent places while the bars are used for transitions. The relation-
ships, based on input and output functions, from places to transitions
and transitions to places, are represented by directed arcs. Each arc is
directed from an element of one set (P or T) to the element of another
set (T or P).

A generalized FPN allows multiple arcs, according to the definitions of
the input and output functions, where their co-domains are bags of places
(P1). In the case when co-domains are sets, and for all transitions ti, i¼ 1,
2, . . ., m, is jIðtiÞj ¼ jOðtiÞj ¼ 1, where j:j denotes the cardinality of a set, a
multi-graph is transformed into a graph called a state machine (Peterson,
1981). In our case, it is a fuzzy state machine.

The tokens in marked FPN graphs are represented by labelled dots
c(mi), where c(mi) denotes the value of the token.

Dynamical Properties of an FPN

Tokens give dynamical properties to an FPN, and they are used to define
its execution, i.e., by firing an enabled transition tj, tokens are removed from
its input places (elements in I(tj)). Simultaneously, new tokens are created
and distributed to its output places (elements of O(tj)). In an FPN, a tran-
sition tj is enabled if each of its input places has at least as many tokens in
it as arcs from the place to the transition and if the values of the tokens
c(ml), l¼ 1, 2,. . . exceed a threshold value k 2 [0, 1]. The number of tokens
at the input and output places of the fired transition is changed in accord-
ance with the basic definition of the original PN (Peterson, 1981). The
new token value in the output place is obtained as c(ml)f(ti), where c(ml)
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is the value of the token at the input place pj 2 I(ti) and f(ti) is the degree of
truth of the relation assigned to the transition ti 2 T. Figure 1 illustrates the
firing of the enabled transition of an FPN.

In general, if there are more tokens at an input place than arcs from the
input place to the transition and if the value of each token exceeds the
threshold value k, then the selection of the token that takes the role in
the firing is based on the maximum value c(mi). For example, in
Figure 2 (a), an input place pi has three tokens {c(m1)¼ 0.60, c(m2)¼
0.20, c(m3)¼ 0.99}, and there is an arc directed to the transition tj with
an associated value f(tj)¼ 0.80. The threshold value k is 0.10. After firing
the enabled transition tj, a new marking is shown in Figure 2 b). The token
(pj, c(m3)) takes place in firing the enabled transition tj and a new token
c(m4) is generated at the output place pk. The value of the token m4 is
0.80�0.99¼ 0.792. If there are two or more tokens with the same value
c(mi); i¼ 1, 2,. . ., then the selection is based on random criteria.

Analogically, the generation of a new token at the output place pk in
configurations where there is more than one arc connected to the tran-
sition tj with the output place, is based on the above-mentioned criteria,

FIGURE 2 Firing an enabled transition tj. (a) Before firing; (b) after firing the transition tj.

FIGURE 1 Firing an enabled transition. (a) Before firing; c(ml)> k; (b) after firing; c(mp)¼ c(ml)f(ti).
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and it is illustrated in Figure 3. Figure 3(a) shows the situation before firing
the enabled transition tj, while Figure 3(b) depicts the state after firing the
transition tj. In this case, the tokens m4 and m5 are identical, i.e., the pair
(pk, m4) is identical in terms of value to the pair (pk, m5).

Note that the inheritance and recognition, as inference procedures
defined for the proposed knowledge representation scheme, use the
dynamical properties of a FPN.

Example 1

Let us illustrate an FPN graph and the execution of a fuzzy petri net,
which is defined as a fuzzy state machine:

P¼ {p1, p2, p3, p4, p5, p6, p7},
T¼ {t1, t2, t3, t4, t5, t6},
I(t1)¼ {p1}, I(t2)¼ {p2}, I(t3)¼ {p4}, I(t4)¼ {p3}, I(t5)¼ {p3}, I(t6)¼ {p4},
O(t1)¼ {p3}, O(t2)¼ {p4}, O(t3)¼ {p5}, O(t4)¼ {p6}, O(t5)¼ {p7},

O(t6)¼ {p7},
M¼ {m1, m2, m3, . . ., mr},
X0¼ {{m1, m2}, Ø, Ø, Ø, Ø, Ø, Ø},
l0¼ (2, 0, 0, 0, 0, 0, 0},
f(t1)¼ 0.90, f(t2)¼ 0.99, f(t3)¼ 0.98, f(t4)¼ 1.0, f(t5)¼ 0.99, f(t6)¼ 1.0,
c(m1)¼ 0.90, c(m2)¼ 0.80,
k¼ 0.02.

The FPN graph is shown in Figure 4.

FIGURE 3 Firing an enabled transition tj;(case O(tj)¼ {pk, pk}). (a) Before firing; (b) after firing the
transition tj.
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According to the rule that defines enabled transitions, only the
transition t1 is enabled because the number of tokens in its input place is
two and there is only one arc connecting the place, and the values of the
tokens exceed the threshold k: c(m1), c(m2) > 0.02.

After firing the enabled transition t1, token m1 (based on the selection
of the token that has the maximum value c(mi)), is removed from the input
place p1 and simultaneously a new token m3 is generated at the place p3.
The value of the token m3 is c(m3)¼ c(m1) � f(t1)¼ 0.90�0.90¼ 0.81. The
distribution of the tokens is now X1¼ ({m2}, Ø, {m3}, Ø, Ø, Ø, Ø} and
the marking l1¼ (1, 0, 1, 0, 0, 0, 0). Related to the new marking, there
are now three enabled transitions in the FPN: t1, t4, and t5.

Formal Definition of the Knowledge Representation scheme
KRFPN

The Knowledge Representation Scheme based on the Fuzzy Petri Nets
theory is defined as 4-tuple:

KRFPN ¼ ðFPN; a; b; CÞ; ð2Þ

where FPN is a fuzzy Petri net.

a: P!D is a bijective function that maps a set of places onto a set of
concepts D. The set of concepts D consists of the formal objects used
for representing objects and facts from the agent’s world. The elements

FIGURE 4 A simple FPN graph.
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from D¼D1[D2[D3 are as follows: elements that denote classes or
categories of objects and represent higher levels of abstraction (D1),
elements corresponding to individual objects as instances of the classes
(D2), and those elements representing the intrinsic properties of the
concepts or values of these properties (D3).

b: T!R is a surjective function that associates a description of the relation-
ship among facts and objects to every transition ti 2 T; i ¼ 1; 2; . . . ;m,
where m is a cardinality of a set T. The set R ¼ R1 [ R2 [ R3 consists
of elements corresponding to the relationships between the concepts
used for partial ordering of the set of concepts (R1), the elements used
to specify the types of properties to which values from subset D3 are
assigned (R2), and the elements corresponding to the relationships
between the concepts, but not used for hierarchical structuring (R3).
For example, elements from R3 may be used to specify the spatial rela-
tions among the objects.
The functions a and b give a semantic interpretation to the scheme.
The semantic interpretation requires the introduction of a set of con-

tradictions C. A set of contradictions C is a set of pairs of mutually contra-
dictory relations and=or concepts: C ¼ fðri; rjÞ; . . . ; ðrr;rsÞ; ðdk;dlÞ; . . . ;
ðdv;dzÞg, were ru; u ¼ i; j ; . . . ; r ; s are from the set R, and dw; w ¼
k; l ; . . . ; v; z are from the set D.

A set C contains elements corresponding to relations from R that mutu-
ally contradict each other, for example, is a and is not a. Also, there are ele-
ments in the set D that are mutually contradictory if they are inherited for
the same concept or object. For example, the object cannot simultaneously
inherit properties such as ‘‘Quadruped’’ and ‘‘Biped.’’

Both types of contradictions should be explicitly expressed in the
KRFPN scheme.

The inverse function a�1: D!P, and the generalized inverse function
b�1: R! s; s�T are defined in the KRFPN scheme.

Example 2

To illustrate the elementary KRFPN concepts, we use the FPN described
in Example 1 as a component of the knowledge representation scheme, fol-
lowed by the concepts needed for the semantic interpretation: functions a
and b, and a set of contradictions C. The interpretation of the functions f
and c is also needed. Example 2 is adopted from Touretzky (1986).

For a: P!D we have:

a: p1!Clyde,
a: p2! Fred,
a: p3!Elephant,
a: p4!Human,
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a: p5!Two legs,
a: p6! Four legs,
a: p7!Mammal.

The function b is defined as follows:

b: t1! is a,
b: t2! is a,
b: t3! has,
b: t4! has,
b: t5! is a,
b: t6! is a.

A set of concepts D is D1[D2[D3, where a subset D1 ¼
fHuman; Elephant; Mammalg contains concepts that represent classes,
D2 ¼ fClyde; Fredg is a subset consisting of concepts that correspond to
individual objects as instances of the classes. A subset D3 ¼ fTwo�legs;
Four�legsg defines properties of the concepts.

A set of relationships R ¼ R1 [ R2 [ R3 consists of elements correspond-
ing to the relationships between the concepts used for partial ordering of
the set of concepts R1 ¼ fis�ag, the elements used to specify the types of
properties to which values from subset D3 are assigned R2 ¼ fhasg, while
the subset R3, that contains elements corresponding to the relationships
between the concepts, but not used for hierarchical structuring, in our
simple example is an empty set.

A set of contradictions, C¼ fðTwo�legs; Four�legsÞg;Two�legs;Four�legs 2
D, defines that an object cannot be simultaneously a biped and quadruped.

The values defined by the function f express our confidence or our
belief in the truth of the relationships. For example, the value f(t4)¼ 1.0
defines our belief (or knowledge) that a human is always a mammal, while
f(t1)¼ 0.90 expresses our belief that Clyde is an elephant. The value
f(t1)¼ 0.90 can be interpreted as the statement that Clyde is a elephant is very
true (see Table 1).

The values c(mi), i¼ 1, 2, may by interpreted as our assurance that we
are really dealing with corresponding concepts. The threshold k¼ 0.02
defines the relatively high sensitivity of the scheme related to the processes
of inference. Figure 5 shows the graphical representation of the simple
knowledge base designed by the KRFPN.

Selection of Values f(ti), c(mi) and k

A human’s knowledge about facts from the real word is very often
uncertain, ambiguous, and vague. The inference mechanism based on such
facts, as well as the human interpretation of such facts and conclusions,

24 S. Ribarić and N. Pave�ssić
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generates uncertain and vague conclusions. There are many different
approaches to representing knowledge in uncertain domains—from sub-
jective Bayesian probabilities (Pearl 1988; Russel and Norvig 1995) through
a rule-based system with certainty factors (Buchanan and Shortliffe 1984) to
the fuzzy Petri net theory (Cardoso and Camargo 1999). In our approach
we have used the last one, in which the uncertainty and confidence related
to the facts, concepts, and the relationships between them are expressed by
means of the values of fðtiÞ; ti 2 T, and cðmiÞ; mi 2 M, association
functions. For example, the value of the function f, as well as the value
of the function c, can be expressed by truth scales and by their correspond-
ing numerical intervals depicted in Table 1 (Chen, Ke and Chang 1990).

FIGURE 5 A simple knowledge base (Example 2) designed by the KRFPN.

TABLE 1 Truth Scales and the Corresponding Numerical Intervals

Truth Scales Numerical Intervals

Always true [1.0, 1.0]
Extremely true [0.95, 0.99]
Very true [0.80, 0.94]
Considerably true [0.65, 0.93]
Moderately true [0.45, 0.64]
More or less true [0.30, 0.63]
Slightly true [0.10, 0.29]
Minimally true [0.01, 0.09]
Not true [0.0, 0.0]
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The threshold value k 2 ½0; 1� defines the ‘‘sensitivity’’ of the scheme
during the inference procedures. By using different values for k, the user
can specify different degrees of truth for inherited concept properties or
the recognized concept. The value of k has influence on a number of levels
of generated inheritance or recognition trees. Usually, k is chosen to be
small enough, for example, 0.01 or 0.1.

Example 3

In order to illustrate the basic components of the KRFPN, a simple
example (adopted from Touretzky (1986)) of the agent’s knowledge base
for a scene (Figure 6) is introduced. The knowledge base designed by
the KRFPN¼ (FPN, a, b, C), where FPN is (P, T, I, O, M, X, l, f, c, k),
has the following components (Figure 7): P¼fp1; p2; . . . ;p10g;
T¼ft1; t2; . . . ;t13g; Iðt1Þ¼fp1g; Iðt2Þ¼fp3g; . . . ; Iðt13Þ¼fp1g; Oðt1Þ¼ fp2g;
Oðt2Þ¼fp4g; . . .; and Oðt13Þ¼fp9g. The set of tokens is M¼
fm1; m2; . . . ; mrg, the initial distribution of tokens is X0¼ffm1g;Ø; . . . ;Øg,
where c(m1)¼ 1.0, and Ø denotes an empty set. The vector
l0¼ðl1; l2; . . . ;l10Þ¼ð1;0; . . . ;0Þ denotes that there is only one token in
the place p1. The function f is specified as follows: f(t1)¼ 0.9; f(t2)¼ 0.9;
f(t3)¼ 1.0; f(t4)¼ 1.0, . . .; f(t12)¼ 0.6; and f(t13)¼ 0.8 (Figure 7). f(ti),
i¼ 1, 2, . . ., m indicates the degree of our pursuance in the truth of the
relation b(ti).

The set D¼D1[D2[D3 is defined as follows: D1 ¼ fElephant, Human,
Mammal, Biped, Quadrupedg, D2 ¼ fFred; Clydeg; D3 ¼ fWhite; Soul ;
Kind�heartedg. The set R ¼ R1 [ R2 [ R3is fis�a; is�not�ag [ fhas�colour ;
has�characteristic; hasg [ fis�in�front�of ; is�behindg:

FIGURE 6 A simple scene with Fred and the elephant Clyde.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
i
b
a
r
i
,
 
S
l
o
b
o
d
a
n
]
 
A
t
:
 
1
4
:
0
5
 
2
0
 
J
a
n
u
a
r
y
 
2
0
0
9



Functions a: P!D and b: T!R are (Figure 7):

a : p1 ! Fred; b : t1 ! is�a;

a : p2 ! Human; b : t2 ! is�a;

. . . . . .

. . . . . .

a : p10 ! Kind�hearted; b : t13 ! has:

Let C be a set of contradictions defined as C ¼ fðis�a; is�not�aÞ,
ðis�in�front; is�behindÞ; ðQuadruped;BipedÞg.

For the initial distribution of tokens, X0, the following transitions are
enabled: t1, t9, t11, and t13.

Figure 7 shows the ontological complexity of even a simple example.
In large examples, a graph would be too cluttered to be of much use.
Therefore, the hierarchical structures of graphs have to be used. Petri
nets (Petri 1962), in general, are appropriate for hierarchical system mod-
eling, i.e., the system can be represented at the different abstract levels. In
a Petri net, a subnet may be replaced by a single place or transition (the
process of abstraction), or places and transitions can be replaced by sub-
nets (the process of refinement (Peterson 1977; Ribarić 1991)).

FIGURE 7 The agent’s knowledge base designed by the KRFPN.
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FUZZY INHERITANCE

Inheritance can be described as the process of determining the proper-
ties of a concept di2 D, by looking up the properties that are locally
attached to the concept di. If such local information is not available (or
is insufficient), the process will continue by looking up properties attached
to the concepts that lie at higher levels in the conceptual hierarchy.

K-Level Inheritance Tree

The inheritance procedure in the KRFPN is based on its dynamical
properties and the determination of the inheritance set of the KRFPN.
The inheritance set for the KRFPN is based on concepts similar to the
reachability set of the ordinary Petri nets (PNs), where the reachability
relationship is the reflexive, transitive closure of the immediately reachable
relationship (Peterson 1981). In the PN, for the marking l, a marking l’ is
immediately reachable from l if there exists a transition tj2T that can be
fired, and by firing a new marking l’ is obtained. The reachability set is
defined as the smallest set of all the reachable distributions of tokens stat-
ing for an initial distribution of tokens for the PN and recursively applying
the firing of enabled transitions for immediately reachable distributions
of tokens. The reachability set of the PN is graphically represented by a
reachability tree.

The main differences between the inheritance set of the KRFPN and
the reachability set of the PN (Peterson 1981) are as follows: (i) After firing
all the enabled transitions for the distribution of tokens in the KRFPN,
where the transitions are related to the elements in the subsets R2 and
R3, the created tokens at the corresponding output places have to be frozen.
Recall that the elements in R2 and R3 are used to specify the properties and
the nonhierarchical structuring, respectively. A frozen token in the output
place is fixed and it cannot enable a transition; (ii) An inheritance tree, as a
graphical representation of the inheritance set, is bounded by kþ 1 levels,
where k is a predefined number of levels. Such an inheritance tree is called
a k-level inheritance tree; (iii) A k-level inheritance tree has the following
additional types of nodes: a k-terminal node, a frozen node, and an
identical node.

A k-level inheritance tree consists of nodes ðpj ; cðmiÞÞ; j ¼ 1; 2; . . . ;n
and i ¼ 1; 2; . . . ; v where n is a cardinality of the set of places P, and
0� v� r, where r is a cardinality of the set of tokens M, and directed,
labelled arcs. In order to simplify and make the notation uniform in the
inheritance algorithm, the nodes in the tree are denoted by n-component
vectors in the form p ¼ ðp1; p2; . . . ;pnÞ. Each component pi ; i ¼ 1; 2; . . . ;n
of p is represented by an empty set Ø for l(pi)¼ 0, i.e., there is no token(s)
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at the place pi, or by a set fcðmkÞ; . . . ; cðmlÞ; . . . ; cðmsÞg, where c(ml) is the
second component of the pair (pi, c(ml)) and represents the value of
the token ml at the place pi. The number of elements in the above set
is l(pi)� 1. The vector p is called the distribution vector, or simply the
distribution.

The directed arcs in a k-level inheritance tree are labelled by tj2T and
f(tj), where tj denotes a fired transition and f(tj) the value of its association
function f, respectively. A directed labelled arc leads from the node at the
ith level of the inheritance tree to the corresponding node at the iþ 1th
level; i¼ 1,2, . . . , k-1, where k is (pre)defined as the final level of the
inheritance tree.

During the creation process of the k-level inheritance tree, each node is
classified either as a frontier node, a terminal node, a k-terminal node, a
frozen node, an identical node, a duplicate node, or an interior node. Fron-
tier nodes are nodes that have not yet been processed. The special frontier
node is a node that represents the initial distribution and is a root of the
inheritance tree. The root node is a node at the zero-level of the inherit-
ance tree. The frontier nodes are converted by the inheritance-tree algor-
ithm to terminal, k-terminal, internal, frozen, duplicate, or identical
nodes. A terminal node is a node corresponding to the dead distribution
for which there are no enabled transitions. A k-terminal node is a node at
the kth level of the inheritance tree. A frozen node corresponds to the distri-
bution that is created by firing an enabled transition, which is related to (by
means of a function b) the elements from subsets R2 and R3. The distribu-
tions obtained by firing such transitions become the frozen distributions.
(A frozen token is fixed at the input place and cannot enable the tran-
sition). Identical nodes correspond to the distributions that have previously
appeared in the tree, and for them the following is valid: Two nodes pA

and pB are identical if pAi � pBi; i ¼ 1; 2; . . . ; n, where pXi represents the
ith component of pX, where x is A or B. Duplicate nodes are nodes that have
also previously appeared in the tree; they are not identical in the sense of n-
tuples p, but they have the same marking l (see a formal definition of the
KRFPN): Two nodes A and B are duplicates if lA ¼ lB, where lX represents
the marking; x is A or B. In other words, two nodes are duplicate nodes if
they have an equal number of tokens in each corresponding place (regard-
less of the values of the tokens). An interior node is an already processed
frontier node that is not classified as a terminal, a k-terminal, a frozen,
an identical, or a duplicate node.

The inheritance-tree algorithm for the KRFPN is presented as follows:
Input: Initial distribution as a root of the k-level inheritance tree

(a frontier node at the zero-level of the tree). The depth of the tree gener-
ation k; 1� k<1, and the threshold value k2 [0,1], which defines the
firing threshold for each transition.
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Output: A k-level inheritance tree with all the nodes denoted as
terminal, k-terminal, frozen, interior, identical, or duplicate.

Let pX be the frontier node to be processed.
Step 1. If there exists another node pY in the inheritance tree that is not

a frontier node and pX � pY, the node pX is an identical node. Denote such a
node by I.

If there exists another node pZ that is not a frontier node and lX ¼ lZ,
then the node pX is a duplicate node. Denote such a node by D.

Step 2. If there are no enabled transitions for pX, then pX is a terminal
node. Denote such a node by T.

If pX lies at the kth level of the inheritance tree, then denote such a
node as the k-terminal node (k-T).

Step 3. For all transitions tj that are enabled for pX, create a new node
pW in the inheritance tree. The components of pW are defined according
to the firing rule of the KRFPN. An arc, labelled by tj; f(tj), is directed
from node pX to node pW. After that, the node pX is redefined as an interior
node.

If pW is the result of firing a transition that corresponds to elements
from R2 or R3, then pW is declared as a frozen node. Denote such a node
by F.

Step 4. If the node pW is not classified as a frozen node, then it becomes
a frontier node.

When all the nodes have been classified as terminal, k-terminal, dupli-
cate, identical, frozen, or interior nodes, the algorithm stops.

Example 4

Using this example, we illustrate the inheritance-tree algorithm. Let us
suppose that the initial distribution of tokens for the KRFPN scheme
depicted in Figure 7 is given by X0 ¼ p0 ¼ ðfcðm1Þ ¼ 1:0g, Ø, . . . , Ø),
i.e., the token m1 is initially at the place p1 and has a value 1.0, all other
places are without tokens. Let k be the depth of the inheritance tree
k¼ 3 and the threshold level k¼ 0.1.

Input: p0 ¼ ðfcðm1Þ ¼ 1:0g, Ø, . . ., Ø), k¼ 3, k¼ 0.1.
Output: An l-level inheritance tree (0� l� k) with all the nodes

denoted as terminal, k-terminal, frozen, interior, duplicate, and=or identi-
cal nodes.

The 3-level inheritance tree generated by the algorithm is shown in
Figure 8.

The initial distribution of tokens p0 (node at the zero level) is a frontier
node px. There are enabled transitions as follows: t1, t9, t11, and t13. By
firing the enabled transitions, the following nodes at the first level are
created: p11;p12; p13, and p14. The nodes p12¼ (Ø, Ø, {0.9}, . . . , Ø),
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p13¼ (Ø, Ø, . . . , {0.5}), and p14¼ (Ø, Ø, . . . , {0.8}, Ø) are frozen nodes.
Note that the nodes p13 and p14 are also terminal nodes. The node p11
becomes a frontier node and there are three enabled transitions: t4, t5,
and t6. By firing the enabled transition t4, the node p21 is generated. By
firing the transitions t5 and t6, the nodes p22 and p23 are generated at
the second level. Both these nodes are terminal nodes. The node
p21¼ (Ø, Ø, Ø, Ø, {0.9}, Ø, . . . , Ø) becomes a frontier node. The transition
t7 is enabled, and after its firing, the node p31¼ (Ø, Ø, Ø, Ø, Ø, Ø, {0.72},
Ø, Ø, Ø) is obtained. The node p31 is a terminal node, and it is also a
k-terminal node because the k¼ 3 level of the inheritance tree is reached.
Note that p31 is also a duplicate node because l31 ¼ l23.

Inheritance Assertion

By using the components of the k-level inheritance tree: a node at the level
i�1, labelled arc, a node at the level i (successor of the node at level i�1), the
functions a and b, a triplet named an inheritance assertion is formed.

For example, a node p11 at the level 1, a labelled arc t4; f(t4)¼ 1.0, and
the successor node p21 at the level 2, and aðp2Þ ¼ Human; bðt4Þ ¼ is�a, and
aðp5Þ ¼ Mammal , define the inheritance assertion: (Human is a Mammal).
Note that the tokens are at the places p2 (for p 11) and p5 (for p 21).

The strength of the assertion is defined as the value of the token at the
successor node, i.e., as a product of the token value at the node at level
i�1 and the value of the association function of the corresponding
transition.

For example, the strength of the inheritance assertion (Human is a
Mammal) is 0.90� 1.0, where 0.90 is the value of the token at place
p2(see the distribution p11; Figure 8).

The inheritance paths, starting from the root node of the inheritance tree
and finishing at the leaves of the tree (terminal node, k-terminal node, frozen
node, identical node, duplicate node) represent sequences of the inheritance
assertions. An inheritance path is interpreted as the conjunction of the
inheritance assertions in which the redundant concepts connected by AND

FIGURE 8 The 3-level inheritance tree for the KRFPN scheme depicted in Figure 7.
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are omitted. The strength of an inheritance path is defined by the value of the
token at the node that is a leaf of the inheritance tree.

For example, the inheritance path defined from the root node p0 to the
leaf node of the tree p22 (see Figure 8) is: Fred is a Human AND is a Biped.
The strength of the inheritance path is 0.72.

In network-based knowledge representation schemes, there is the well-
known problem of the conflicting multiple inheritance (Touretzky 1986).
The problem of the conflicting multiple inheritance in the KRFPN scheme
is expressed as follows: Two inheritance paths, represented by sequences of
the inheritance assertion, are in conflict if the same concept inherits the
mutually contradictory elements from D, i.e., dk and dn, where (dk, dn)2C,
C is a set of contradictions. Also, two inheritance paths are in conflict if the
same concept inherits the concept=property a(pk)2D, but in one inherit-
ance path it inherits the concept=property by means of b(tr)2R, and in
another by means of b(ts)2R, where b(tr)¼ rr, b(ts)¼ rs, and(rr, rs)2C.

To resolve the situations involving conflicting multiple inheritance in the
KRFPN scheme, we used Touretzky’s principle of inferential distance ordering
PIDO (Touretzky 1986): In the situation of conflicting multiple inheritance, a
concept inherits the property of the nearer individual (concept) or class.
‘‘Nearer’’ is defined as follows: Concept or class A is ‘‘nearer’’ to class B than
to class C if A has an inheritance path through B to C. In many cases, the infer-
ential distance ordering fails and reports an ambiguity (for example, see the
well-known Quaker’s problem) because it is based on a measure of ‘‘between-
ness.’’ In such situations, in the KRFPN scheme, the concept inherits the pro-
perty for which one can find the more direct inheritance path, i.e., the shorter
path. If two ormore inheritance paths have the same length the concept inher-
its property that corresponds to more strength in the inheritance path.

Inheritance Algorithm

The inheritance algorithm for the KRFPN is presented as follows:
Input: A concept of interest di2D, the depth of the inheritance k;

0� k<1, k2 [0,1].
Output: The properties of the concept di2D, obtained by looking up

the properties locally attached to the concept di, and the properties
attached to the concepts that lie at higher levels in the conceptual hier-
archy. The properties are expressed by means of semantic interpretations
of the inheritance paths.

Step 1. For a given concept of interest di2D, by using the inverse
function a�1, find the corresponding place pk:

a�1 : di ! pk:
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If di 62D, stop the algorithm and send the message: ‘‘di is an unknown
concept.’’

Step 2. Define the initial marking l0 ¼ ðl1; l2; . . . ; lnÞ, where for j¼ 1,
2,. . . , n

lj ¼
1 for j ¼ i
0 for j 6¼ i.

�

Step 3. Define the initial distribution of tokens X0 ¼ p0 ¼
ðØ;Ø;Ø; . . . fðpj; cðm1Þg; . . . ;Ø;ØÞ and set c(m1)¼ 1.0.

Step 4. For the initial distribution of tokens X0¼ p0 construct k levels of
the inheritance tree.

Step 5. By using the elements of the inheritance tree: a node at level
i�1, a labelled arc, a corresponding node at level i, and the functions a
and b, form the inheritance assertions.

Step 6. Find the inheritance paths, starting from the root node of the
inheritance tree and finishing at the leaves of the inheritance tree. Deter-
mine the strengths of each inheritance path.

Step 7. If there are situations involving conflict due to the conflicting
multiple inheritance, use the inferential distance ordering concept PIDO
or (if that fails) make a decision on the basis of the more direct inheritance
path. If two or more inheritance paths have the same length the concept
inherits the property that corresponds to the stronger path. On the basis
of the above criteria, remove the inheritance assertion that is the source
of conflict and all the inheritance assertions that follow it.

Example 5

For the knowledge base represented in Figure 7 infer the properties of
the concept Fred (with the depth of inheritance k¼ 3), k¼ 0.1. A set of con-
tradictions C¼ {(is a, is not a), (is in front, is behind of), (Biped, Quadruped)}.

Input: Fred2D, k¼ 3, k¼ 0.1.
Step 1. a�1: Fred ! p1.
Step 2. The initial marking is l0¼ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0).
Step 3. The initial distribution of tokens is X0¼ p0¼ ({(p1, c(m1)}, Ø, Ø,

Ø,. . . , Ø, Ø) and c(m1)¼ 1.0.
Step 4. The inheritance tree is shown in Figure 8.
Step 5. The inheritance assertions are (see Figure 8):
Level 1:
Fred is a Human; (a(p1) b(t1) a(p2)); (strength¼ 0.90)
Fred is in front Clyde; (a(p1) b(t9) a(p3)); (strength¼ 0.90)
Fred has characteristic Kind hearted; (a(p1) b(t11) a(p10)); (strength¼ 0.50)
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Fred has Soul; (a(p1) b(t13) a(p9)); (strength¼ 0.80)
Level 2:
Human is a Mammal; (a(p2) b(t4) a(p5)); (strength¼ 0.90)
Human is a Biped; (a(p2) b(t5) a(p6)); (strength¼ 0.72)
Human is not a Quadruped; (a(p2) b(t6) a(p7)); (strength¼ 0.90)
Level 3:
Mammal is a Quadruped; (a(p5) b(t7) a(p7)); (strength¼ 0.72)
Step 6. The inheritance paths and their interpretations are:

(i) Fred is a Human AND is a Mammal AND is a Quadruped; (0.72)
(ii) Fred is a Human AND is a Biped; (0.72)
(iii) Fred is a Human AND is not a Quadruped; (0.90)
(iv) Fred is in front Clyde; (0.90)
(v) Fred has a Soul; (0.80)
(vi) Fred has characteristic Kind hearted; (0.50).

Step 7. According to the elements of the set of contradictions C and the
definition of the contradiction, the inheritance paths (i) and (ii) generate
contradictions because (Biped, Quadruped)2C. The paths (i) and (iii) intro-
duce a conflicting multiple inheritance due to (is a, is not a)2C. There is
an ambiguity about the above inheritance paths: Is Fred a quadruped or a
not?

To resolve the ambiguity caused by the inheritance paths (i) and (iii),
the PIDO concept is used. Conflict due to the inheritance paths (i) and
(ii) is solved on the basis of the more direct inheritance path: The inherit-
ance path (i) is a path from the concept Fred through the concepts Human
and Mammal to the concept Quadruped, and simultaneously there is the
inheritance subpath Human is a not Quadruped.

The result of resolving the conflict situation on the basis of the PIDO
and a more direct inheritance path is:

Fred is a Human AND is a Mammal; (0.90)
Fred is a Human AND is a Biped; (0.72)
Fred is a Human AND is not a Quadruped; (0.90)
Fred is in front Clyde; (0.90)
Fred has Soul; (0.80)
Fred has characteristic Kind hearted; (0.50).

Therefore, the inheritance process resulted in the following statements:
Fred is a human and a biped, he has a soul, and he is kind-hearted.

The strength attached to each inheritance path has to be interpreted as
the confidence of the statement. With reference to Table 1, for instance,
the statement: Fred is a Human AND is a Mammal; (0.90) is interpreted as
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very true, while the statement Fred has characteristic Kind hearted; (0.50) is
interpreted as moderately true.

FUZZY RECOGNITION

The fuzzy recognition in the KRFPN can be described as follows:
Initialization: A set of the properties S of an unknown concept X is

given, where it is not necessary that X2D. S¼ S1[ S2, where S1 is a set con-
sisting of pairs (si, ai), where si can be an element of a set of concepts D and
ai2 [1, 0] is the degree of a user’s assurance that the unknown concept X has
the property si. In this case the function a�1 is defined for si, but if si 62D,
then the function a�1 is not defined for si. The elements in S2 have the form
(relationship, (si, ai)). Usually the relationship is from R3 and allows recog-
nition based on the relative spatial position of concepts, but in general it is
possible that relationship is not anelementofR, becausewedealwithunknown
concepts. Specify the threshold value k2 [0, 1].

Action: Search for the concept in the KRFPN that best matches the
properties in the set S. The search is based on local properties and the
properties that are inherited from the higher levels of the knowledge base.

The recognition-inference procedure in the scheme KRFPN is based on
an inverse scheme �KRFPN and a slightly modified definition of the
enabled transition, as well as a modification of the association function c.
The inverse �KRFPN¼ (�FPN, a, b, C) is obtained by interchanging the
positions of the input I and the output O functions in the 10-tuple that
defines an FPN:

�FPN ¼ ðP;T;O; I;M;X;l; f ; cr; kÞ; ð3Þ
where a modified association function cr is defined as mapping: M ! [�1, 1].

The main reason for the modification of the association function c is
the existence of elements in R that have the forms of an exception or a
negation of a property (for example, is not a). The modification of the
association function c is also reflected in the execution of the �KRFPN.
Firing an enabled transition ti in the �KRFPN (where ti corresponds to
an exception in the original scheme) results in a new value of the token
at the output place (Figure 9):

cr(mk)¼ �cr(mj)f(ti), where cr(mj) is the value of the token at the
input place pj2 I(ti) and f(ti) is the degree of truth of the relation assigned
to the transition ti2T. Such a token is graphically represented by the
symbol 	 (see Figure 9).

Figure 9 illustrates the firing of such a transition and applying this
modification of the association function. The initial marking is l0¼ (1,
0) and the initial distribution of the tokens is X0¼ {{m1}, ø}; cr(m1)¼ 1.0;
f(ti)¼ 0.8; k¼ 0.1; and the transition ti is enabled. After firing the enabled
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transition ti a new marking, l0 ¼ (0, 1), is obtained. The token in the output
place has the value cr(m2)¼ �cr(m1)f(ti)¼ �0.8.

The existence of the tokens with negative values in the �KRFPN also
requires a redefinition of the enable transition:

(a) if the values of the tokens, cr(mj)> 0, j¼ 1, 2, . . . , k�m, exceed the
threshold value k2 [0, 1], the corresponding transition is enabled.

(b) if the values of the tokens cr(mj)< 0, j¼ 1, 2, . . . ,k�m, the correspond-
ing transition is enabled when jc(mj)j exceeds the threshold value k2
jxj denotes the absolute value of x.

The reachability set of the �KRFPN, called the recognition set, with an
initial marking l0 and initial distributions of the tokens X0, is defined in a
similar way to the inheritance set of the KRFPN, except for two important
differences:

(c) the modification of the firing rule mentioned above is used;
(d) the transitions corresponding to relations in the subset R3 cannot be

fired regardless of the states of their input places.

A graphical representation of a recognition set is called the recognition tree.
For properties having the form (relationship, (si, ai)), by means of

selective firing (i.e., firing of the enabled transition corresponding to the
specific relationship), the recognition subtree is obtained. Note that after
firing the selected transition, the token at the output place is frozen and
all the subsequent firings are disabled. A subtree consists of two nodes: the
initial and the terminal. There are two exceptions in the construction of a
recognition sub-tree in relation to the construction of a recognition tree:

(e) if the selected transition has the form of an exception or a negation of
a property, then the value of the token in the output place is positive,
i.e., cr(mk)¼ jcr(mj) � f(ti)j;

(f) the restriction expressed in (d) does not hold.

FIGURE 9 Firing an enabled transition that corresponds to an exception. (a) Before firing; (b) after
firing: cr(m2)¼ � cr(ml)f(ti)=� 0.8.
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Recognition Algorithm

The recognition-inference algorithm for the KRFPN is presented as
follows:

Input: A set of properties S of an unknown concept and a depth of
search L, (1�L�Deep<1; where Deep is the maximum depth of the
search), expressed by levels of the recognition tree are given. The threshold
value k is selected (usually k is chosen to be small enough, for example,
0.1).

Output: A concept from D that best matches the unknown concept X
described by the set of properties S.

Step 1. For the scheme KRFPN find the inverse scheme �KRFPN.
Step 2. For all (si, ai)2 S1; si2D and ai2 [0,1], i¼ 1, 2, . . . ,

length�Card(S1), where Card denotes a cardinality of a set, by means
of the inverse function a�1: si!pj, determine the places pj,
0< j¼ b�n. Each such place pj becomes a place with a token (pj,
cr(mi)), where the token value cr(mi) is ai. It defines b initial markings
and initial token distributions. The initial markings are the root nodes
of the recognition trees (nodes at level l¼ 0). The initial token values
c(mi); i¼ 1, 2, . . . , b are determined by the degrees of assurance ai;
i¼ 1, 2, . . . , b.

Step 3. For all the elements in S2 that have the form (relationship, (si, ai)),
using the inverse functions, determine the initial markings and selective
transitions for the construction of the recognition subtrees: a�1(si)¼pj

and b�1(relationship)¼ s�T.
From the set s select such a ti for which pj2 I(ti) in the �KRFPN.

Put the token into a place pj – this is the initial marking of the sub-
tree. The initial token value is determined on the basis of the user’s
specification of a degree of assurance for the concept ai: cr(mi)¼ ai.
If there is no such a ti for which pj2 I(ti), the selective transition does
not exist.

Step 4. Find L levels of all the recognition trees for b initial markings
and initial token distributions.

Step 5. Find the recognition subtrees defined in Step 3.
Step 6. For each recognition tree, for levels l¼ 1, 2, . . . , L, compute the

sum of the nodes (represented as vectors p):

zk ¼
Xp

i¼1

pk
i ;

where p is the number of nodes in the kth recognition tree.
Step 7. Compute the total sum of all the nodes for all the recognition

trees:
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Z ¼
Xb

k¼1

zk ;

where b is the number of all the recognition trees.
Step 8. Compute the sum of the terminal nodes for all the recognition

subtrees:

A ¼
Xr

j¼1

psj ;

where r is the number of all the recognition subtrees and ps is the terminal
node of a subtree.

Step 9. Compute the sum E ¼ Z þ A, where E ¼ ðe1; e2; . . . ; enÞ:
Step 10. Find:

i� ¼ arg maxi¼1;...neig

(Note: In the case that there are several indexes i for which the same maxi-
mal value of {ei} is obtained create the set I� ¼ fi�1 ; i�2 ; . . . ; g).

Step 11. Select pi, for every i�k ; k ¼ 1; 2; . . . ; jI�j, k¼ 1,2, . . . , jI�j where
i ¼ i�k , from the set P, and find all dk2D using the function a: pi! dk.
The concept(s) dk, where k¼ 1, or k¼ 1, 2, . . . , jI�j, is(are) the best
match(es) to the unknown concept X described by the set of properties S.

Example 6

Let us suppose that the unknown concept X is described by the follow-
ing set of properties: S¼ S1[ S2, where S1¼ {(Quadruped,
0.9),(White, 0.6),(Kind hearted, 0.5),(Royal pet, 1.0)}, and S2¼ {(is on, (Earth,
1.0)), (is behind, (Fred, 0.8))}. Find the concept in the KRFPN knowledge
base (Figure 7) that best matches the unknown concept X, for L ¼ 3 levels
of the recognitions trees and k¼ 0.1.

Step 1. The inverse graph �KRFPN is shown in Figure 10(b). (For easy
reference the graph of the original scheme is repeated in Figure 10(a)).

Step 2.

s1 ¼ Quadruped 2 D; a�1ðQuadrupedÞ ¼ p7;
s2 ¼ White 2 D; a�1ðWhiteÞ ¼ p8;

s3 ¼ Kind hearted 2 D; a�1ðKind heartedÞ ¼ p10;

s4 ¼ Royal pet 62 D; a function a�1 is not defined:

The initial markings are: p1
0 ¼ (0, 0, 0, 0, 0, 0, 0.9, 0, 0, 0), p2

0 ¼ (0, 0, 0, 0,
0, 0, 0, 0.6, 0, 0), p3

0 ¼ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5).

38 S. Ribarić and N. Pave�ssić
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Step 3. For (is behind, (Fred, 0.8)), b�1(is behind)¼ {t10} and
a�1(Fred)¼p1, and p12 I(t10) in the �KRFPN, the initial marking p0s for
a subtree is p0s¼ (0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0). The selected transition that
will be fired is t10. For (is on; (Earth, 1.0)) the functions a�1 and b�1 are
not defined.

FIGURE 10 The KRFPN and �KRFPN inverse scheme (Example 3). (a) The KRFPN scheme;
(b) the �KRFPN inverse scheme.
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Step 4. Recognition trees k¼ 1, 2, 3; (b¼ 3) for the depth of the search
L¼ 3 are shown in Figure 11(a).

Step 5. The recognition subtree is shown in Figure 11(b).

Step 6. Compute zk ¼
Pp

i¼1
pk

i ; k ¼ 1; 2; 3 :

For recognition tree 1, the nodes are (Figure 11(a)):

p1
1 ¼ ð0; 0; 0; 0; 0:72; 0; 0; 0; 0; 0Þ; p1

2 ¼ ð0;�0:9; 0; 0; 0; 0; 0; 0; 0; 0Þ;

p1
3 ¼ ð0; 0:72; 0; 0; 0; 0; 0; 0; 0; 0Þ; p1

4 ¼ ð0; 0; 0; 0:64; 0; 0; 0; 0; 0; 0Þ;

p1
5 ¼ ð�0:81; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ; p1

6 ¼ ð0:64; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ;

p1
7 ¼ ð0; 0; 0:58; 0; 0; 0; 0; 0; 0; 0Þ; and their sum is z1

¼ ð0; 0; 0; 0; 0:72; 0; 0; 0; 0; 0Þ þ ð0;�0:9; 0; 0; 0; 0; 0; 0; 0; 0Þ
þ � � � þ ð0; 0; 0:58; 0; 0; 0; 1; 0; 0; 0Þ
¼ ð�0:17;�0:18; 0:58; 0:64; 0:72; 0; 0; 0; 0; 0Þ:

FIGURE 11 The recognition trees and the recognition subtree. (a) Recognition trees; (b) the recog-
nition subtree.
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For recognition tree 2, there is only one node p2
1 = (0, 0, 0.36, 0, 0, 0, 0, 0, 0,

0), and the sum is z2 (0, 0, 0.36, 0, 0, 0, 0, 0, 0, 0);
For recognition tree 3, the nodes are: p3

1 ¼ (0, 0, 0.30, 0, 0, 0, 0, 0, 0, 0);
p3

2 = (0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0), and their sum is z3¼ (0.25, 0, 0.30, 0, 0, 0,
0, 0, 0, 0).

Step 7. Compute the total sum of all the nodes for all the recognition
trees:

Z ¼
X3

k¼1

zk :

Z ¼ z1 þ z2 þ z3 ¼ ð0:08;�0:18; 1:24; 0:64; 0:72; 0; 0; 0; 0; 0Þ:

Step 8. There is only one subtree (Figure 11(b)): A¼pS1¼ (0, 0, 0.72, 0,
0, 0, 0, 0, 0, 0).

Step 9. Compute the sum E ¼ Z þ A:

E ¼ ðe1; e2; . . . ; e10Þ ¼ ð0:08;�0:18; 1:96; 0:64; 0:72; 0; 0; 0; 0; 0Þ:

Step 10. Find: i� ¼ arg maxi¼ 1, . . . ,10 {ei}¼ 3.
Step 11. Select pi, where i¼ i�, from the set P, and find drec2D using the

function a: pi!drec: a: p3!Clyde.
According to the result of the recognition-inference procedure, the

concept Clyde is the best match to the unknown concept X. Clyde is a quad-
ruped; he is white and kind-hearted, and he is behind Fred (Figure 6). Is he
a royal pet (probably yes!) or is he on the Earth (probably yes!)? We
explicitly don’t know.

CONCLUSIONS

Original fuzzy inference procedures for the knowledge representation
scheme KRFPN based on the FPN theory are proposed. The fuzzy inherit-
ance uses a k-level inheritance tree, which is generated on the basis of the
dynamical properties of the FPN, i.e., on firing enabled transitions and
changing the values of the tokens according to the association function f
that specifies the degree of assurance for the relation assigned to the transi-
tions, and according to the association function c. Recognition, as a dual of
the inheritance problem, uses the inverse –KRFPN that is obtained by inter-
changing the positions of the output and input functions in the 13-tuple
specification of the KRFPN.

The very important properties of both inference algorithms are that the
inheritance and recognition trees are finite and that the upper bound of
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the time complexity of the fuzzy inference algorithms is O(nm), where n is
the number of places (concepts) and m is the number of transitions (a total
number of relations in a knowledge base designed by the KRFPN). These
allow the efficient execution of both, the inheritance and recognition pro-
cedures. The KRFPN was tested on numerous examples of the agent’s
knowledge bases of block world scenes as well as outdoor scenes, as well
as in the knowledge base in a system for determination of a mental state
of a driver.

Adaptation of the knowledge representation scheme KRFPN for time-
varying fuzzy knowledge and spatio-temporal reasoning are our future
research directions.
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