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Abstract— This paper presents an optimum tuning procedure 
for high-order low-pass (LP) elliptic filters. Since elliptic filters 
are often used to satisfy very tight specifications, they often 
need to be tuned accurately. In this paper, we describe the 
tuning of one biquad, the 'tuning biquad', in a cascade of 
biquads. It is shown by Matlab simulations that the best choice 
for the tuning biquad consists of the pole pair with the highest 
pole Q ('maximum-Q poles') combined with the zero pair with 
the lowest frequency ('minimum-frequency zeros'). We also 
show how standard tuning procedures, such as those for the 
Tow-Thomas biquad, lead to excellent results. As an example, 
the tuning procedure is performed on a normalized seventh-
order elliptic LP filter. 

I. INTRODUCTION 
The realization of selective, elliptic, high-order, low-pass 

filters often presents problems with the accuracy of the cut-
off frequency of the amplitude response. Contrary to 
previous studies that have examined optimal tuning methods 
for individual biquads, we investigate an approach that 
attempts to tune only one biquad in a filter, by selecting the 
pole-zero pair for the so-called 'tuning biquad' that will most 
effectively tune the critical characteristics of the overall 
higher-order elliptic lowpass filter. Having selected the pole-
zero pair for the tuning biquad, the rest of the filter can be 
realized either by a biquad cascade, or by any other filter 
structure such as a ladder filter of reduced degree. Since the 
derivation of a reduced-order ladder filter cascaded with a 
tuning biquad is a separate - and non-trivial - problem (which 
we are presently investigating), we here present the 
intermediate solution to the problem of selecting an optimal 
tuning biquad from a higher-order biquad cascade. 

II. FILTER DESIGN BY PARTITIONING OF THE FILTERS 
TRANSFER FUNCTION 

Consider a seventh-order elliptic filter which, according 
to [1], is referred to as CC07 25 50. Its transfer function 
magnitude α(ω)[dB] is shown in Fig. 2. In [1] it is given by 
the filter realization shown in Fig. 1, and by the following 
normalized real and imaginary values for the poles and zeros 
of the transfer function T(s): 
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Figure 1. Doubly terminated LC-ladder filter CC 07 25 50 realization. 

 
Figure 2. Magnitude of CC 07 25 50 filter. 

 p1, p*
1= σ1± jΩ1= –0.0408 ± j 1.0127 

 p3, p*
3= σ3 ± jΩ3= –0.1459± j 0.8853 

 p5, p*
5= σ5 ± jΩ5= –0.2911± j 0.5573 (1) 

z2, z*
2= ± jΩ2= ± j 2.5494 

z4, z*
4= ± jΩ4= ± j 1.3266 

z6, z*
6= ± jΩ6= ± j 1.5482 

The corresponding transfer function is given by:  
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The Orchard’s theorem [2] proves that ladder LC-filters 
terminated in both ends with resistors have minimum 
sensitivity to passive component tolerances in the pass-band 
region. This fact started the idea to simulate the ladder LC-
filter using active-RC filter realizations, that is, realizations 
without inductances. Therefore, for the purpose of our 
research, the filter in Fig. 1 is realized by an active-RC 
ladder simulation (e.g. simulated by signal-flow-graph 
technique), and have the low sensitivity, as well. PSpice 
Monte Carlo runs in the vicinity of the cut-off frequency with 
1% Gaussian distribution, zero-mean resistors and capacitors 
were carried out for the resulting active-RC filter and presented 

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 45



 
Figure 3. MC runs of the filter in Fig 1 (realized by LC-simulation) in the 

vicinity of the cut-off requency. 
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Figure 4. Seventh-order elliptic filter realized by filter partitioning. 
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Figure 5. Tuning biquad filter circuit. 

in Fig. 3. The nature of simulated ladder-RLC filters is very 
similar to that of conventional ladder-RLC filter, not only 
with respect to low sensitivity but also to other less desirable 
characteristics. Note that the vertical spread of the 
characteristics is very low because of low sensitivity. On the 
contrary, the horizontal movement of the magnitude’s cut-off 
frequency is significant. From the latter we conclude that in 
the practical precision analog filters design apparently there 
exists need for tuning. But, the interdependence of the 
elements in ladder-RLC filter in Fig. 1 is so strong that any 
change in one coil will require a corresponding change to be 
made on all other filter coils, which makes the tuning of the 
high-order filters to tight initial design tolerances impossible, 
not to speak about expensive and time consuming 
production. The lack of widespread usage of simulated 
ladder-RLC filters is caused by this tuning impossibility. 

The way in which the tuning problem could be solved is 
called the ‘filter partitioning’ design, or factoring, of the 
original nth-order transfer function into the product of an (n–
2)-order transfer function and a biquadratic function, and the 
appropriate realization of the two functions by a simulated 
active-RC ladder network and a biquad, respectively. The 
'partitioning' a given filter into the cascade of an LCR ladder 
filter and a second-order filter building block or 'biquad' is 
shown in Fig. 4. The former has low sensitivity to 
component tolerances, the latter, which is selected to contain 
the pole-zero pair determining the filter band edges, is 
readily tunable. The two filters are separated by a buffer 

amplifier that also provides the additional gain necessary to 
overcome the insertion loss of the overall filter. Partitioning 
the filter into the cascade of an (n–2)-order ladder filter and a 
biquad will deteriorate the sensitivity characteristics of the 
original ladder filter to some degree. However, the 
advantages of combining a readily tunable biquad 
(preferably a so-called 'multi-amplifier' biquad) with the still-
low sensitivity of the remaining doubly-terminated ladder 
filter (simulated by an inductorless, active-RC circuit), 
outweighs this slight increase in filter sensitivity.  

The problem of tuning and selecting the pole-zero pair in 
the 'tuning biquad' is investigated in this paper. We examine 
the selection of pole-zero pair for the tuning biquad, such 
that the overall transfer function can most effectively be 
tuned. This implies finding the answers to the questions (i) 
'Which pole and zero pair should most appropriately be 
combined to realize the tuning biquad?' and (ii) 'How is the 
tuning procedure to be accomplished?' The simulations to 
find the answers to these questions have been carried out 
using Matlab. The whole (and non-trivial) problem of 'filter 
partitioning' together with the dynamic range and noise will 
be considered in the future publications.  

III. THE TUNING BIQUAD CIRCUIT  
An opamp biquad circuit that has proved to be 

advantageous for various reasons including its good 
dynamic- range properties (because it requires only inverting 
opamps with virtual ground rather than common-mode 
inputs), and its excellent tuning properties (see below), is 
that shown in Fig 5. This circuit is sometimes referred to as 
the Tow-Thomas biquad [3] or, more often, the multi-
amplifier biquad [4][5]. The transfer function is given by: 
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where the plus sign is for switch SW1 closed, SW2 open, and 
ωz>ωp; the minus sign is for SW2 closed, SW1 open, and 
ωz<ωp. When both switches are open then ωz=ωp. For elliptic 
lowpass filters we generally have ωz>ωp and the amplitude 
response as in Fig. 6(c). The middle term in the numerator of 
(3) is equal to: 

 )]/(1)[/(/ 5471 RRRRqq ppzz −= ωω . (5)  
For a notch filter, this term must be zero, that is, qz=∞; 

this is obtained with the appropriate value of R5.  

From (4) it is possible to formulate the non-iterative 
('orthogonal') tuning procedure for the circuit in Fig. 5 [3][6]. 
It follows that changing the value of R3 can tune ωp, while 
keeping ωp/ωz ratio constant. If the pole Q, qp, is to be kept 
constant and the zero Q, qz=∞, then R1 and R5 must be 
adjusted as well. This complicates the tuning procedure. 
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Figure 6. (a) Second-order notch transfer function. Notch frequency ωp tuning: (b) when ωz=ωp; (c) ωz>ωp; (d) ωz<ωp. 

However, if the change in R3 is small, then ωp tuning can 
often be considered ideal. In what follows, this is referred to 
as “ωp-tuning”. Similarly, ωz can be tuned, independently of 
ωp and qp, by adjusting R6. If we tune only ωz, while keeping 
the value of ωp fixed, we shall refer to this as “ωz-tuning”. 
Those two frequency tuning procedures are “standard” for 
the biquad in Fig. 5. Their influence on tuning second-order 
notch filter (that can be realized by the circuit in Fig. 5 
solely), as well as, higher-than-second-order elliptic filters 
will now be discussed. Finally, changing the value of R8 can 
correct the pass-band gain kBiq. 

IV. TUNING A SECOND-ORDER NOTCH FILTER  
Consider the second-order transfer function with finite 

zeros, which has a form (3) with the middle term equal to 
zero. In Fig. 6(a) we present three examples of normalized 
transfer function magnitudes with k=1, qp=1, and a) 
ωp=ωz=1; b) ωp=0.5, ωz=1 (ωz>ωp); c) ωp=2, ωz=1 (ωz<ωp). 
Note that the d.c. gain is kωz

2/ωp
2, and at infinite frequency 

the gain is k. We proceed with ωp-tuning; we maintain the 
ratio between ωp and ωz, and tune ωp in the range from 
ωL=0.6ωp to ωH=1.67ωp in 7 steps (ωp

2=ωLωH), we influence 
the horizontal shift of the curves in all three notch filter types 
as shown in Fig. 6(b)-(d) (the nominal curve is in the 
middle). Note that the pole Q factor, qp, is kept constant. In 
this way the biquadratic transfer function of the filter can be 
tuned to the exact zero (i.e. notch) frequency, while keeping 
the normalized stop bandwidth B/ωp constant. At the same 
time, the magnitude of the frequency response has no vertical 
shift and does not change its shape.  

V. TUNING A SEVENTH-ORDER ELLIPTIC FILTER 
Poles and zeros of a seventh-order elliptic filter CC 07 25 

50 are given by (1). The pole-zero plot is shown in Fig. 7. 
The filter has three pole Q factors: qp1=12.4291 (max Q), 
qp3=3.07528 (mid Q) and qp5=1.07996 (min Q), and three 
zeros: Ω4=1.3266 (min Z), Ω6=1.5482 (mid Z) and 
Ω2=2.5494 (max Z). To realize 0-dB at ω=0, we obtain 
kPB=0.0044883 (see [6]). 

Tuning the tuning-biquad should be effective in tuning 
the overall transfer function T(s). With this in mind, a critical 
problem is to decide which pole-zero pair to select for the 
tuning biquad. We can pair each zero with poles having high, 
medium, or low pole Qs. There are altogether 9 ways in 
which we can pair the poles and zeros, i.e. we have the 
following set of pairs: {{min Z, min Q}, {min Z, mid Q}, 
{min Z, max Q}, {mid Z, min Q}, {mid Z, mid Q}, {mid Z, 
max Q}, {max Z, min Q}, {max Z, mid Q}, {max Z, max 

Q}}. Two examples: {max Z, min Q} and {mid Z, min Q} 
are shown with solid and dashed lines, respectively, in Fig. 7. 

In what follows we examine the optimum design, and the 
tuning procedure for the tuning biquad. We start with “ωp-
tuning”. If we hold the ratio ωp/ωz constant and then tune ωp 
in the range from ωL=0.95ωp to ωH=1.052ωp (≈±5%) in 7 
steps we influence the shift of the curves as shown in the left 
upper side in Fig. 8 (with the pass-band region magnified). 
Note that in the left upper side of Fig. 8 the tuning curves in 
the pass-band are tilted. The resulting filter response can be 
expected to exceed the specifications. Although all 9 
possible tuning biquads with different pole-zero 
combinations were examined with regard to their tuning 
capabilities for the overall filter, we have presented only 
examples with extreme values in Fig 8.  

Continuing with “ωz-tuning” (i.e. tuning only ωz while 
keeping the value of ωp fixed), we obtain the curves shown 
in the upper right side in Fig. 8. Finally, in the lower part of 
Fig. 8 we have examples showing the stop-band responses 
for various Z values. Both tuning types, ωp and ωz combined 
with min Q, mid Q, and max Q values, produce very similar 
curves in the stop band. Thus, only the curves with various Z 
values are presented. 

From the characteristics in Fig. 8 we note that with ωp -
tuning the frequency response is distorted (i.e. a tilt in the 
pass band) because at ω=0 the gain remains constant. By 
contrast, with ωz -tuning the slope of the frequency response 
in the pass band remains relatively constant, while only the 
cut-off frequency and slope are shifted. The vertical 
movement of the curves represents a change in gain, but this 
can readily be corrected for within the filter. Thus, as a 
general rule, ωz -tuning is preferable to ωp - tuning.  

Furthermore, it is apparent that the tuning process is 
more effective with the small-Z large-Q combinations. In 
other words, for the tuning biquad, the pole pair with 
maximum pole Q should be combined with the zero pair with 
lowest frequency i.e. the 'minimum-frequency zero pair'. 
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Figure 7. Pole-zero plot for CC 07 25 50 filter 
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Figure 8. Tuning curves of the CC 07 25 50 filter in the pass-band and in the stop-band. 

This is a rather serendipitous result, since it has been 
established elsewhere (see, for example [4] and [6]) that for 
a biquad with minimum sensitivity to component changes 
and maximum dynamic range the pole pair with the highest 
pole Q should be combined with the closest zero pair. Since 
the pole- pair with the highest pole Q is generally at the 
upper filter band edge, this is equivalent to combining the 
pole- pair with the highest pole Q with the 'minimum-
frequency zero pair' which is precisely what we are 
recommending for our tuning biquad. 

This result may at first seem contradictory, since the 
tuning biquad needs to have a high sensitivity of some 
crucial part of its frequency response to its particular tuning 
component. However, in the case of the multi-amplifier 
biquad (see Fig. 5) for which the zero frequency can be tuned 
for orthogonally to the pole Q, the zero, or notch frequency 
of the tuning biquad can be tuned for easily with one resistor 
(R6 in Fig. 5). In doing so, the cut-off frequency and slope of 
the overall higher-order filter will be shifted effectively, yet 
with minimum effect on the rest of the frequency response. 
Furthermore, the biquad with which the notch is being tuned 
(the 'tuning biquad') has a minimum sensitivity to tolerances 
or unintentional changes of its components.  

VI. CONCLUSIONS 
In this paper, we have presented a procedure by which 

the cutoff frequency and slope of the overall frequency 
response of a high-order elliptic filter can be tuned with a so-

called tuning biquad by adjusting the zero, or notch 
frequency of the tuning biquad. The rule of thumb in the 
design of the tuning biquad is to combine the pole pair with 
the highest pole Q, with the zero pair at the lowest 
frequency. The remaining transfer function can be realized 
by an arbitrary filter structure. Preferably, this can be either 
an active-RC ladder circuit with its inherent advantage of 
low-sensitivity to component tolerances, or a cascade of 
biquads. Then, by tuning the notch frequency ωz of only the 
tuning biquad, while keeping its ωp value constant, the cut-
off frequency and slope of the overall filter can be adjusted. 
Changes in the pass-band gain incurred by this tuning 
process can generally be readily corrected for within the 
overall filter or its embedding circuitry.  
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