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ABSTRACT

In this paper circular quartics are constructed by auto-
morphic inversion (inversion that keeps the absolute figure
fixed) as the images of conics. They are classified depend-
ing on their position with respect to the absolute figure.
It is shown that only 1, 2 and 4-circular quartics can be
obtained by automorphic inversion.
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Automorfna inverzija i cirkularne kvartike u
izotropnoj ravnini

SAŽETAK

U ovom su radu cirkularne kvartike konstruirate pomoću
automorfne inverzije (inverzija koja apsolutnu figuru os-
tavlja fiksnom) kao slike konika. Klasificirane su s obzirom
na položaj prema apsolutnoj figuri. Pokazano je da se au-
tomorfnom inverzijom konike mogu dobiti samo 1, 2 i 4
cirkularne kvartike.

Ključne riječi: izotropna ravnina, cirkularna kvartika, au-
tomorfna inverzija

1 Introduction

An isotropic plane I2 is a real projective plane where the
metric is induced by a real line f and a real point F in-
cidental with it, [4]. The ordered pair ( f ,F) is called the
absolute figure of the isotropic plane.

In the affine model of the isotropic plane where the coor-
dinates of the points are defined by

x =
x1

x0
, y =

x2

x0
,

the absolute line f is determined by the equation x0 = 0
and the absolute point F by the coordinates (0,0,1).

The projective transformations that map the absolute fig-
ure onto itself form a 5-parametric group G5. They have
equations of the form

x = a+dx, y = b+ cx+ ey.

G5 is called the group of similarities of the isotropic plane,
[1], [4]. Its subgroup G3 G5, consisting of the transforma-
tions of the form

x = a+ x, y = b+ cx+ y,

is called the group of motions of the isotropic plane. It
preserves the quantities such as the distance between two

points, snap between two parallel points or the angle be-
tween two lines. Thus, it has been selected for the funda-
mental group of transformations.
The ordered pair (I2,G3) is called the isotropic geometry.

All straight lines through the absolute point F are called
isotropic lines and all points incidental with f are called
isotropic points.
Two points A(a1,a2) and B(b1,b2) are called parallel if
they lie on the same isotropic line. In that case, the span is
defined by s(A,B) = b2− a2. For two non-parallel points
the distance is defined by d(A,B) = b1−a1.

There are seven types of regular conics classified accord-
ing to their position with respect to the absolute figure, [1],
[4]. An ellipse (imaginary or real) is a conic that intersects
the absolute line in a pair of conjugate imaginary points.
If a conic intersects the absolute line in two different real
points, it is called a hyperbola (of 1st or 2nd type, depend-
ing on whether the absolute point is outside or inside the
conic). A conic passing through the absolute point is called
a special hyperbola and a conic touching the absolute line
is called a parabola. If a conic touches the absolute line at
the absolute point, it is said to be a circle.

A curve in the isotropic plane is circular if it passes
through the absolute point, [5]. Its degree of circularity
is defined as the number of its intersection points with the
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absolute line f falling into the absolute point. If it does not
share any common point with the absolute line except the
absolute point, it is entirely circular, [3].
The circular curve of order four can be 1, 2, 3 or 4-circular.
The absolute line can intersect it, touch it, osculate it or
hyperosculate it at the absolute point. The absolute point
can be simple, double or triple point of the curve.

2 Automorphic inversion in isotropic plane

Definition 1 An inversion with respect to the pole P and
the fundamental conic q is a mapping where any point and
its image are conjugate with respect to the conic q and
their connecting line passes through the point P.

The inversion is an involution, [2], [6]. Any point of the
fundamental conic is mapped into itself. The lines join-
ing a point to its image are called the rays. They are fixed
lines as entities, but their points are not fixed. Let p be
the polar line of the point P with respect to the fundamen-
tal conic q. The intersection points of the line p with the
conic q are denoted by P1 and P2 and their polar lines by
p1 and p2. These three points and three lines are said to
be the fundamental elements of the given mapping. The
fundamental points are the singular points of the inversion
(P 7→ p,P1 7→ p1,P2 7→ p2), and any point of the funda-
mental line is mapped into the corresponding fundamental
point.

The inversion maps the curve k of order n into the curve
k of order 2n. Since k intersects any fundamental line
in n points, k has three multiple points of order n in the
fundamental points. If k passes through some of the fun-
damental points, k splits into the corresponding polar line
and a curve of order n− 1. The curve k passes through
common points of the curve k and the fundamental conic.

Since we are interested in the property of circularity, we
will restrict our interest on the inversions that keep the ab-
solute figure fixed.

Definition 2 An inversion which maps absolute figure into
itself is called the automorphic inversion.

According to [5] the following theorem is valid:

Theorem 1 There are five types of the automorfic inver-
sion:

(1) The fundamental conic q is a special hyperbola. The
pole P is a point of the absolute line, different from
its intersections with the fundamental conic.

(2) The fundamental conic q is a special hyperbola. The
pole P is an intersection point of the absolute line
and the fundamental conic different from the ab-
solute point.

(3) The fundamental conic q is a special hyperbola. The
pole P is the absolute point.

(4) The fundamental conic q is a circle. The pole P is a
point of the absolute line different from the absolute
one.

(5) The fundamental conic q is a circle. The pole P is
the absolute point.

Proof. The absolute point F has to be mapped into itself.
Therefore, F has to be a point of the fundamental conic.
Accordingly, the fundamental conic is either a special hy-
perbole or a circle. Since the absolute line f has to be
mapped into itself, it has to be a ray of inversion. Conse-
quently, the pole P is a point of the absolute line. ¤

A curve of order four can be obtained by inversion of a
conic, but also by inversion of a curve of higher order pass-
ing through the fundamental points. For example, the in-
verse image of a cubic passing through two fundamental
points is a curve of order six that splits into two lines and a
curve of order four. We will study the quartics k obtained
as an inverse images of a conic k that does not pass through
the fundamental points. The conditions that the conic k has
to fulfill in order to obtain a circular quartic of certain type
will be determined for each of the types of the inversion.

2.1 Equation of fundamental conic

Every curve of second order is given by the equation of the
form

a00x2
0 +a11x2

1 +a22x2
2 +2a01x0x1 +2a02x0x2 +2a12x1x2 = 0,

(1)

or in the affine coordinates

a00 +a11x2 +a22y2 +2a01x+2a02y+2a12xy = 0.

Considering the isotropic motion

x = x− a01a22−a02a12

a2
12−a11a22

, y = y− a02a11−a01a12

a2
12−a11a22

we get a simpler form of the equation

a11x2 +a22y2 +2a12xy+a = 0.

If a2
12−a11a22 = 0, the conic is either a parabola or a circle.
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The equation of parabola touching the absolute line [1,0,0]
at the point (0,1,0) due to




a00 a01 a02
a01 a11 a12
a02 a12 a22







0
1
0


 = µ




1
0
0


 ,

is of the form

a00 + y2 +2a01x+2a02y = 0.

Now, by the isotropic motion

x = x+
a00−a2

02
2a01

, y = y+a02

it can be transformed into

y2 +2a01x = 0, a01 6= 0.

1-circular conic (a special hyperbola) due to a22 = 0 has
the equation of the form

a11x2 +2a12xy+a = 0, a12 6= 0.

The assumption that the other intersection point of the spe-
cial hyperbola and the absolute line is the point (0,1,0)
leads to even simpler form

xy+a = 0. (2)

If the conic given by (1) is 2-circular, the line f [1,0,0]
is the tangent of the conic at the point F(0,0,1), conse-
quently a12 = a22 = 0,a02 6= 0. Therefore, the equation

a11x2 +2a01x+2a02y+a00 = 0,

is obtained. Since a11 should not equal zero, we can chose
a11 = 1. After applying the isotropic motion

x = x, y =
a00

2a02
+

a01

a02
x+ y

the equation becomes

x2 +2a02y = 0. (3)

2.2 Equations of inversion

Let the fundamental conic q be a special hyperbola and let
the pole of the inversion P(0, p1, p2) be a point of the ab-
solute line. Without loss of generality we can assume that
q has the equation xy− 1 = 0. Let us determine the coor-
dinates of the image T (1,α,β) of a given point T (1,α,β).
The polar line t of the point T is determined by




1 0 0
0 0 1

2
0 1

2 0







1
α
β


 =



−1
1
2 β
1
2 α


 ,

Or, in other words, the line with the equation

−2+βx+αy = 0. (4)

Connecting line T P is given by
∣∣∣∣∣∣

x0 x1 x2
0 p1 p2
1 α β

∣∣∣∣∣∣
= 0,

which is equivalent to

p1β− p2α+ p2x− p1y = 0. (5)

The point T is the intersection of the lines t and T P so its
coordinates can be determined by solving the system of the
linear equations (4) and (5) and equal

α =
p2α2− p1αβ+2p1

p2α+ p1β
, β =

−p2αβ+ p1β2 +2p2

p2α+ p1β
.

Thus, the inversion is given by

x =
p2x2− p1xy+2p1

p2x+ p1y
, y =

−p2xy+ p1y2 +2p2

p2x+ p1y
. (6)

If the pole is the absolute point F(0,0,1) the previous ex-
pressions are turned into

x = x, y =−y+
2
x
. (7)

If the pole is the other intersection of the fundamental
conic with the absolute line, i.e. the point P(0,1,0), (6)
becomes

x =−x+
2
y
, y = y. (8)

In the general case when the pole P(0,1, p), p 6= 0, is the
point of the absolute line not belonging to the fundamental
conic, the inversion is determined by

x =
px2− xy+2

px+ y
, y =

−pxy+ y2 +2p
px+ y

. (9)

Therefore, we conclude that inversion, fundamental conic
of which is a circle x2− y = 0 (without loss of generality
we can assume a02 = − 1

2 ) and pole P(0, p1, p2) is a point
of the absolute line, has the equations

x =
−p2x+2p1y

2p1x− p2
, y =

−2p2x2 +2p1xy+ p2y
2p1x− p2

. (10)

In the case when the pole is the absolute point F(0,0,1)
equalities (10) are turned into

x = x, y = x2− y. (11)

The general case, when the pole is different from the ab-
solute point, may be simplified by choosing (0,1,0) for its
coordinates. Then, the inversion is given by

x =
y
x
, y = y. (12)

3



KoG•12–2008 E. Jurkin: Automorphic Inversion and Circular Quartics in Isotropic Plane

2.3 Circular quartics obtained by automorphic
inversion of conic

Theorem 2 An automorphic inversion in the isotropic
plane maps the 2nd-order curve k not passing through
the fundamental points of the inversion into the 4nd-order
curve k. The degree of circularity of the curve k depends
on the type of the inversion and on the position of the conic
k with respect to the fundamental and absolute elements as
follows:

• If the fundamental conic q is a special hyperbola and
the pole P is an isotropic point, P 6= F, k is 1-circular
(if k is a special hyperbola) or 2-circular (if k is a
circle) quartic.

• If the fundamental conic q is a special hyperbola and
the pole P is the absolute point, k is 2-circular quar-
tic.

• If the fundamental conic q is a circle and the pole P
is an isotropic point, P 6= F, k is 2-circular quartic

• If the fundamental conic q is a circle and the pole P
is the absolute point, k is 4-circular quartic.

Proof. Detailed proofs of all facts will be given only in
the case of the inversion of type (1). Since the approach
is similar in all the other cases for the inversions of types
(2)-(5), only the facts will be stated in those cases.

Type (1)
Let us consider the inversion of type (1) with the funda-
mental conic q given by the equation xy− 1 = 0 and the
pole P(0,1, p).

The other two fundamental points are P1(p,
√−p,−p

√−p)
and P2(p,−√−p, p

√−p). Three fundamental lines
p, p1, p2 are given by equations y =−px, y = px−2

√−p,
y = px+2

√−p, respectively.

The inversion

x =
px2− xy+2

px+ y
, y =

−pxy+ y2 +2p
px+ y

maps the conic k

a00 +a11x2 +a22y2 +2a12xy+2a01x+2a02y = 0 (13)

into the quatric k

a11 p2x4−2p(a12 p+a11)x3y+(a22 p2 +4a12 p+a11)x2y2−
−2(a22 p+a12)xy3 +a22y4 +2a01 p2x3−2a02 p2x2y−
−2a01xy2 +2a02y3 +((a00 +4a12)p2 +4a11 p)x2−

−2(2a22 p2 +(4a12−a00)p+2a11)xy+(4a22 p+a00 +4a12)y2+

+4p(a02 p+a01)x+4(a02 p+a01)y+4(a22 p2 +2a12 p+a11)= 0.

The coefficient a11 must not equal −a22 p2−2a12 p, since
otherwise conic k would pass through the pole P and con-
structed quartic k would split into the line px + y = 0 and
a cubic.

The intersections of the absolute line x0 = 0 with the quar-
tic k are the points coordinates of which satisfy the equa-
tion

a11 p2x4
1−2p(a12 p+a11)x3

1x2 +(a22 p2 +4a12 p+a11)x2
1x2

2−
−2(a22 p+a12)x1x3

2 +a22x4
2 = 0.

Some short calculation turns it into

(x2− px1)2(a11x2
1−2a12x1x2 +a22x2

2) = 0.

It is obvious from here that the pole P(0,1, p) is two times
counted common point of the absolute line and the quartic.
The absolute point is one of the intersections if and only if
a22 = 0, and it is two times counted common point if and
only if a12 = 0, too.

If a22 = 0, the conic k is a special hyperbola with the equa-
tion

k ... a00 +a11x2 +2a12xy+2a01x+2a02y = 0, (14)

and the quatric k is 1-circular, Figure 1.
If a12 = a22 = 0, the conic k is a circle

k ... a00 +a11x2 +2a01x+2a02y = 0, (15)

and the quartic k is 2-circular.
Therefore, the degree of circularity of the constructed quar-
tic k equals the degree of circularity of the conic k.

Figure 1
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We should determine the tangent of the quartic k at the ab-
solute point. Any line through the point F(0,0,1), except
the absolute one, has the equation of the form x = m, i.e.
x1 = mx0. Its intersections with the quatric k are the points
coordinates of which satisfy the equation

(4a01mp+4a11m2 p+4a02mp2 +(a00 +4a12)m2 p2+

+2a01m3 p2 +a11m4 p2 +4a11 +8a12 p)x4
0+

+2(2a01−2a11m+2a02 p+(a00−4a12)mp−a11m3 p−
−a02m2 p2−a12m3 p2)x3

0x2+

+(a00 +4a12−2a01m+a11m2 +4a12m2 p)x2
0x2

2+

+2(a02−a12m)x0x3
2 = 0.

The line is a tangent at the point F if x0 = 0 is dou-
ble root of the equation above, and that is if and only if
a02−a12m = 0.
Hence in the case of k being the special hyperbola given
by (14), the line x =

a02

a12
is a tangent of the quartic.

If k is the circle (a12 = 0) given by the equation (15), there
is no line different from the absolute one that touches the
quartic at the absolute point.

Any line passing through the pole P(0,1, p) and differ-
ent from the absolute one has the equation of the form
mx0− px1 +x2 = 0, i.e. y = px+m. We need to determine
m corresponding with a tangent. Its intersections with the
quartic satisfy the equation

(2a02m3 +(a00−4a12)m2 +4(a01 +a02 p)m+4(a11 +2a12 p))x4
0+

+(−2a12m3 +2(3a02 p−a01)m2 +4(−a11 +a00 p)m+

+8p(a01 +a02 p))x3
0x1+

+((a11−2a12 p)m2 +4p(−a01 +a02 p)m+4a00 p2)x2
0x2

1 = 0.

Obviously, x0 = 0 is a double solution for each m. There-
fore, P is a double point of the curve k. x0 = 0 is a triple
solution if (a11−2a12 p)m2 +4p(−a01 +a02 p)m+4a00 p2

equals zero.
It follows that the lines

y = px+2p
a01−a02 p±

√
(a01−a02 p)2−a00(a11−2a12 p)

a11−2a12 p
are the tangents of the quartic at the pole P. The reality
of these lines depends on the sign of the expression under
the root, and P is a cusp if the expression equals zero. The
reality of the points T1,2(1, t1,2,−pt1,2), at which the conic
k intersects the fundamental line p, depends on the same
expression, where

t1,2 =
a02 p−a01±

√
(a02 p−a01)2−a00(a11−2a12 p)

a11−2a12 p
.

In the special case when a11 = 2a12 p and the special hy-
perbola k intersects the absolute line at the absolute point
and the point A(0,1,−p) at which the line is intersected
with the polar p of the pole P, one of the tangents of the

quartic at the pole P coincides with the absolute line, while
the other tangent has the equation y = px+

a00 p
a01−a02 p

.

If a01 = a02 p, too, the conic k touches the fundamental line
p at the point A. Therefore, the point P is a cusp at which
both tangents coincide with the absolute line.

Figure 1 displays 1-circular quatric
k...x4 + 3x3y + 3x2y2 + xy3 − 7x2 − 6xy − 3y2 − 8 = 0
obtained as the inverse image of the special hyperbola

k...1− x2 + xy = 0 by the inversion x =
−x2− xy+2
−x+ y

,

y =
xy+ y2−2
−x+ y

with the fundamental conic q...xy−1 = 0

and the pole P(0,1,−1). The tangent of the quartic at
the absolute point is the line x = 0, while the absolute
line is the tangent at the cusp P. Each of the funda-
mental lines p1...y = −x− 2, p2...y = −x + 2 intersects
k at two different real points. Therefore, fundamental
points P1(−1,−1), P2(1,1) are the nodes at which tan-

gents have the equations y =
−9±4

√
3

3
x +

12±4
√

3
3

,

y =
−9±4

√
3

3
x+

12∓4
√

3
3

, respectively.

Type (2)
An inversion with the fundamental conic q...xy−1 = 0 and
the pole P(0,1,0) is given by

x =−x+
2
y
, y = y.

The image of the point T (x,y) is the point T (−x +
2
y
,y).

Obviously, d(T,Q) = d(Q,T ), where Q is the intersection
of the ray PT with the fundamental conic q, Figure 2.

The image of the conic k with the equation (13) is the quar-
tic k:

a11x2y2−2a12xy3 +a22y4−2a01xy2 +2a02y3−
−4a11xy+(a00 +4a12)y2−4a01y+4a11 = 0.

The quartic k is circular if and only if a22 = 0, i.e. if and
only if k is circular.
The conic k intersects the absolute line x0 = 0 at the points
(0,−2a12,a11) and (0,0,1), while the quartic k intersects
it at the points coordinates of which satisfy the equation

x1x2
2 (a11x1−2a12x2) = 0.

It is obvious that x1 = 0 is a solution, hence F(0,0,1) is an
intersection. Since x2 = 0 is a double solution, (0,1,0) is
double joint point of the quartic with the absolute line. If
a12 6= 0, the fourth intersection is the point (0,2a12,a11). If
a12 = 0, then a11 6= 0 (since otherwise the conic k is a line)
and the point (0,0,1) is the fourth intersection. In that case
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k is a circle and k touches the absolute line at the absolute
point.

It is easy to prove that P(0,1,0) is a double point of the
quartic at which both tangents are identical with the funda-
mental line p [0,0,1].

In order to make the quartic k circular, it is necessary for
conic k to be circular. More precisely, k is 1-circular if k is
1- circular, and k is 2-circular if k is 2- circular. The tangent
of the conic k at the point F is the line a02x0 + a12x1 = 0,
while the tangent of the quatric k at that point is the line
a02x0−a12x1 = 0.

The inversion x =−x +
2
y

, y = y, maps the circle k with

the equation x2− y = 0 into the 2-circular quartic
k...x2y2− y3 +−4xy+4 = 0 touching the absolute line at
the absolute point. The quartic has a cusp with the tangent
y = 0 at the pole of the inversion, Figure 2.

Figure 2

Type (3)

Let us now consider the inversion

x = x, y =−y+
2
x

with the fundamental conic q...xy− 1 = 0. The absolute
point F(0,0,1) is the pole and its polar line x = 0 is the
fundamental line of the inversion. The point (0,1,0) is
another intersection of the fundamental conic with the ab-
solute line.
The point T (x,−y− 2a

x
) is the inverse image of the point

T (x,y). Clearly, s(T,Q) = s(Q,T ), where Q is the intersec-
tion of the ray FT with the fundamental conic q, Figure 3.

Figure 3

Let the conic k be given with the equation (13). The equa-
tion of the constructed quartic k is then

a11x4−2a12x3y+a22x2y2 +2a01x3−2a02x2y+
+(a00 +4a12)x2−4a22xy+4a02x+4a22 = 0.

The coefficient a22 should not equal zero since in that case
the conic k would pass through the absolute point (the pole)
and the quartic k would split into the line with the equation
x = 0 and a cubic.

The intersections of the conic k with the absolute line

are points
(

0,−a12±
√

a2
12−a11a22,a11

)
if a11 6= 0 and

(0,1,0), (0,a22,−2a12) if a11 = 0. If a2
12 = a11a22,

the conic k touches the absolute line.

Let us now determine the intersections of the quartic k
and the absolute line x0 = 0. Their projective coordinates
should satisfy the equation

a11x4
1−2a12x3

1x2 +a22x2
1x2

2 = 0.

It is evident that x1 = 0 is a double solution of the equation.
Therefore, the point F (0,0,1) is their two times counted
common point. Since a22 6= 0, x1 = 0 cannot be a triple
solution.
If a11 6= 0, the other two intersections are points(

0,a12±
√

a2
12−a11a22,a11

)
.

If a11 = 0, the intersections of the quartic with the absolute
line are point (0,0,1) counted twice and points (0,1,0),
(0,a22,2a12). If a12 equals zero, k touches the absolute
line f .
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Our next goal is to determine the equation of the tangent
of the quartic at the absolute point.
Any line t through F (except the absolute one) is given by
equation x1 = mx0, i.e. x = m. The coordinates of its inter-
sections with the quartic satisfy the equation

x2
0[

(
a11m4 +2a01m3 +(a11 +4a12)m2 +4a02m+4a2

22
)

x2
0 +

+
(−2a12m3−2a02m2−4a22m

)
x0x2 +a22m2x2

2] = 0.

Due to the fact that x0 = 0 is a double solution for each m
we conclude that (0,0,1) is a double point of the curve.
x0 = 0 is a triple solution if m equals zero. In that case the
solutions are given by

x2
0
[
4a2a2

22x2
0
]
= 0.

Thus x0 = 0 is a quadruple solution.
Consequently, the line p (x1 = 0) is two times counted
tangent of the quartic k at the absolute point F .

Figure 3 displays an inverse image k of the conic
k...x2 + y2− 4 = 0 with respect to the fundamental conic
q...xy− 1 = 0. The inversion is given by the equations

x = x, y = −y +
2
x
, and the quartic k by the equation

x4 + x2y2 − 4x2 − 4xy + 4 = 0. The quartic intersects the
absolute line at the double point F at which both tangents
coincide with the y-axis and the pair of conjugate imagi-
nary points (0,1, i) and (0,1,−i).

Type (4)
If the circle q...x2−y = 0 is the fundamental conic and the
point P(0,1,0) is the pole of inversion

x =
y
x
, y = y,

the conic k given by the equation (13) is mapped by this
transformation into the quartic

a22x2y2 +2a02x2y+2a12xy2 +a00x2 +2a01xy+a11y2 = 0.

(16)

Coefficients a00,a11,a22 must not equal zero, since other-
wise k would pass through some of the fundamental points.

The intersection points of the conic k with the fun-
damental lines x0 = 0, x1 = 0, x2 = 0 are the

points (0,a22,−a12 ±
√

a2
12−a11a22), (a22,0,−a02 ±√

a2
02−a00a22), (a11,−a01 ±

√
a2

01−a00a11,0), respec-
tively.

Since F(0,0,1), P(0,1,0) are the intersection points of the
quartic (16) with the absolute line and each of them two
times counted, an inversion of the type (4) produces 2-
circular quartics, Figure 4.

Figure 4

Its tangents at the double point F(0,0,1) are given by

x =
−2a12±

√
a2

12−a11a22

2a22
,

at the pole P(0,1,0) by

y =
−a02±

√
a2

02−a00a22

a22
,

and at the third fundamental point P1(1,0,0) by

y =
−a01±

√
a2

01−a00a11

a11
x.

Obviously, the reality of the tangents and the type of the
double point depend on the reality of the intersections of
the conic k with the corresponding fundamental line.

The conic k...1 − x2 + y2 = 0 and its inverse image
k...x2y2 + x2− y2 = 0 obtained by the inversion x =

y
x

,
y = y are presented in Figure 4. The quartic possesses
a node at the absolute point and an isolated double point at
(0,1,0). Its tangents at the point F are lines x =±1, at the
pole P the lines y =±i and at the fundamental point P1 the
lines y =±x.

Type (5)

Let us now suppose that the circle q...x2−y = 0 is the fun-
damental conic and the absolute point F(0,0,1) is the pole
of an inversion. The inversion is given by

x = x, y = 2x2− y.
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This type of inversion is analogous with the ordinary inver-
sion in the Euclidean plane.

The inverse image of the point T (x,y) is the point
T (x,2x2− y). So, s(T,Q) = s(Q,T ), where Q is the inter-
section of the ray FT with the fundamental conic, Figure 5.

The image of the conic (13) is the quartic k

4a22x4 +4a12x3−4a22x2y+(a11 +4a02)x2−2a12xy+

+a22y2 +2a01x+4a02y+a00 = 0.

Obviously, a22 = 0 is not allowed. In that case the conic
(13) would pass through the pole and the constructed quar-
tic k would split into the absolute line and a cubic.

An easy computation shows that the absolute point is a
double point of the curve at which both tangents coincide
with the absolute line. Therefore, k is an entirely circular
quartic.

The quartics 4x4 − 4x2y− x2 + y2 + 1 = 0, 4x4 − 4x2y +
x2 + y2− 4 = 0, 4x4− 4x2y + y2− x = 0 in Figure 5 pos-
sess a node, an isolated double point, or a cusp at the ab-
solute point, respectively. They are obtained as images of
the conics x2 − y2 = 1, x2 + y2 = 4, y2 = x by inversion
x = x, y = 2x2− y. ¤

Figure 5
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