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Abstract. This work provides analysis of kinetic behavior of the central metabolism of E. coli
upon glucose impulse during the initial transients of 15 seconds. The analysis is based on the 
model derived from dynamic measurements of the key intracellular metabolites. Response of the 
central carbon metabolism (glycolysis and pentose phosphate pathway) is decoupled from the 
anabolic and TCA systems by the transient measurements of the cofactors and oxaloacetate 
concentrations. The kinetic parameters are initially estimated by the nonlinear Least Squares 
Method (with Marqardt minimization) and improved by several global optimization algorithms 
(simplex Nelder-Mead, Simulated Annealing and Differential Evolution). However, due to severe 
ill-conditioned problem, large errors in the estimates are inherently present. The focus of this 
research is to reveal which are the most important enzyme effectors, reflected by the 
corresponding kinetic parameters, responsible for modeling of the input-output fluxes of the 
central metabolism. Applied is the Fourier Amplitude Sensitivity Test (FAST) for global 
sensitivity analysis. Identified are the key kinetic parameters responsible for the following fluxes: 
phosphotransferase system (PTS), nucleotide biosynthesis and pyruvate to biomass. The results 
could be potentially applicable for understanding of the metabolism regulation and for rational 
application of genetic engineering. 

1 Introduction 
The mathematical model applied in this work is based on the experimental data by Degenring et al. [1-2]. The 
data are collected by the automated sampling method and biochemical tests. Measured are responses of the 
intracellular glycolysis metabolites of Eschericha coli cultivated in a batch reactor under balanced growth 
conditions. The glucose impulse was introduced after a period of glucose deprivation. Each sample is 
immediately frozen upon automatic withdrawal from the bioreactor in order to ensure deactivation of the 
consequent biochemical reactions which would change the intracellular composition of the metabolites. 
Intracellular composition is sampled with 4 Hz frequency. The model consists of mass balance equations derived 
from the glycolysis network with included phosphate penthose pathway and Entner-Dourdoroff shunt. The 
kinetic rate functions and initial parameter values are selected from the biochemical data basis BRENDA and 
ExPASy [1-2]. Mathematical model that gives the best fit to the experimental data is composed of 22 
biochemical reactions and 122 kinetic parameters. In the process of the model adaptation, the parameters are 
fitted to the experimental data by the method of least squares and Marquardt optimization algorithm. The 
obtained model describes the network of biochemical reactions included in central metabolism of E. coli leading 
from glucose to energy and cell building components (Figure 1). Balances for the cofactors (ATP, ADP, NADH, 
NAD), acetylcoenzyme A, citrate and oxaloacetate are not explicitly accounted in the model, i.e. are not included 
into the reaction kinetics, as they were experimentally determinated in form of time varying interpolation 
functions [1-2].   Experimental account of the cofactors enables dynamic decoupling of the central metabolism 
from TCA cycle and the anabolic system. ¸eri¹ and Kurtanjek [3] improved the original model by Degenring et 
al. [1-2] by: closure of Entner-Doudoroff pathway with pyruvate balance, introduction of phosphoenolpyruavate 
carboxylase and carboxykinase reactions in the balance of phosphoenolypyravate, account for loss of pyruvate in 
biomass synthesis, change in kinetic rate expressions for several enzymes, and re-estimation of the kinetic 
parameters by application of the global optimisation algorithms.  The initial parameter estimates are used as 
initial values for application of the several global optimization algorithms: simplex Nelder-Mead, Simulated 
Annealing (SA) and Differential Evolution (DE) method (a variant of the genetic algorithm GA). The DE 
method gave the most of the improvement in minimization of the variance between the model predictions and 
experimental data. The modified model correctly predicts observed oscillatory response to glucose impulse in 
concentrations of pyruvate and D-ribose-5-phosphate.  The analyzed reaction map is depicted in Figure 1 and the 
kinetic rate expressions and parameters are available from URL address given in [4].  

Although, the parameter fitting process resulted in a relative small error, very high dimension of the parametric 
space resulted in a severely ill-conditioned problem and consequently the parameter confidence intervals are 
very large leading to significant uncertainties in the “true” parameter values. To resolve the problem of the 
parameter selection, a parameter sensitivity analysis is conducted.  Due to strong regulation of the metabolic 
fluxes, standard local (infinitesimal) one-to-one parameter sensitivity analysis does not provide insight into the 
highly regulated and globally concerted behaviour. Hence, this work is aimed for a global sensitivity analysis to 
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provide key parameters by simultaneous change of the kinetic parameters in a finite range of 132 dimensional 
space. 

Figure 1. Metabolic network of E. coli central metabolism.  
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For numerical evaluation of the global sensitivity analysis FAST algorithm over Monte Carlo simulation is 
chosen due to its computing efficiency. By the FAST method a number of needed simulations is considerably 
reduced [5-6] and here is effectively executed on a standard PC computer with the advantage of numerical 
efficiency provided with Wolfram Research Mathematica  NDSolve integration for ODE stiff systems [7]. For 
comparison of numerical efficacy, number of needed simulations by Monte Carlo simulation could be 
approximately 15 000 (assuming minimal 300 random simulations for each parameter) which is considerably 
higher than 2 000 simulations needed by the applied FAST algorithm. The needed number of simulations by 
FAST is determined by trail and error method until the sensitivities become unaffected by the number of 
samples.   

2 Global sensitivity analysis 
Global sensitivity analysis is a statistical method of analysis of effects of relative change in model responses due 
to variation of model input parameters over a reasonable finite range [5-6]. Effects of uncertainties of model 
parameters are analyzed numerically by Fourier Amplitude Sensitivity Test (FAST) method. Application of 
FAST algorithm provides sensitivities to large and simultaneous change of the complete set of the model 
parameters. This method is based on transformation of multidimensional space of model parameters to one 
dimension space of single parameter s. Normalized parameters xi are sampled from assumed range of minimal 
and maximal values and uniform probability density function. The values are sampled along piece wise linear 
functions defined by:  
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The model parameters are the specific rate kinetic constants which are linearly depended on the scale 
transformations of the standard (normalized) parameters. The parameter s covers the rage s∈[-1,1]. Each 
parameter transformation xi is associated with two randomly selected parameters, frequency ωi and phase angle 
ϕi. The parameters are randomly associated with the odd frequencies in the range from 29 to 301 and the phase 
angles in the range from  -2» to 2». The unbiased choice of frequencies and phase angles is checked by 
calculation of the covariance matrix of the complete set of the parameters. In this work obtained is the maximum 
covariance of order 10-5 which ensures effectively random sampling process needed for the sensitivity analysis. 
Importance of individual parameters is analyzed by general parameter sensitivity theory based on their 
corresponding variance contributions [5-6]. Results of the output function are decomposed into Fourier series 
with coefficients:  
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The total dispersion (variance) TD  is determined from the Fourier coefficients:  
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And individual parameter contribution in the total dispersion is calculated by the corresponding parameter 
harmonics: 
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The first and second order sensitivity coefficients are calculated by: 
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3 Results and discussion 
Model of E. coli central metabolism includes 24 biochemical reactions which are strongly depended. The main 
effect is glucose intake by PTS system which provides a cell with free energy and production of cell building 
blocks. It also functions in a regulatory capacity, controlling the rates of cellular carbon and energy metabolism 
[8]. To analyze the glucose consumption throughout the metabolic network 1 C-mol balance for the input and 
output fluxes are evaluated, and the results are depicted in Figure 2. There are two positive in-fluxes, PTS and 
the reaction of PEP production from OAA. These two fluxes are considered as the inputs to the central 
metabolism. They are closely related since for glucose transport into the E. coli cell by PTS mechanism PEP is 
required.  Since the glucose impulse is introduced after carbon source starvation, glucose transport (Figure 2, 
curve A) into the cell is very fast and high amount of PEP is needed, which results in very high activity of the 
reaction leading from OAA into PEP (Figure 2, curve B). In the opposite direction, reaction (from PEP to OAA) 
serves as an anaplerotic reaction of TCA cycle; it is required to replenish the pool of tricarboxylic acid cycle 
intermediates. Reaction of gluconeogenic conversion of oxaloacetate to phosphoenolpyruvate is considered to be 
inactive in E. coli grown in glucose containing media [9]. However, under these experimental conditions it is a 
dominant reaction tided to PTS. Here, under the given experimental conditions, prior to the glucose impulse, 
intracellular stored energy is used for the maintenance of the vital cellular functions, such as functionality of a 
cell membrane. Three the most dominate output fluxes are represented in Figure 2 with negative values. They are 
denoted by the corresponding letters: from pyruvate to AcCoA (curve C); polysaccharide synthesis (curve D); 
and from pyruvate to biomass (curve E).  The input-output 1 C-mol flux balances for the central metabolism 
reveals that 50 % of glucose intake is directed toward polysaccharide synthesis, 30 % is the flux of oxaloacetate 
to phosphoenolpyruvate (PEP) production needed for PTS activity. The flux toward biomass synthesis from 
pyruvate accounts for 11.7 % of the glucose carbon intake. Analysis of the 1 C-mol fluxes also reveals that PTS 
is the most active during first few fractions of a second, followed by the flux form OAA to PEP.  
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Figure 2. 1-C mol input PTS and the output fluxes during 15 s from the central metabolism. The fluxes are marked as:         
A) PTS, B) OAA to PEP, C) pyruvate to AcCoA, D) polysaccharide synthesis, E) from pyruvate to biomass. 

The complete set of parameters in the expanded model has132 kinetic parameters which are transformed along 
Lissajous curves to one dimensional space of a single parameter s. Each of the parameters is randomly and 
mutually uncorrelated in the range of  ± 50 % of its nominal value with the uniform probability distribution 
function.  

Figure 3. Subset of the parametric space, spanned by the saturation constants for PTS (Km1), phosphoglucosisomerase 
(Km3), and polysaccharide synthesis (Km5), filled with Lissajous curve for uncorrelated parameter sampling. 
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As an illustration of the filling process of the parametric space, a case of a 3D parameter subspace (saturation 
constants for PTS (Km1), phosphoglucosisomerase (Km3), and polysaccharide synthesis (Km5)) is presented in 
Figure 3. From the transformed set of parameters sampled are 2000 cases in steps of ¼s = 0.001 from the range 

[ ]1,1−∈s  and each of them is used for simulation glucose impulse distribution throughout the central 
metabolism given by the 10 differential equations. The number of needed samples (simulations) is determined by 
a trial and error method until the power spectrum obtained by Fourier decompositions becomes essentially 
invariant to the sample size.  Results of simulation, i.e. each input or output metabolic flux of interest, are 
expanded into a finite Fourier series.  The cut-off frequency in the expansion is approximately three times higher 
of the highest fundamental harmonic, which has been experimentally shown to be sufficient to reach the region 
of negligible power. An example of the power spectrum for input PTS flux is shown in Figure 4. The result 
shows the fast decay of the power spectrum, i.e. that most of the contributions in the spectrum are covered in the 
range of the first three highest harmonics. 
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Figure 4. Power spectrum of the Fourier transformation of PTS flux during the first 5 seconds after the glucose impulse.

Results of the output function are decomposed into the Fourier series, and sensitivity coefficients are calculated. 
Sensitivities on the complete kinetic parameters of the three fluxes (PTS, nucleotide synthesis, and flux from 
pyruvate to biomass) during first 5 s after the impulse fluxes are analyzed and presented in Figure 5. The 
percentages of the flux sensitivities for individual enzymes SENZYME are calculated as the sum of the partial 
sensitivities Si of each kinetic parameter included into the corresponding model of the enzyme kinetics: 
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where the kinetic parameters included into the activity of a particular enzyme are indexed from k to l. The same 
formula (8) is applied in the cases when several reaction steps are lumped into a single pseudo reaction, i.e, when 
a pseudo enzyme is present in the model. The results presented in Figure 5 show the well known fact that PFK is 
the key enzyme for regulation of glycolysis. In the phosphotransferase system (Figure 5A), the most sensitive are 
the parameters of phosphofructokinase (60 %), PTS is important for regulation of phosphofructokinase activity, 
and the parameters included in PTS mechanism (20 %), while the rest 20 % is the contribution of the rest of 
enzymes (parameters). This observation holds for the PTS transients after the first few fractions of the second 
upon the glucose impulse. The controlling effect of PFK is initially negligible, but becomes important in the 
region as a steady PTS flux is established (Figure 2). Sensitivity analysis of nucleotide synthesis flux (Figure 5B) 
reveales that it mostly depends on the parameters of the nucleotide biosynthesis mechanism (39 %) and on the 
mureine synthesis parameters (30 %). Pyruvate to biomass flux (Figure 5C) shows the highest sensitivity on the 
parameters responsible for biomass forming mechanism (23%), PTS (15 %), PFK (14 %) and aldolase (12 %). 
On average, the contribution of the rest of the metabolic rates is between 15-30 %.  

4 Conclusions      
The presented results of the non-stationary 1-C mol balances and the global parameter sensitivity analysis enable 
inference on metabolic flux regulation and detection of the most sensitive parameter which is related to 
interaction of a given enzyme and substrate, cofactors and metabolites. Its main implications are derived from 
the systemic or global sensitivity results which are properties of “the whole” rather than a single one-to-one local 
analysis. The classical local analysis is constrained to the selection of a steady state (cell homeostasis), while in 
the impulse experiment the assumption of a steady state is inappropriate. Selected is a relatively wide range of   
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Figure 5. Global sensitivities Si of the input-output fluxes on the kinetic parameters evaluated  
                      during 5 s after the glucose impulse. The maximum sensitivities are: 

                           A) (1)  enzyme  phosphofructokinase S26(npfk3) = 0.506;  
                                (2) PTS mechanism S3(Km2) = 0.08, S4(Ki1) =0.077 
                           B) (1)  mureine synthetase S30(Km9) = 0.432; (2) nucleotide synthetase S119(nrppk1) = 0.423;  
                                (3) phosphofructokinase  S25(Ki1) =0.045;  
                                (4) phospho-gluconat-dehidrogenase  S104(npgdh2) = 0.043; 
                                (5) transketolase-transaldolazeS111(vftkata) = 0.034 
                            C) (1)  pyruvate to biomass  S130(vfpyrbm) = 0.165;  S139(Km44) = 0.152;  
                                (2) aldolase  S34(vmaxaldo) =0.1527;  
                                (3) phosphofructokinase  S19(L) = 0.00961;  
                                (4) PTS S4(Ki1) = 0.083; 
                                (5) pyruvate-dehydrogenase S86(Km28) = 0.094. 
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the parameter variation, -50 % to + 50 % of the nominal values, which reflects how each of the model 
parameters is responsible for the model performance when all the other parameters are simultaneously varied. 
The analysis is aimed for identification of metabolic regulation. It potentially elucidates the main allosteric 
effects in enzyme regulation. On the other hand, results of the global sensitivity are also crucial for model 
improvement and parameter optimization. It enables a modeler with selection of the most suitable model for a 
given set of experimental data, leading to model reduction and increase of its predictive potential.  

From systems view, this work constitutes an attempt towards dynamic mathematical modelling of regulation E. 
coli central metabolism upon glucose impulse perturbation, which is needed for the rational optimization of 
biotechnological processes. Due to the modelling of the very early response of the perturbation, limited to the 
first 15 seconds, effects of the genetic level regulation may be considered ineffective. In addition, by 
experimental account of the intracellular cofactors, achieved is separation from the anabolic effects on the 
regulation on the level of protein phosphorylation. Hence, the main result of this work is focused on the 
modelling of metabolic regulation (effectors) and discern of the key enzyme-metabolite interactions (reflected by 
the corresponding kinetic parameters) on the main metabolic fluxes by the application of the global sensitivity 
analysis. 

However, for a rational development of optimized genetically modified biotechnological processes a cell 
systemic approach is needed which simultaneously accounts for metabolite level regulation and the global 
genetic regulatory network and molecular signalling network of the regulation of the central carbon metabolism 
[10]. 

5 Nomenclature 
Metabolites 
AcCoA acetyl-coenzyme A 
ADP adenosindiphosphate 
ATP adenosintriphosphate 
BPG glycerate-1,3-bisphosphate 
CIT citrate 
C5P lumped pentose phosphate pool 
DAHAP 7-phospho-2-dehydro-3-deoxy-D-arabinoh-eptonate 
DHAP glycerine phosphate 
ED Entner-Doudoroff pathway 
E4P D-erythrose-4-phosphate 
FBP ½-D-fructose-1,6-bisphosphate 
F6P ½-D-fructose-6-phosphate 
GAP glyceraldehydes-3-phosphate 
GTP guanosine triphosphate 
G3P glycerol-3-phosphate 
G6P -D-glucose-6-phosphate 
NAD diphosphopyridindinucleotide (oxidized) 
NADH diphosphopyridindinucleotide-phosphate (oxidized) 
MUR mureine 
OxAc oxaloacetat 
PEP phosphoenolpyruvate 
PP phospho-pentose pathway 
2PG glycerate-2-phosphate 
3PG glycerate-3-phosphate 
6PG 6-phospho- D-gluconate 
PYR pyruvate 
R5P D-ribose-5-phosphate 
Ri5P D-ribulose-5-phosphate 
S7P D-sedoheptulose-7-phosphate 
X5P D-xylulose-5-phosphate 

Enzymes
pts phosphotransferase system 
tka transketolase A 
tkb transketolase B 

Abrevations 
ATP adenosine triphosphate  
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FAST Fouirer Amplitude Sensitivity Test  
NADH nicotinamide adenine dinucleotide  
NADPH     nicotinamide adenine dinucleotide phosphate  
ri i-th flux (metabolic reaction rate) 

6 References 
[1] Degenring, D., Fromel, C., Dikata, G. and Takors, R.: Sensitivity analysis for the reduction of the complex 

metabolism models. Journal of Process Control, 2004, 14:729-745. 
[2] Degenring, D.: Erstellung und Validierung mechanistischer Modelle für mikrobiellen Stoffwechsel zur 

Auswertung von Substrat-Puls-Experimenten. Dissertation. University of Rostock, 2004. 
[3] ¸eri¹, S. and  Kurtanjek, Ž.: Model identification, parameter estimation and dynamic flux analysis of E. 

coli central metabolism. Chemical and Biochemical Engineering Quarterly, 2006, 20(3):243-253. 
[4] http://www.pbf.hr/hr/zavodi/zavod_za_procesno_inzenjerstvo/laboratorij_za_mra/modeliranje_biotehnolos

kih_procesa  
[5] Saltelli, A., Ratto, M., Tarantola, S. and Campolongo, F.: Sensitivity analysis of chemical models. Chemical 

Reviews, 2005, 105(7):2811-2827. 
[6] Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G. and Schaibly, J.H.. Study of the sensitivity of the 

coupled reaction systems to uncertainties in rate coefficients. I theory. The Journal of Chemical Physics, 
1970, 3873-3878. 

[7] Wolfram Research “Mathematica”, v. 6.0 (2008). 
[8] Saier, M.H. JR.: Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase Systems: Structural, 

Functional, and Evolutionary Interrelationships. Bacteriological Reviews, 1977, 41(4):856-871. 
[9] Sauer, U., Lasko, D.R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wüthrich, K. and Bailey, J.E.: 

Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon 
metabolism. Journal of Bacteriology, 1999, 181(21):6679-6688. 

[10]  Hardiman, T., Lemuth, K., Keller, M.,  Reuss, M.  and Siemann-Herzberg, M.: Topology of the global 
regulatory network of carbon limitation in Escheichia coli, Journal of Biotechnology, 2007, 132(2): 359-
374. 

1785

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume


