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Special sextics with a quadruple line
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Abstract. This paper deals with a special class of 6th order surfaces with a quadruple
straight line in a three-dimensional Euclidean space. These surfaces, denoted by P6

4 , are the
pedal surfaces of one special 1st order 4th class congruence C14 . The parametric and implicit
equations of P6

4 are derived, some of their properties are proved and their visualizations are
given. The singularities of P6

4 are classified according to the shapes of their tangent cones.
The methods applied are analytic, synthetic and algebraic, supported by the program
Mathematica 6.
AMS subject classifications: 51N20, 14J17
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1. Introduction

A congruence C is the set of lines in a three-dimensional space (projective, affine or
Euclidean) depending on two parameters. The line l ∈ C is said to be a ray of the
congruence. The order of a congruence is the number of its rays which pass through
an arbitrary point; the class of a congruence is the number of its rays which lie in an
arbitrary plane. Cm

n denotes an mth order nth class congruence. A point is called a
singular point of a congruence if∞1 rays pass through it. A plane is called a singular
plane of a congruence if it contains ∞1 rays (1-parametrically infinite lines).
According to [7, p. 64], [11, pp. 1184-1185], there are only two types of the first order
congruences: the first one are nth class congruences and their rays are transversals
of one straight line and one nth order space curve which cuts this straight line at
n − 1 points; the second type are only 3rd class congruences and their rays cut a
twisted cubic twice. The properties of the first order congruences (the construction
of their rays, singular points and planes, focal properties, etc.) can be found in [1].
In Euclidean space E3, the pedal surface of a congruence C with respect to a pole P
is the locus of the feet of perpendiculars from a point P to the rays of a congruence
C. If C is an mth order nth class congruence, the order of its pedal surface is 2m+n,
[5].
In [2] the authors defined one transformation of a three-dimensional projective space,
called the (n+ 2)-degree inversion, where corresponding points lie on the rays of the
1st order, nth class congruence C1n and are conjugate with respect to some proper
quadric Ψ. This transformation maps a straight line onto an (n + 2)-order space
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http://www.mathos.hr/mc c©2009 Department of Mathematics, University of Osijek



86 S. Gorjanc and V. Benić

curve and a plane onto an (n+2)-order surface which contains an n-ple straight line.
According to [2], the pedal surfaces of the first type congruence C1n with respect to
the pole P is the image of the plane at infinity given by the (n+ 2)-degree inversion
with respect to C1n and any sphere with the center P . Thus, it is an (n + 2)-order
surface with an n-ple straight line which contains the absolute conic.
In this paper, we investigate the pedal surfaces of special 1st order 4th class congru-
ence.

2. Congruence C1
4

In Euclidean space E3, let the directing lines of a congruence C be the axis z and
Viviani’s curve c4 (see Figure 1a) which is the intersection of the sphere

(x+
√

2)2 + y2 + (z +
√

2)2 = 4 (1)

and the cylinder
(x+ z +

√
2)2 + 2y2 = 2. (2)

From equations (1) and (2), by using the substitution y → x tanu, we obtain the
following parametrization of Viviani’s curve:

r(u) = 4
√

2
1 + 3 cos 2u

(3 + cos 2u)2
(
− 2(cosu)2,− sin 2u, (sinu)2

)
, u ∈ [0, π). (3)

a b
Figure 1.

The axis z cuts Viviani’s curve at the points S1 = (0, 0, 0) and S2 = (0, 0,−2
√

2),
where S1 is the double point of Viviani’s curve. Since Viviani’s curve c4 is the 4th
order space curve, and the axis z cuts it in 3 points, then the transversals of z and c4

form the 1st order and 4th class congruence C14 . The directing lines and some rays
of C14 are shown in Figure 1b. From eq. (1) and (2), for z → r, (x, y) coordinates of
the intersection points of c4 and the plane z=r are given by the following formulas:

x1,2 = r −
√

2−
√

2− 4
√

2r, y1,2 = ±
√

2
√
−rx1,2

x3,4 = r −
√

2 +
√

2− 4
√

2r, y3,4 = ±
√

2
√
−rx3,4. (4)
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• If r ∈ (−∞,−2
√

2) ∪ (
√

2/4,+∞), there are no real points of c4 in the plane
z = r. It follows from the inequalities 2 − 4

√
2r > 0, −rx1,2 < 0, −rx3,4 < 0 or

2− 4
√

2r < 0.
• If r ∈ [−2

√
2, 0), there are two real points of c4 in the plane z = r. It follows from

the inequalities 2− 4
√

2r ≥ 0, −rx1,2 ≥ 0, −rx3,4 < 0.
For r=−2

√
2, these points coincide.

• If r ∈ [0,
√

2/4], there are four real points of c4 in the plane z = r. It follows from
the inequalities 2− 4

√
2r ≥ 0, −rx1,2 ≥ 0, −rx3,4 ≥ 0.

For r=0,
√

2/4, these points coincide in pairs.

Figure 2.

The tangent lines of c4 at its node (0, 0, 0) are given by the following equations:

y = ±
√

2x, z = −x. (5)

3. Pedal surfaces of C1
4

The pedal surface of C14 is a sextic with the quadruple line z and it contains the
absolute conic [2]. It is denoted by P6

4 . It is clear that any plane through an n-ple
line of an n+ 2-order surface cuts this surface in its n-ple line and one conic. If the
surface contains the absolute conic, this conic is a circle.
In the plane δ through the axis z, the rays of C14 form a pencil of lines (C), where
C /∈ z is the intersection point of δ and Viviani’s curve c4 [1], see Figure 3a. In three
planes, determined by the tangent lines of c4 at S1 and S2, the point C lies on the
axis z and coincides with S1 and S2, respectively. If the pole P is in the general
position to the directing lines of C14 , the feet of perpendiculars from P to the rays
of the pencil (C) (see Figure 3b) form the circle c with the diameter CP ′, where P ′

is the orthogonal projection of P to δ (see Figure 3c). For given pole P , the path
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of the point P ′ is the circle k which lies in the plane through P perpendicular to
the axis z. The diameter of k is PPz, where Pz is the normal projection of P to z
(see Figure 3d). Thus, we can regard the surface P6

4 as the system of circles in the
planes through quadruple line z with the end points of diameters on Viviani’s curve
c4 and circle k.

a b c d

Figure 3.

3.1. Parametric equations of P6
4 and Mathematica visualizations

Let (p, q, r) ∈ R3 be the coordinates of a pole P and let r(u) = (xc4(u), yc4(u), zc4(u)),
where functions xc4 , yc4 , zc4 : [0, π) → R are given by (3), be the radi-vector of the
point on Viviani’s curve c4. Let (t, z), where |t| =

√
x2 + y2, be the coordinates

of the points in the plane δ(u) which is given by equation y = x tanu if u ∈ [0, π),
u 6= π/2, and x = 0 if u = π/2, see Figure 4.

Figure 4.
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The coordinates of the points C,P ′ ∈ δ(u) are

tC(u) =
√
xc4(u)2 + yc4(u)2 =

xc4(u)
cosu

= −8
√

2
(1 + 3 cos 2u) cosu

(3 + cos 2u)2

zC(u) = zc4(u)
tP ′(u) = p cosu+ q sinu, zP ′(u) = r. (6)

R(u) is the radius and S(tS(u), zS(u)) is the center of the circle c in the plane δ(u):

R(u) =

√
(tC(u)− tP ′(u))2 + (zC(u)− r)2

2

tS(u) =
tC(u) + tP ′(u)

2
, zS(u) =

zC(u) + r

2
. (7)

Since the parametric equations of the circle c in the plane δ(u) are

t(v) = R(u) sin v + tS(u)
z(v) = R(u) cos v + zS(u), v ∈ [0, 2π), (8)

the parametric equations of the surface P6
4 are the following:

x(u, v) = cosu (R(u) sin v + tS(u))
y(u, v) = sinu (R(u) sin v + tS(u))
z(u, v) = R(u) cos v + zS(u), u ∈ [0, π), v ∈ [0, 2π). (9)

Equations (9) allow for Mathematica visualizations of surfaces P6
4 . Three pedal

surfaces of C14 with respect to the poles (1, 1, 1), (−5, 0, 0) and (0,−3, 0) are shown
in Figure 5a, 5b and 5c, respectively. The directing lines of C14 and the pole are
pointed out. Each surface is viewed from two different viewpoints.

a b c

Figure 5.
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Equations (9) are valid for every position of a pole P . Four examples of the pedal
surfaces P6

4 with respect to the poles which lie on the directing lines of C14 are shown
in Figure 7. If a pole lies on z, all circles c pass through it and, as we will see in the
following, it is the quintuple point of P6

4 . These are the cases in Figure 6a and 6b
where P = (0, 0, 0) and P = (0, 0,−2

√
2), respectively. If a pole lies on c4, the circle

c through it splits into isotropic lines in the plane δ through P and P is a double
point of P6

4 . These are the cases in Figure 6c and 6d where P is given by vectors
r(0◦) and r(110◦), respectively.

a b c d
Figure 6.

3.2. Implicit equation of P6
4

In the plane δ(u) through z, in the coordinates (t, z) (see Figure 3), the equation of
the circle c is

(t− tS(u))2 + (z − zS(u))2 = R(u)2, u ∈ [0, π). (10)

From eq. (6), by using the substitutions cosu = x√
x2+y2

, sinu = y√
x2+y2

, we obtain

the following

tC(u) = −4
√

2x(2x2 − y2)
√
x2 + y2

(2x2 + y2)2

zC(u) =
2
√

2 y2(2x2 − y2)
(2x2 + y2)2

tP ′(u) =
p x+ qy√
x2 + y2

. (11)

Now, we can express tS(u), zS(u), R(u), given by formulas (7), as the functions of
x and y. If we put these functions and t =

√
x2 + y2 into eq. (10) and multiply it

by (2x2 + y2)2, we obtain the implicit equation of P6
4 which can be written in the

following form

(2x2 + y2)2(x2 + y2 + z2) +H5(x, y) +H4
1 (x, y)z +H4

2 (x, y) = 0, (12)
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where Hi(x, y) are homogeneous polynomials in x and y of degree i, given by the
formulas:

H5(x, y) = (8
√

2− 4p)x5 − 4qx4y + (4
√

2− 4p)x3y2 − 4qx2y3+(−4
√

2− p)xy4−qy5

H4
1 (x, y) = −4rx4 + (−4

√
2− 4r)x2y2 + (2

√
2− r)y4

H4
2 (x, y) = −2

√
2(2x2 − y2)(2px2 + 2qxy − ry2). (13)

3.3. Properties of P6
4

Proposition 1. The plane at infinity cuts the surface P6
4 at the absolute conic of

E3 and the rays of the congruence C14 .

Proof. In the Cartesian homogeneous coordinates (x :y : z : w), where w=0 means
that the point lies in the plane at infinity, the equation of the surface P6

4 takes the
following form:

(2x2 + y2)2(x2 + y2 + z2) +H5(x, y)w +H4
1 (x, y)zw +H4

2 (x, y)w2 = 0. (14)

Therefore, the intersection of P6
4 and the plane at infinity splits into the absolute

conic, given by equations

x2 + y2 + z2 = 0, w = 0, (15)

and the pair of imaginary lines through the point (0 : 0 : 1 : 0), counted twice, which
are given by equations

(2x2 + y2)2 = 0, w = 0. (16)

The intersection points of Viviani’s curve, given by equations (1) and (2), and the
plane at infinity are given by equations

x2 + y2 + z2 = 0, x2 + 2zx+ 2y2 + z2 = 0, w = 0. (17)

If we eliminate z in (17), we obtain (16) which present the four rays of the congruence
C14 in the plane at infinity.

3.3.1. Singularities on axis z

Proposition 2. The axis z is the quadruple line of the surface P6
4 .

Proof. According to [4, p. 251], if an nth order surface in E3 which passes through
the origin is given by equation F (x, z, y) = fm(x, y, z) + fm+1(x, y, z) + · · · +
fn(x, y, z) = 0, where fk(x, y, z) (1 ≤ k ≤ n) is a homogeneous polynomial of degree
k, then the tangent cone at the point (0, 0, 0) is given by equation fm(x, y, z) = 0.

If we translate the origin to any point Z0 = (0, 0, z0) on the axis z, eq. (12) takes
the form

(2x2 + y2)2(x2 + y2 + (z+ z0)2) +H5(x, y) +H4
1 (x, y)(z+ z0) +H4

2 (x, y) = 0. (18)
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Thus, the tangent cone TZ0 of P6
4 at the point Z0, in the coordinate system with the

origin Z0, is given by the following equation

(2x2 + y2)2z2
0 +H4

1 (x, y)z0 +H4
2 (x, y) = 0. (19)

Since this equation is 4th degree homogeneous in x and y, in the general case TZ0

always splits into the four planes through the axis z.

Proposition 3. The surface P6
4 has a quintuple point on the axis z iff a pole P lies

on the axis z. In this case, P is a unique quintuple point of P6
4 . For the tangent

cone T 5
P of P6

4 at P , the following statements are valid:

1. If r ∈ (−∞,−2
√

2) ∪ (
√

2/4,+∞), the axis z is the isolated quadruple line of
T 5

P .

2. If r = −2
√

2, T 5
P splits into one plane through z and the 4th degree cone. The

axis z is the triple line of this 4th degree cone with one real and one pair of
imaginary tangent planes through it.

3. If r ∈ (−2
√

2, 0), the axis z is the quadruple line of T 5
P with one pair of real

and different, and one pair of imaginary tangent planes through it.

4. If r = 0, T 5
P splits into two planes through z and the 3rd degree cone. The axis

z is the cuspidal line of this 3rd degree cone.

5. If r ∈ (0,
√

2/4), the axis z is the quadruple line of T 5
P with four real and

different tangent planes through it.

6. If r =
√

2/4, the axis z is the double cuspidal line of T 5
P .

Proof. The tangent cone of P6
4 at its point Z0 = (0, 0, z0), in the coordinate system

with the origin Z0, is given by eq. (19). The expanded form of this equation is the
following:

− 4
(

2
√

2p+ (r − z0)z0
)
x4 − 8

√
2qx3y + 4

(√
2p+

(√
2− z0

)
(r − z0)

)
x2y2

+ 4
√

2qxy3 − (r − z0)
(
z0 + 2

√
2
)
y4 = 0. (20)

According to [4, p. 251], the point Z0 is the quintuple point of P6
4 , iff all coefficients

in (20) vanish and the 5th degree homogeneous polynomial in (18) does not vanish.
It is easy to show that all coefficients in eq. (20) vanish only in the case: p = 0,
q = 0, r = z0, i.e. if a pole P lies on the axis z and Z0 = P . In this case P is the
quintuple point of P6

4 with the tangent cone, in the coordinate system with origin
P , given by the following equation

8
√

2x5 + 4
√

2x3y2 − 4
√

2xy4 +
(

4rx4 + 4
(
r −
√

2
)
x2y2 +

(
r + 2

√
2
)
y4
)
z, (21)

which represents the 5th degree cone [6, p. 56].
If P lies on the axis z, the tangent cone at the point (0, 0, z0), z0 6= r, is given by
the following equation

−4(r − z0)z0 x4 + 4
(√

2− z0
)

(r − z0)x2y2 − (r − z0)
(
z0 + 2

√
2
)
y4 = 0 (22)
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and therefore, all other points on the axis z are the quadruple points of P6
4 .

If r = 0, eq. (21) takes the form:(
2x2 − y2

) (
2x3 + 2y2x− y2z

)
= 0. (23)

Thus, for P = (0, 0, 0) the tangent cone T 5
P splits into two planes y=±

√
2x (planes

through z and two tangent lines of c4 at its node, see eq. (5)) and the 3rd degree
cone 2x3 +2y2x−y2z = 0 with a cuspidal line on the axis z where coinciding tangent
planes are given by equation y = 0. It proves statement 4 from the proposition.

If r = −2
√

2, eq. (21) takes the form:

x
(
2x4 + y2x2 − y4 − x

(
2x2 + 3y2

)
z
)
. (24)

Thus, for P = (0, 0,−2
√

2) the tangent cone T 5
P splits into the plane x = 0 and the

4th degree cone 2x4 + y2x2 − y4 − x
(
2x2 + 3y2

)
z = 0.

The axis z is the triple line of this 4th degree cone with one real tangent plane x = 0
and the pair of imaginary tangent planes given by equation 2x2 + 3y2 = 0. It proves
statement 2 from the proposition.

If r =
√

2/4, eq. (21) takes the form:(
32x5 + 16y2x3 − 16y4x+

(
2x2 − 3y2

)2
z
)

= 0. (25)

Thus, for P =(0, 0,
√

2/4) the axis z is the double cuspidal line of T 5
P with two pairs

of coinciding tangent planes given by equations
√

2x±
√

3y = 0. It proves statement
6 from the proposition.

If P lies on the axis z, every circle c passes through it and the generators of the cone
T 5

P are the tangent lines of the circles c at point P .
If the axis z touches c, the generator coincides with z, and the plane of this circle c
is the tangent plane of T 5

P through the axis z.

Since the circle c touches the axis z iff it passes though the intersection point of
Viviani’s curve c4 and the plane z = r, we can conclude, according to formulas (4)
and the discussion which follows them, that statements 1, 3 and 5 are valid.

In Figure 7 the pedal surfaces with the tangent cones at their quintuple points
are shown for seven positions of a pole P . The coordinates of the pole P are: a
−(0, 0,

√
2), b −(0, 0,

√
2/4), c −(0, 0,

√
2/6), d −(0, 0, 0), e −(0, 0,−

√
2),

f −(0, 0,−2
√

2) and g −(0, 0,−4).
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a b c d

e f g

Figure 7.
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The points Z0(0, 0, z0) on the axis z are the quadriplanar points of surface P6
4 .

Their tangent cones TZ0 , given by eq. (20), split into four planes through the axis z.
We distinguish nine types as follows:

Type 1: TZ0− four real and different planes.
Type 2: TZ0− two real and different planes and a pair of imaginary planes.
Type 3: TZ0− two different pairs of imaginary planes.
Type 4: TZ0− one double plane and two different single real planes.
Type 5: TZ0− one double plane and a pair of imaginary planes.
Type 6: TZ0− a pair of double real planes.
Type 7: TZ0− a double pair of imaginary planes.
Type 8: TZ0− one triple plane and one single plane.
Type 9: TZ0− one quadruple plane.

On the axis z the intervals with quadriplanar points of types 1−3 are bounded by
points of types 4−9 which are the pinch-points of P6

4 .

Proposition 4. The surface P6
4 has twelve pinch-points on the quadruple line z

(real or complex). Among them, one is always the point at infinity and it is the
pinch-point of type 7.

Proof. The proof that an nth order surface with an (n−2)-ple line always possesses
4(n− 3) pinch-points is given in [8, p. 317]. We give here only its interpretation on
this 6th order case: every plane δ through the axis z cuts P6

4 into a quadruple line and
one conic c which cuts quadruple line in two points - touching points of the plane δ
and P6

4 . The correspondence on the pencil of planes [z], where corresponding planes
have the same touching point, is the involution of order 6 since through each touching
point of δ another 3 tangent planes pass. This involution has 2 · 6 double elements
which are the coinciding tangent planes through the points on the quadruple line
and their touching points are the pinch-points of P6

4 .
According to eq. (14), the tangent cone at the point Z∞0 (0::0::1::0) is given by equation
(2x2 + y2)2 = 0, and Z∞0 is the pinch-point of type 7.

The above proposition includes complex points, but below we will refer only to the
real pinch-points. The type of quadriplanar point Z0 depends on factorization of
the homogeneous 4th degree polynomial in x and y which represents TZ0 . If we use
the substitutions y = k x, x = h y, the polynomial from eq. (20) takes the forms:

Ak4 +Bk3 + Ck2 +Dk + E = 0,
Eh4 +Dh3 + Ch2 +Bh+A = 0, (26)

where

A = −4
(

2
√

2p+ (r − z0)z0
)
, B = −8

√
2q

C = 4
(√

2p+
(√

2− z0
)

(r − z0)
)

D = 4
√

2q, E = −(r − z0)
(
z0 + 2

√
2
)
. (27)
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For the given Z0, the roots of polynomials (26) are the tangent and cotangent of the
angles between the planes of TZ0 and the plane y = 0. If polynomials (26) have a
multiple root for z0, Z0 is the pinch-point of P6

4 .

In [10], for the depressed quartic polynomial

P4(x) = x4 + a2x
2 + a1x+ a0, ai ∈ R, (28)

the author gives the following relations between its coefficients and multiple roots:

P4(x) has three different real roots and one of them is a double root⇐⇒
a2 < 0, a2

2 − 4a0 > 0, a2
2 + 12a0 > 0,

4(a2
2 + 12a0)3 = (2a3

2 − 72a2a0 + 27a2
1)2.

P4(x) has one double real root and a pair of complex roots⇐⇒

a2
2 + 12a0 > 0, −2a2 <

√
a2
2 + 12a0,

2(a2
2 + 12a0)

3
2 = 2a3

2 − 72a2a0 + 27a2
1.

P4(x) has two double real roots⇐⇒ a1 = 0, a2
2 − 4a0 = 0, a2 < 0. (29)

P4(x) has two double complex roots⇐⇒ a1 = 0, a2
2 − 4a0 = 0, a2 > 0.

P4(x) has two different real roots and one of them is a triple root⇐⇒
a2
2 + 12a0 = 0, 8a3

2 + 27a2
1 = 0, a2 < 0.

P4(x) has one quadruple real root⇐⇒ a0 = a1 = a2 = 0.

By using the substitutions k = t−B/4A and h = s−D/4E, polynomials (26) take
the depressed forms. On this basis and based on conditions (29), we made a program
in Mathematica 6 (available online: www.grad.hr/sgorjanc/pinch points.nb) which
calculates coordinates z0 for the pinch-points of P6

4 for every choice of a pole P , i.e.
for the given (p, q, r). Here is one example:

P (1, 0, 1) − 12 real pinch-points, see Figure 8.

two single pinch-points of type 4
z0 = 1

2

(
1−

√
1 + 8

√
2
)

and z0 = 1 with TZ0 given by

y2
(
21.0182x2 − 2.50909y2

)
= 0 and x2

(
2x2 − y2

)
= 0, respectively.

two single pinch-points of type 5
z0 = −2

√
2 and z0 = 1

2

(
1 +

√
1 + 8

√
2
)

with TZ0 given by

x2
(
2x2 + 4.41421y2

)
= 0 and y2

(
6.98182x2 + 4.50909y2

)
= 0, respectively.

two double pinch-points of type 6

z0 = 0 and z0 = 1
8

(
12 +

√
2−

√
6
(
3 + 4

√
2
))

with TZ0 given by(
2x2 − y2

)2 = 0 and
(
y2 − 3.85588x2

)2 = 0, respectively.
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two double pinch-points of type 7

z0 = 1
8

(
12 +

√
2 +

√
6
(
3 + 4

√
2
))

and Z0(0:0:1:0) with TZ0 given by(
0.762047x2 + y2

)2 = 0 and (2x2 + y2)2 = 0, respectively.

Figure 8.

Proposition 5. On the surfaces P6
4 , all types of pinch-points (type 4-9) exist.

Proof. In the previous example the tangent cones and the coordinates of the pinch-
points of types 4, 5, 6 and 7 are given.
For P ( 29

64 , 1,−
79
64 + 2

√
2

79 ) the tangent cone TZ0 at the point Z0(0, 0, 2
√

2
79 ) is given by

equation (x+ y)3(7x− 5y) = 0. Thus, Z0(0, 0, 2
√

2
79 ) is the pinch-point of type 8.

For P (−3, 0, 1− 2
√

2) the tangent cone TZ0 at the point Z0(0, 0,−2
√

2) is given by
equation x4 = 0. Thus, Z0(0, 0,−2

√
2) is the pinch-point of type 9.

3.3.2. Real singularities outside the axis z

Except for the points on the quadruple line z, the highest singularity P6
4 can possess

is a double point. Namely, if P6
4 had a higher multiple point out of z, the line through

that point which cuts z would cut P6
4 in more than 6 points, which is impossible.
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If D is the double point of P6
4 , it is

the double point of every section of P6
4

throughD. Thus, the circle c in the plane
through D and the axis z splits into a
pair of isotropic lines through D. It is
the case when the end points of the di-
ameter CP ′ coincide, i.e. circle k inter-
sects Viviani’s curve c4 at point D, see
Figure 9.

Figure 9.

Proposition 6. The surface P6
4 has exactly two real double points out of the axis z

iff a pole P lies on the part of one parabola given by the following relations:

x2 + 2
(
z +
√

2
)
x+ z

(
z + 6

√
2
)

= 0, y = 0,

x ∈ (−2
√

2, 4
√

2) \ {0}. (30)

Proof. According to (4), in the planes z = r, r ∈ (−2
√

2, 0) ∪ (0,
√

2/4) the curve
c4 has at least two real points D1, D2 which are symmetrical with respect to the
plane y= 0. If the circle k passes through these points, they are the double points
of the surface P6

4 . In this case k is the circumcircle of 4D1D2Zr (where Zr is the
intersection point of the plane z=r and the axis z) and the pole P is the end point
of its diameter through Zr, i.e. Pz = Zr. For r ∈ (0,

√
2/4), there are two such

circles k in the plane z= r, and for r ∈ (−2
√

2, 0) only one such circle k exists, see
Figure 10a.

a b
Figure 10.

It is clear that the locus of points P is the part of a curve in the plane y=0. According
to parametrization of Viviani’s curve (3) and the sine formula, the circumradius of
4D1D2Pz is |yc4(u)/ sin 2u|, and the (x, z) coordinates of the circumcenter C (see
Figure 10b) are (yc4(u)/ sin 2u, zc4(u)), u ∈ [0, π/2]. Thus, the parametric equations
of the curve which contains the path of the point P are the following:

x(u) = −8
√

2(3 cos(2u) + 1)
(cos(2u) + 3)2

y(u) = 0

z(u) =
4
√

2(3 cos(2u) + 1) sin2(u)
(cos(2u) + 3)2

, u ∈ [0, π/2]. (31)
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If we substitute sin2 u → (1 − cos 2u)/2 in eq. (31) and then eliminate cos 2u, we
obtain the following equations:

x2 + 2xz + 2 + z2
√

2x+ 6
√

2z = 0, y = 0. (32)

They are the equations of one parabola p and if P lies on it and belongs to the
region x ∈ (−2

√
2, 4
√

2) \ {0}, the circle k intersects c4 in two different real points,
see Figure 10b.

In Figure 11 two examples of P6
4 with two double points are shown.

a b
Figure 11.

Proposition 7. The surface P6
4 has at least one real double point out of the axis z

iff a pole P lies on one 5th degree ruled surface.

Proof. Every plane z = r, r ∈ (−2
√

2,
√

2/4], cuts the axis z at the point Pz and
Viviani’s curve at the real point D /∈ z. If the circle k belongs to the pencil of circles
(D,Pz), the point D is the real double point of P6

4 . The end points of diameters
through Pz of circles of the pencil (PzD) lie on the line l which is perpendicular to
PzD and passes through D. Thus, if the pole P lies on l, D is the double point of
P6

4 .

a b
Figure 12.
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It is always the unique double point of P6
4 except in the case when P is the intersec-

tion point of the plane z=r and the part of parabola p for which −2
√

2 ≤ x < 4
√

2.
This is denoted by Pp and in this case, as shown in proposition 6, the surface P6

4 has
two double points (see Figure 12a). The lines l are the rulings of one ruled surface
R (see Figure 12b) which is part of the ruled surface directed by lines: Viviani’s
curve c4, parabola p and the line at infinity l∞ in the plane z = 0. Below we will
derive the implicit equation of the surface R.
According to formulas (4) and the corresponding relations (see Figure 2), in the
plane z=r there are 2 or 4 real lines l (which are in pairs symmetrical with respect
to the plane y=0), if r ∈ (−2

√
2, 0) or r ∈ (0,

√
2/4), respectively. Especially, if

r ∈ {−2
√

2, 0,
√

2/4}, two lines l coincide and they are the torsal lines of the surface
R. In the planes z=−2

√
2 and z=0 one torsal line exists and in the plane z=

√
2/4

two torsal lines exist (see Figure 13).

Figure 13.

If we solve equations (1) and (2) for variables x and y, we can express curve c4 by
the following parametrization:

x1
c4(z) = z −

√
2 +

√
2− 4

√
2z x2

c4(z) = z −
√

2−
√

2− 4
√

2z

y1
c4(z) = ±

√
2
√
−zx1

c4(z) y2
c4(z) = ±

√
2
√
−zx2

c4(z)

z1
c4(z) = z, z ∈ [−2

√
2,
√

2/4] z2
c4(z) = z, z ∈ [0,

√
2/4].

(33)

The corresponding parts of the parabola p, given by eq. (32), can be parametrized
as follows:

x1
p(z) = −z −

√
2 +

√
2− 4

√
2z x2

p(z) = −z −
√

2−
√

2− 4
√

2z

y1
p(z) = 0 y2

p(z) = 0

z1
p(z) = z, z ∈ [−2

√
2,
√

2/4] z2
p(z) = z, z ∈ [0,

√
2/4].

(34)
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In the planes z = z0, z0 ∈ [−2
√

2,
√

2/4], the rulings of the surface R are:

1. the lines which join the point (x1
p(z0), 0) with the points (x1

c4(z0), y1
c4(z0)), for

z0 ∈ [−2
√

2,
√

2/4];

2. the lines which join the points (x2
p(z0), 0) with the corresponding points

(x2
c4(z0), y2

c4(z0)) for z0 ∈ [0,
√

2/4].

From the equations of the rulings, by substitution z0 → z, multiplying by z and
squaring, we obtain the following equations for the parts of R:

1. 2y2z +
(
z +

√
2− 4

√
2z −

√
2
)(

x+ z −
√

2− 4
√

2z +
√

2
)2

= 0,

z ∈ [−2
√

2,
√

2/4], (35)

2. 2y2z +
(
z −

√
2− 4

√
2z −

√
2
)(

x+ z +
√

2− 4
√

2z +
√

2
)2

= 0,

z ∈ [0,
√

2/4]. (36)

Eqs. (35) and (36), after the elimination of roots and dividing by z, give the same
equation of R as follows:

z5 +2
(

2x+ 7
√

2
)
z4 + 2

(
3x2 + 18

√
2x+ 2y2 + 60

)
z3

+4
(
x3 + 8

√
2x2 + 2y2x+ 40x+ 5

√
2y2 + 36

√
2
)
z2

+
(
x4 + 12

√
2x3 + 4y2x2 + 88x2 + 32

√
2y2x+ 96

√
2x+ 4y4 + 80y2

)
z

+2
(√

2x2 + 8x+ 8
√

2
) (
x2 − 2y2

)
= 0. (37)

From the previous analysis we can conclude that iff a pole P lies on the surface given
by eq. (37) and r 6= −2

√
2, the surface P6

4 has at least one real double point which
does not lies on the axis z. We excluded the value r = −2

√
2 because in this case

the double point D coincides with the quadruple point on the axis z.

a b

Figure 14.
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As is clear from eq. (37), R is a 5th degree ruled surface. In Figure 14 this surface is
viewed from two different viewpoints and in Figure 14b its torsal lines are indicated.

The degree of the complete ruled surface with directing lines c4, p and l∞ in the
plane z = 0 is 2 · 4 · 2 · 1 − 3 · 1 = 13, [6, p. 90]. The residual surface S, which is
obtained by joining the intersection points of c4 and p with the planes parallel to
z= 0 in a different way, is an 8th degree ruled surface. Although the construction
of this residual is the same as the construction of R (2 or 4 real lines in the planes
z = z0, z0 ∈ [−2

√
2,
√

2/4]), the differences in their degrees is a result of the fact
that the line l∞ is the quadruple line of S when it is a simple line of R. Namely, the
line l∞ is the quintuple line of the complete ruled surface [6, p. 91]: it is clear from
eq. (37) that it is the simple line of R and it can be shown that it is the quadruple
line of S, but proving this here is beyond the concept of this paper.

References
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