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Abstract

Wiener’s attack is a well-known polynomial-time attack on a RSA
cryptosystem with small secret decryption exponent d, which works if
d < n0.25, where n = pq is the modulus of the cryptosystem. Namely,
in that case, d is the denominator of some convergent pm/qm of the
continued fraction expansion of e/n, and therefore d can be computed
efficiently from the public key (n, e).

There are several extensions of Wiener’s attack that allow the RSA
cryptosystem to be broken when d is a few bits longer than n0.25. They
all have the run-time complexity (at least) O(D2), where d = Dn0.25.
Here we propose a new variant of Wiener’s attack, which uses results
on Diophantine approximations of the form |α − p/q| < c/q2, and
“meet-in-the-middle” variant for testing the candidates (of the form
rqm+1 + sqm) for the secret exponent. This decreases the run-time
complexity of the attack to O(D log D) (with the space complexity
O(D)).

1 Introduction

The most popular public key cryptosystem in use today is the RSA cryp-
tosystem, introduced by Rivest, Shamir, and Adleman [10]. Its security is
based on the intractability of the integer factorization problem.

The modulus n of a RSA cryptosystem is the product of two large primes
p and q. The public exponent e and the secret exponent d are related by

ed ≡ 1 (mod ϕ(n)), (1)
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where ϕ(n) = (p − 1)(q − 1). In a typical RSA cryptosystem, p and q have
approximately the same number of bits, while e < n. The encryption and
decryption algorithms are given by C = M e mod n, M = Cd mod n.

To speed up the RSA decryption one may try to use small secret decryp-
tion exponent d. The choice of a small d is especially interesting when there
is a large difference in computing power between two communicating devices,
e.g. in communication between a smart card and a larger computer. In this
situation, it would be desirable that the larger computer has a small public
exponent, while the smart card has a small secret exponent, to reduce the
processing required in the smart card for encryption, resp. decryption.

In 1990, Wiener [15] described a polynomial time algorithm for breaking
a typical (i.e. p and q are of the same size and e < n) RSA cryptosystem if
the secret exponent d has at most one-quarter as many bits as the modulus
n. From (1) it follows that there is an integer k such that ed − kϕ(n) = 1.
Since ϕ(n) ≈ n, we have that k

d
≈ e

n
. Wiener’s attack is usually described in

the following form (see [3, 11]):
If p < q < 2p, e < n and d < 1

3
4
√

n, then d is the denominator of some
convergent of the continued fraction expansion of e

n
.

Indeed, under these assumptions it is easy to show that

∣∣∣∣
e

n
− k

d

∣∣∣∣ <
1

2d2
.

By the classical Legendre’s theorem, k
d

is some convergent pm

qm
of the continued

fraction expansion of e
n
, and therefore d can be computed efficiently from

the public key (n, e). Namely, the total number of convergents is of order
O(log n), and each convergent can be tested in polynomial time.

In 1997, Verheul and van Tilborg [14] proposed an extension of Wiener’s
attack that allows the RSA cryptosystem to be broken when d is a few
bits longer than n0.25. For d > n0.25 their attack needs to do an exhaustive
search for about 2t+8 bits (under reasonable assumptions on involved partial
convergents), where t = log2(d/n0.25).

In [5], we proposed a slight modification of the Verheul and van Tilborg
attack, based on Worley’s result on Diophantine approximations [16], which
implies that all rationals p

q
satisfying the inequality

∣∣∣∣α−
p

q

∣∣∣∣ <
c

q2
, (2)

2



for a positive real number c, have the form

p

q
=

rpm+1 ± spm

rqm+1 ± sqm

(3)

for some m ≥ −1 and nonnegative integers r and s such that rs < 2c. It has
been shown recently in [6] that Worley’s result is sharp, in the sense that the
condition rs < 2c cannot be replaced by rs < (2− ε)c for any ε.

In both mentioned extensions of Wiener’s attack, the candidates for the
secret exponent are of the form d = rqm+1+sqm. Then we test all possibilities
for d. The number of possibilities is roughly the product of the number
of possibilities for r and the number of possibilities for s, which is O(D2),
where d = Dn0.25. More precisely, the number of possible pairs (r, s) in
the Verheul and van Tilborg attack is O(D2A2), where A = max{ai : i =
m+1,m+2, m+3} and the ai’s are partial quotients in the continued fraction
expansion of e

n
, while in our variant the number of pairs is O(D2 log A) (and

also O(D2 log D)).
Another modification of the Verheul and van Tilborg attack has been

recently proposed by Sun, Wu an Chen [13]. It requires (heuristically) an
exhaustive search for about 2t − 10 bits, so its complexity is also O(D2).
We cannot expect drastic improvements here, since, by a result of Steinfeld,
Contini, Wang and Pieprzyk [12], there does not exist an attack in this class
with subexponential running time.

Boneh and Durfee [4] and Blömer and May [2] proposed attacks based
on Coppersmith’s lattice-based technique for finding small roots of modular
polynomials equations using LLL-algorithm. The attacks work if d < n0.292.
The similar methods have been applied in [7, 1] to partial key exposure
attack on RSA, i.e. in the situations where the secret key d is small and
also a sufficient amount of d is given. The conjecture is that the right bound
below which a typical version of RSA is insecure is d < n0.5.

In the present paper, we propose a new variant of Wiener’s attack. It
also uses continued fractions and searches for candidates for the secret key
in the form d = rqm+1 + sqm. However, the searching phase of this variant is
significantly faster. Its complexity is O(D log D), and it works efficiently for
d < 1030n0.25. Although this bound is asymptotically weaker than the bounds
in the above mentioned attacks based on the LLL-algorithm (note however
that these bounds are not strictly proved since Coppersmith’s theorem in the
bivariate case is only a heuristic result - see also [8, 9]), for practical values
of n (e.g. for 1024-bits) these bounds are of comparable size.
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2 The Verheul and van Tilborg attack

In this section we briefly describe the Verheul and van Tilborg attack [14]
and its modification from [5].

We assume that p < q < 2p and e < n. Then it is easy to see that
∣∣∣∣
e

n
− k

d

∣∣∣∣ <
2.122 e

n
√

n
. (4)

Let m be the largest (odd) integer satisfying pm

qm
− e

n
> 2.122 e

n
√

n
. Verheul and van

Tilborg proposed to search for k
d

among the fractions of the form rpm+1+spm

rqm+1+sqm
.

This leads to the system

rpm+1 + spm = k,

rqm+1 + sqm = d.

The determinant of the system satisfies |pm+1qm−qm+1pm| = 1, and therefore
the system has (positive) integer solutions:

r = dpm − kqm,

s = kqm+1 − dpm+1.

If r and s are small, then they can be found by an exhaustive search. Let
[a0; a1, a2, . . .] be the continued fraction expansion of e/n and D = d/n0.25.
In [5], the following upper bounds for r and s were derived:

r < max{
√

2.122(am+3 + 2)(am+2 + 1)D,
√

2.122(am+2 + 2)D},
s < max{2

√
2.122(am+3 + 2)D,

√
2.122(am+2 + 2)(am+1 + 1)D}.

The modified attack proposed in [5] searches for k
d

among the fractions

of the forms rpm+1+spm

rqm+1+sqm
, rpm+2−spm+1

rqm+2−sqm+1
and rpm+3+spm+2

rqm+3+sqm+2
. The analysis results in

bounds for r and s which are (almost) independent on the partial quotients
am’s. Hence, in both attacks bounds for r and s are of the form O(D), but
in the case of [5] the implied constants are much smaller (indeed, the table
in Section 4 shows that with high probability we have r < 4D and s < 4D).

3 Testing the candidates

There are two principal methods for testing candidates for the secret expo-
nent d.
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Method I ([15]): Compute p and q, assuming d is the correct guess,
using the following formulas:

ϕ(n) = (de− 1)/k, p + q = n + 1− ϕ(n),

(q − p)2 = (p + q)2 − 4n,

p =
p + q

2
− q − p

2
, q =

p + q

2
+

q − p

2
.

Method II ([11, Chapter 17]): Test the congruence (M e)d ≡ M (mod n),
for some random value of M , or simply for M = 2.

Both methods are very efficient. But in the situation where we have to
test huge amount of candidates for d of the form rqm+1 + sqm, there is a
significant difference between them. With the Method I it seems that we
cannot avoid testing separately all possible pairs (r, s). On the other hand,
here we present a new idea, which is to apply “meet-in-the-middle” to the
Method II.

We want to test whether

2e(rqm+1+sqm) ≡ 2 (mod n). (5)

Note that m is (almost) fixed. Indeed, let m′ be the largest odd integer such
that

pm′

qm′
>

e

n
+

2.122e

n
√

n
.

Then m ∈ {m′,m′ + 1,m′ + 2} (see [5] for details).
Let 2eqm+1 mod n = a, (2eqm)−1 mod n = b. Then we test the congruence

ar ≡ 2bs (mod n). (6)

We can do it by computing ar mod n for all r, sorting the list of results,
and then computing 2bs mod n for each s one at a time, and checking if the
result appears in the sorted list.

This decreases the time complexity of the testings phase to O(D log D)
(with the space complexity O(D)).
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4 Implementation issues and improvements

The theoretic base for the extension of Wiener’s attack is Worley’s theorem
on Diophantine approximations of the form (2). We have already mentioned
a result from [6] which shows that Worley’s result is in some sense the best
possible. However, some improvements are possible if we consider unsymmet-
rical variants of Worley’s result (with different bounds on r and s). Roughly
speaking, in solutions of (2) in form (3), if r < s then we may take rs < c
instead of rs < 2c. Due to such unsymmetrical results, a space-time tradeoff
might be possible. The following table shows the chance of success of our
attack for various (symmetrical and unsymmetrical) bounds on r and s. We
can see that the result obtained for a smaller bound on r and a larger bound
on s is better then the result with reversed bounds on r and s. In the imple-
mentations, this fact can be used to decrease the memory requirements (up
to factor 16).

bound for r bound for s chance of success

4D 4D 98%
2D 2D 89%
D D 65%
D 4D 86%
4D D 74%
D/2 2D 70%
2D D/2 47%
D/4 4D 54%
4D D/4 28%

In the implementation of the proposed attack, we can use hash func-
tions instead of sorting. Furthermore, it is not necessary to store all bits
of ar mod n in the hash table. Indeed, values of ar mod n are from the
set {0, 1, . . . , n}, and the number of r’s is typically much smaller than n.
Therefore, around 2 log2 D stored bits will suffice in order to avoid too many
accidental collisions. Note that a reasonable number of collisions is not big
problem here, since each such collision can be efficiently tested by Method I.
Hash tables can be used to take into account the condition gcd(r, s) = 1. This
condition was easy to use in brute-force testing of all possible pairs (r, s), but
the direct application of our “meet-in-the-middle” variant seemingly ignores
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it. But if we create rows in the hash table according to divisibility properties
of exponents r modulo small primes, we may take again an advantage of this
condition and speed up the algorithm up to 39%.

We have implemented several variants of the proposed attack in PARI and
C++, and they work efficiently for values of D up to 230, i.e. for d < 230n0.25.

For larger values of D the memory requirements become too demanding
for ordinary computers.

The following table compares this bound with the bound of d in the best
known attacks on RSA with small secret exponent based on LLL-algorithm.

log2 n log2(2
30n0.25) log2(n

0.292)

512 158 150
768 222 224

1024 286 299
2048 542 598

The attack can be also slightly improved by using better approximations
to k

d
, e.g. e

n+1−2
√

n
instead of e

n
. Namely,

∣∣∣∣
e

n + 1− 2
√

n
− k

d

∣∣∣∣ <
0.1221 e

n
√

n
. (7)

Comparing (7) with (4), we see that by replacing e
n

by e
n+1−2

√
n

we can gain
the factor 4 in bounds for r and s, so decreasing both, time and memory
requirements.

With these improvements, for 1024-bits RSA modulus n, the range in
which our attack can be applied becomes comparable and competitive with
best known attacks based on the LLL-algorithm.
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[6] A. Dujella, B. Ibrahimpašić, On Worley’s theorem in Diophantine approxi-
mations, Ann. Math. Inform. 35 (2008), 61–73.

[7] M. Ernst, E. Jochemsz, A. May, B. de Weger, Partial key exposure attacks
on RSA up to full size exponents, Advances in Cryptology - Proceedings of
Eurocrypt 2005, Lecture Notes in Computer Science 3494 (2005), 371–386.

[8] J. Hinek, Low Public Exponent Partial Key and Low Private Exponent At-
tacks on Multi-prime RSA, Master’s thesis, University of Waterloo, 2002.

[9] M. J. Hinek, M. K. Low, E. Teske, On some attacks on multi-prime RSA,
Proceedings of SAC 2002, Lecture Notes in Comput. Sci. 2595 (2003), 385–
404.

[10] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures
and publi-key cryptosystems, Communications of the ACM 21 (1978), 120–
126.

[11] N. Smart, Cryptography: An Introduction, McGraw-Hill, London, 2002.

[12] R. Steinfeld, S. Contini, H. Wang, J. Pieprzyk, Converse results to the Wiener
attack on RSA, Public Key Cryptography - PKC 2005, Lecture Notes in
Comput. Sci. 3386 (2005), 184–198.

[13] H.-M. Sun, M.-E. Wu, Y.-H. Chen, Estimating the Prime-Factors of an RSA
Modulus and an Extension of the Wiener Attack, Applied Cryptography and
Network Security, Lecture Notes in Comput. Sci. 4521 (2007), 116–128.

[14] E. R. Verheul, H. C. A. van Tilborg, Cryptanalysis of ‘less short’ RSA secret
exponents, Appl. Algebra Engrg. Comm. Computing 8 (1997), 425–435.

8



[15] M. J. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans.
Inform. Theory 36 (1990), 553–558.

[16] R. T. Worley, Estimating |α− p/q|, Austral. Math. Soc. Ser. A 31 (1981),
202–206.

Andrej Dujella
Department of Mathematics
University of Zagreb
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