
Web-enabling Cache Daemon for Complex Data

Ivan Voras, Mario Žagar
University of Zagreb Faculty of Electrical Engineering and Computing

{ivan.voras, mario.zagar}@fer.hr

Abstract. One of the most common basic
techniques for improving the performance of
web applications is caching frequently accessed
data in fast data stores, colloquially known as
cache daemons. In this paper we present a cache
daemon suitable for storing complex data while
maintaining fine-grained control over data
storage, retrieval and expiry. Data manipulation
in this cache daemon is performed via standard
SQL statements so we call it SQLcached. It is a
practical, usable solution already implemented
in several large web sites.

Keywords. web cache, data cache, database
cache, SQL, database, memory database

1. Introduction

A quick survey (which does not attempt to be
comprehensive) of Internet's most popular
"generic" web applications and high-volume
dynamic web sites confirms that most of them
rely extensively on data cache daemons to help
them achieve their high performance1. The
results of this survey (from October 2007) are:

Web site Cache engine used

Slashdot (http://slashdot.org) memcached [1]

Wikipedia (http://wikipedia.org) memcached [1]

LiveJournal (http://livejournal.com) memcached [1]

SourceForge (http://sourceforge.net) memcached [1]

Google (http://google.com) BigTable [2]

YouTube (http://youtube.com) BigTable [2]

Table 1. Survey of cache engine usage on
large Internet web sites

We also observe that all of these web sites except
Google use some of the rapid web application
development languages and frameworks such as
PHP, Python or Ruby, and have begun to rely on

1Note that this is different from generalized "HTTP
cache" and "web acceleration" applications which
cache resulting HTML and other content and act as a
"black box" between the web server and its end users.

advanced caching techniques to maximize their
performance. The popularity of Memcached in
this survey, used by most large web sites without
a major corporate backing, can be easily
explained by the fact that it was the first Open
Source cache daemon to provide generalized and
consistent interfaces to most popular
programming languages.

Out of a need to to increase performance in a
complex web application developed at our
Faculty2, we've first created a cache layer based
on Memcached, with which we've observed
significant performance improvements.
However, during the implementation and usage
we have found that many common operations are
not performed efficiently. These operations
include: complex conditional data retrieval,
complex cache expiry rules, and reduced need
for serializing and unserializing data to and from
strings. The lack of flexibility in the
implemented solution (which only offers a
simple key-value database) has lead us to
consider a different approach. Finally, a project
was started to implement a new cache daemon
which can provide these features in an uniform
and consistent way, with server-side
implementation of most of the complex rules.
The result is the SQLcached, whose architecture
and implementation we present in this paper.

2. Data caching in currently common
web applications

The basic idea behind using cache daemons in
web applications is to skip repetitive CPU- and
IPC- intensive steps by generating data only
once and then storing it in a high-performance
cache store, from where it can be retrieved as
needed. A very common application of this idea
is skipping the repetitive execution of complex

2The "Quilt" web CMS, implemented at the Faculty
of Electrical Engineering and Computing, other
University faculties and several government agencies
in Croatia, made with the PHP language and using
PostgreSQL database.

or large SQL queries by integrating a cache layer
between the web application and the database
interface (library). This cache layer will
commonly check if the result of the passed SQL
query exists in the cache and if it does, it will
return the data directly from the cache instead of
passing the query for execution to the database.
In this simple form, the simplest kind of directly
addressable data store is enough to satisfy the
required functionality.

Common web cache daemons are essentially
memory databases that offer a simple interface
for storing and retrieving key-value records, with
some "bonus" features like simple arithmetic
operations (increment and decrement) for well-
formed numeric values in the cache, simple
atomic operations (get- and set-if-not-changed)
and data expiry (an optional expiry timestamp
attached to each key-value pair). A typical cache
layer in web applications builds a key-value pair
by hashing SQL query strings to form the key
string and serializing database results to form the
value string. Since the cache daemon often
implements data expiry directly, it is enough for
the application to check if the hashed SQL string
exists in the cache and then either return the
cached result (if it exists), or execute the query,
store the result in the cache, and then return it.

2.1. Design of Memcached

One of the most common cache daemons in use
on the web is Memcached, whose design is
classical and straightforward. Since it's
influenced the creation of SQLcached, we will
present some of its major features here.

The architecture of Memcached makes it very
efficient in the common case [3]. The cache
daemon is implemented as a single executable
that is resident (as its name implies) as a daemon
process on a network-enabled server. It is created
in C for POSIX environments and is most
commonly deployed on Linux and other Unix-
like operating systems. Applications
communicate with the cache daemon using a
simple text-based protocol (modelled after early
TCP protocols like SMTP) which is implemented
over TCP or UDP, with the TCP version being
preferable. This protocol is easily implemented
in practically any programming language, which
has greatly helped Memcached's popularity. The
cache daemon uses a low-latency, asynchronous
method of acquiring and handling network
connections. The data store (key-value pairs) is
organized as a dynamically sized hash table

structure optimized for fast reading. The hash
table size can only be increased (the condition
for this is when the number of items in any hash
bucket gets larger than two thirds of the base-two
logarithm of the number of buckets). Memory for
the hash table items is allocated using an internal
slab allocator [4] whose purpose is to reduce
memory fragmentation [5].

Memcached is a single-threaded daemon
which handles network requests sequentially (at
any given time, the cache daemon is actively
working only on one request). This makes for a
simple and efficient implementation, at the
expense of not allowing it to scale on multi-CPU
systems. However, because the execution of
individual requests is very fast and the operating
system handles network data transmission
asynchronously while requests are being
executed, the overall performance of
Memcached is often more than sufficient for its
purpose.

2.2.Shortcomings of Memcached and the
design of SQLcached

Memcached is a proven solution for data caching
and memory databases used by many large
products, many of which are of "mission critical"
importance for their respective companies. Most
of its shortcomings are worked around in its
implementation at the data cache layer in
applications, though at the expense of efficiency
and speed of operation. The purpose of this paper
is not to discourage its use, but to point out some
additional features that are generally useful for
applications but which are not addressed in
Memcached and to provide an alternative
solution that does implement them. These
features are:

1. The ability to store complex data without
excessive serialization. While some forms of
data conversion is always necessary to translate
the data representation from the one used in the
web application (e.g. in PHP) to the one used in
the cache daemon, serialization in dynamic
languages can be slow. We have observed that in
PHP, the serialize() function is 1.5 times slower
than a naïve approach when converting simple
integer values, and up to 20 times slower when
converting simple structures. Our analysis shows
that much of this difference results from taking
advantage of the programmer's knowledge of
data types and structure layouts in the second
case, versus the generality of the serialize() call.

This approach cannot be used with a simple key-
value database.

2. The ability to retrieve data sets based on
complex criteria. Many cache daemons,
including Memcached, offer some way of
retrieving a list of cached data records based on a
provided list of keys, but retrieving keys based
on a complex criteria such as "wildcard"
matching of key strings, retrieving all cache
items pertinent to a certain web page ID, etc. is
not supported. Due to the inherent nature of the
storage structure, hash tables (while very
efficient at key-value pairs) cannot support many
of the complex queries.

3. The ability to expire data sets based on
complex criteria. Without additional metadata
support, cache record expiry can commonly be
performed either per-record (for each record
individually) or in bulk (all records at once). Fine
grained expiry would allow expiry only of
certain data, for example all data pertinent to a
web page ID.

4. The ability to do complex operations on
the data (both data-processing and algebraic).
This is a non-critical ability and is in any case
more a convenience than a necessity. With a
complex data model it should be possible to, for
example, extend the expiry time ("time to live")
of cached data items, or update only certain
portions of the data, further increasing the cache
efficiency when there are a lot of cached records
or when the data generation is particularly slow.

Many of these features stem from the fact
that most modern dynamic web pages are, as a
rule, constructed of several individual elements.
A simple example is a web page consisting of a
header, a footer, a site navigation bar and the
contents, each of which may have complex
relationships with other elements on this and
other pages. For example, the page's header and
navigation bar can be common for all pages,
while the content is changed by the
administrators, and the footer contains the
timestamp of the last change in the content.
Adding a new page to the site means only the
navigation bar is changed (for all pages). To
support modern interactive sites (let's call them
"Web 2.0" sites, for a lack of a better common
name), individual users might have customized
views of the same content, multiplying most of
the cacheable elements per the number of users.

The lack of fine-grained control over data
retrieval and expiry results in inefficient use of
the cache. This inefficiency can be manifested by
either of the two following scenarios. First,

keeping too much logic and data in the
application to avoid retrieving or expiring too
many records is slow if the application is written
in an interpreted language, and can result in
many IPC calls to the cache to gather all needed
data from the cache. Second, by considering the
data at a too coarse granularity, keeping it in few
large structures which are generated and
transferred to and from the cache in bulk or
expiring all data from the cache when a critical
piece of user-visible data changes (versus
expiring only the data pertinent to a certain user
or to a certain web page), significant spikes in
server load can be observed when new data is
generated, which can sometime reduce the
beneficial effects of having a cache. In our
experience, this latter form of inefficiency is
more dangerous to a smooth user experience
(and a smooth and predictable server load).

Memcached lacks all of the enumerated
features because it is structured as a true key-
value database, with both the key and the value
being simple opaque binary data strings. Some of
the features can be emulated to an extent by
folding data qualifiers into key strings, which
was used by an early version of our web
application. Our experience from the
implementation was that such substitute
techniques are often difficult to implement and
negatively impact the overall performance of the
system, as compared to what it could have been
without them. This experience has motivated us
to seek a different solution for the data cache.

Several different approaches were considered
for the improvement of the overall system,
among which are: modification of Memcached to
better suit our data model, creation of a similar
cache daemon which allows data to be properly
separated into multiple independent domains
(that can be expired separately), and creation of a
complex caching daemon with the features of
generic tabular database.

After weighing the benefits that each
approach could bring to the system and the
complexities of each implementation, the third
option was chosen. Adding special support for
our needs to Memcached would limit its usability
when the needs change, and while separating
keys into independent domains can help with
expiry, retaining any form of key-value database
doesn't do help with storage of complex data.

After the decision to implement a tabular
memory database, we have considered an
interface to the cache daemon. In the spirit of
making it simple, a text interface was chosen. It

was soon obvious that the most convenient (and
easiest to learn) interface to the cache engine is a
subset of SQL. In order not to duplicate work
and create yet another SQL database, it was
decided to base the new cache engine on SQLite
[6].

3. Implementation of SQLcached

The new cache engine, which we named
SQLcached, uses SQLite as its underlying
storage engine. SQLite is a small, embeddable,
serverless relational database with an interface
that makes it usable for seamless integration into
larger applications. At the time of this project's
creation, two SQLite versions were in
widespread use: version 2.8.17, a stable and
mostly obsolete version, and version 3.3.5, with
a newer architecture. Preliminary tests showed a
significant difference in performance between
the versions [7] in favour of the older version.
Because of this, we have used version 2.8.17.

SQLcached is written in C and is designed as
a daemon process for POSIX environments.
Applications communicate with it via either the
TCP or the "Unix sockets" interface (both can be
used at the same time), using a simple text-based
protocol. Network operations (reading, writing
and connection handling) are implemented in an
asynchronous way so that multiple simultaneous
connections are handled efficiently, but only one
request can be processed at the same time. The
asynchronous requests are handled using the
standard POSIX poll() interface. SQLcached can
be deployed on more than one server to create a
load-balancing setup.

The network protocol used by SQLcached
offers the clients an almost complete set of SQL
statements supported by SQLite, including
relational features like n-way joins (though they
may not be directly usable in a cache daemon,
for performance reasons).

The SQLite backend is used as a memory-
only database, and no data is ever committed to
permanent storage. Indices can be created on
appropriate database fields to speed up data
retrieval. Both data and index structures are
internally stored in dynamically balanced B-
trees.

4. SQLcached features

The following sections describe how SQLcached
implements features enumerated in section 2.2.

4.1.Support for storing arbitrary data
without excessive serialization

Sqlcached stores data in tabular form, and the
SQL interface exposed to the clients allows them
to create arbitrary tables for their use. This
feature allows applications to store entire
structures in the cache without forced
serialization, and later selectively retrieve only
needed parts of the structures. The main benefit
of this mode of operation is a smaller overhead
in processing time and in memory allocation, for
both the application and the cache daemon.

4.2.Support for retrieving data sets based
on complex criteria

The flexibility of SQL allows applications using
SQLcached to store and retrieve data using
complex criteria. The ability to cache data per-
user, per-page or per-application (with the same
keys in each of the domains) can have a huge
influence on efficiency of the cache layer, which
doesn't have to fold all the data into a single
namespace and can issue relatively complex
queries to store and extract only the needed parts
of complex structures. It also means that the
usage of SQLcached is not limited to caching of
opaque objects such as entire results of database
queries, but allows a different approach in which
applications can now cache their internal, already
processed data. In addition to increasing
efficiency and flexibility, this approach opens
new possibilities for applications. SQLcached
can be used for operations that would normally
overtask the main database due to the high
volume of data writes they generate, such as
tracking of individual users' statistical
information and presence (current web page or
object they are interacting with).

4.3.Support for data expiry based on
complex expiry rules

Data expiry in SQLcached can be performed
either automatically or initiated by applications.
Automatic data expiry can be triggered by one of
three conditions, configurable by the
applications: data age, number of records in the
table and number of cache operations. Using
these conditions, the data cache can be
effectively limited in size and remain fresh
enough for applications to use.

Applications that need more complex expiry
can issue appropriate SQL commands with
arbitrarily complex conditions, which can (for
example) delete data cached per-user, per-page
or per-application.

4.4.Support for complex operations on
cached data

Applications using SQLcached have access to
operators and functions supported by SQLite,
which include basic arithmetic and comparison
operators, simple numerical functions (e.g.
ABS), data manipulation functions (e.g. UPPER)
and aggregate functions (e.g. MIN, MAX).

5. Usability and performance of
SQLcached

The proper application of SQLcached in web
application requires a step away from the
traditional design where the cache is used as a
single-purpose key-value database. Instead, we
propose a design where the applications exhibit
more fine-grained control over the data and
cooperate with the cache daemon to make the
best use out of the rich set of features it
offers.Using SQLcached as a simple key-value
database is suboptimal, as shown on Figure 1,
presenting results of benchmarking SQLcached
and Memcached in a situation where the data
records are simple key-value pairs with value
sizes conforming to a geometric distribution3. In
case of SQLcached, a single table was created
with three columns: key, value, and time.
Analogous write benchmarks follow the same
trends and relations between the results.

19 324 645 970 1720 3254 6830 13298

0

5000

10000

15000

20000

25000

30000

Read benchmark

sqlcached memcached

Median size of data set elementsC
ac

he
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d

Figure 1. Results of simple key-value read
benchmarks.

3These benchmarks were performed on an Athlon 64
2 GHz in 32-bit mode on FreeBSD 7 under directly
comparable conditions.

However, SQLcached offers features not present
in Memcached, such as fine-grained data expiry.
We have performed benchmarks on a data set of
100,000 records in 30,000 pages and 1000 users
simulating cached data according to the example
web site described in section 2.24 (appropriate
indexes were created in the cache database
schema). Table 2 contains results of forced data
expiry benchmarks. Forced data expiry is
frequently used when new content is posted
which immediately obsoletes previously cached
data (because users want to immediately see the
effects of their actions).

Cache daemon operation Time

Memcached (expire entire set at once) 1000.0 ms

SQLcached (expire cached data, a single page) 0.2 ms

SQLcached (expire cached data, a single user) 6.1 ms

Table 2. Effectiveness of fine-grained
forced data expiry

By employing fine-grained expiry of the cached
data in the web CMS application used at our
Faculty, we have observed up to 30%
improvement in overall performance at periods
of intensive content creation and significant
reduction of load spikes in IO and CPU on the
server, resulting in a more smooth and
predictable operation. We believe that offloading
more data operations from the cache layer in the
application (written in PHP) to SQLcached could
yield even better results.

6. Conclusion

This paper presented the SQLcached cache
daemon, a network-enabled memory database
intended to be used for caching often generated
data in web applications. Development of
SQLcached was motivated by the desire to
increase performance in a real, production web
application in a way that could not be done with
the most popular open-source cache daemon,
memcached.

SQLcached offers a highly flexible interface
to client applications, based on a subset of SQL.
This allows applications to perform complex
operations on the cached data such as storage,
retrieval and data expiry using complex rules,
which results in a more efficient use of the cache.
To gain maximum benefits from the advanced

4These benchmarks were performed on a Pentium M
1.5 GHz on FreeBSD 7 under directly comparable
conditions.

features of the cache database, applications using
it must be modified not to treat cached data as
simple binary strings, but as complex objects
with arbitrary properties which can be used to
increase efficiency. SQLcached is successfully
implemented in our web application where it has
satisfied all our requirements for a flexible cache
database.

The source code of SQLcached is published
as Open source and is available at
http://www.sf.net/projects/sqlcached.

7. Acknowledgements

This work is supported in part by the
Croatian Ministry of Science, Education and
Sports, under the research project “Software
Engineering in Ubiquitous Computing”.

8. References

[1] B. Fitzpatrick, "memcached: users",
http://www.danga.com/memcached/users.bm
l, retrieved 2007-10-14

[2] Wikipedia, "BigTable",
http://en.wikipedia.org/wiki/Bigtable,
retrieved 2007-10-14

[3] B. Fitzpatrick, A. Vorobey and others:
memcached source code,
http://www.danga.com/memcached/,
retrieved 2007-10-01

[4] J. Bonwick, "The Slab Allocator: An Object-
Caching Kernel Memory Allocator",
USENIX Summer 1994 Technical
Conference, 1994.

[5] A. Vorobey, "Memory management",
memcached technical documentation
distributed with memcached source.

[6] D. R. Hipp, "SQLite Documentation", http://
www.sqlite.org/docs.html, retrieved
2007-10-02

[7] I. Voras, "SQLite :memory: performance
difference between v2 and v3", public
communication (mailing list), archived at
http://www.mail-archive.com/sqlite-
users@sqlite.org/msg14868.html, retrieved
2007-10-02

